CS673 Interactive Syllabus
Eyeman








Course Syllabus and Schedule: CS673 (Spring 1998)

Computational Vision



Table of Contents

Lecture 2 Lecture 3
Lecture 4 Lecture 5
Lecture 6 Lecture 7
Lecture 8 Lecture 9
Lecture 10 Lecture 11
Lecture 12 Lecture 13
Lecture 14 Lecture 15
Lecture 16 Lecture 17
Lecture 18 Lecture 19
Lecture 20 Lecture 21
Lecture 22 Lecture 23
Lecture 24 Lecture 25
Lecture 26 End
Professor
Office Hours
Class Meetings
Newsgroup
Required Text
Reccomended Texts
Grading
Exams
Project or Paper
Lecture Notes
Disabilities
Academic Dishonesty
Schedule












Lecture 2

2.1 Introduction to Computer Vision
2.1.1 Sensors
2.1.2 1-D Seneor Arrays
2.2 Sampling and Quantization
2.2.1 Spatial Resolution
2.2.2 Image Resolution
2.3 Computer Vision Algorithm
2.4 Role of Knowledge
2.4.1 Domain Specific Knowledge
2.4.2 General Knowledge
2.5 Levels of Computation
2.5.1 Point Level
2.5.2 Local Level
2.5.3 Global Level
2.5.4 Object Level

Lecture 3

3.1 Image Formation
3.1.1 Three classes of imaging system
3.1.1.1 Perspective projection
3.1.1.2 Orthographic projection
3.1.1.3 Lenses
3.2 Brightness
3.2.1 Image Brightness
3.2.2 Scene Brightness
3.3 Properties of Scene in Our Universe
3.3.1 Objects usually opaque
3.3.2 Medium for light rays
3.3.3 Surfaces are two-dimensional
3.4 lDepth of Field
3.5 View Volume

Lecture 4

4.1 Image Acquisition
4.1.1 Structed Lighting
4.1.2 Image Detection
4.1.2.1 Tube Cameras
4.1.2.1 Vacuum Tubes
4.1.2.2 Older Technologies
4.1.2.3 TV Cameras
4.1.2.4 Higher Resolution
4.1.2.5 Color Quality
4.1.2.6 Low Light Intensity Senesitivity
4.2. Solid State Cameras
4.2.1 Two-Dimensional Sensor Arrays
4.2.2 One-Dimensional Sensor Arrays

Lecture 5

5.1. Binary Images
5.1.1 Continuous Binary Images
5.1.2 Discrete Binary Images
5.1.2.1 Thresholding and Segmentation

Lecture 6

6.1 Binary Algorithms
6.1.1 Basic Definition
6.1.1.1 Neighbors
6.1.1.2 Path
6.2 Local Counting
6.2.1 Global Operations
6.2.2 Local Operations
6.3 Connectivity
6.3.1 Reflexivity
6.3.2 Commutivity
6.3.3 Transitivity
6.4 Compactness
6.4.1 What shape is most compact?
6.4.2 What value will the computer have for that shape?
6.4.3 What class of shapes will be least compact?
6.5 Distance Measures
6.5.1 Euclidean
6.5.2 City-Block metric
6.5.3 Chessboard metric
6.6 Euler Number
6.6.1 Topological property
6.7 Iterative Modification
6.8 Skeleton Transformation
6.8.1 SAT(Symmetric Axis Transform)
6.8.2 SLS(Smoothed Local Symmetries)
6.8.3 PISA(Process Inferring Symmetry Axes)

Lecture 7

7.1 Mathematical Morphology
7.1.1 Minkowski Addition
7.1.2 Minkowski Subtraction
7.2 Erosion
7.2.1 Shrinks and Translates
7.3 Dilation
7.3.1 Expands and Translates
7.4 Noise Reduction using Mathematical Morphology

Lecture 8

8.1 Segmentation
8.1.1 How to determine what is a region?
8.1.1.1 Uniform intensity or color
8.1.1.2 Uniform Texture
8.1.1.3 Bounded by Edges
8.1.1.4 Uniform Motion
8.2 Possible Solution for Multiple Regions
8.2.1 Multidimensional Histograming
8.2.1 Multispectral Histograming

Lecture 9

9.1 Segmentation Continued
9.1.1 Interactive vs Automatic Thresholding
9.1.2 Mode Method
9.1.3 Iterative Threshold Selection
9.1.4 Adaptive Thresholding
9.1.5 Variable Thresholding
9.1.5 Double Thresholding
9.1.5.1 Finding three regions
9.1.5.1.1 R1 contains only object pixels
9.1.5.1.2 R2 contains object and background pixels
9.1.5.1.3 R3 contains only background pixels

9.2 Split and Merge
9.2.1 Horowitz and Pavlidis

9.3 Representing Regions
9.3.1 Array Representation
9.3.1.1 Single 2D array
9.3.1.2 Multiple 2D arrays membership images, masks, bitmaps

9.4 Symbolic Representation
9.4.1 Bounding Box
9.4.2 Centroid
9.4.3 Moments
9.4.4 Euler Number
9.4.5 Compactness

9.4 Data Structure for Segmentation
9.4.1 Region Adjacency Graphs
9.4.1.1 Nodes
9.4.1.2 Arcs
9.4.2 Picture Tress
9.5 Super Grid
9.6 Removing Weak Edges

Lecture 10

10.1 Continuous Image Processing
10.1.1 Linear System
10.1.2 Shift Invariant
10.1.3 Convolution
10.1.3.1 Sifting Properrty
10.1.4 Impulse Response of One-Dimensional Linear Shift Invariant System
10.1.5 Point Spread Function
10.1.6 Properties of Convolution
10.1.6.1 Commutivity
10.1.6.2 Associativity
10.1.7 Convolution and the Frequency Domain
10.1.7.1 1-D Signal Processing
10.1.7.2 2-D Image Processing
10.1.8 Two-Dimensional Fourier Transform Pairs
10.1.8.1 Image
10.1.8.2 Magnitude Fourier Spectrum
10.1.8.3 Frequency Content of Images
10.1.8.3.1 Low Frequency Components
10.1.8.3.2 High Frequency Components
10.1.8.4 Filtering in the frequency domain
10.1.8.4.1 Low-pass filtering
10.1.8.4.2 High-pass filtering
10.1.8.4.3 Band-pass filtering
10.1.8.4.4 Gaussian filtering
10.1.9 Discrete Images
10.1.10 Edge Effects
10.1.10.1 Bandlimiting
10.1.10.1.1 Sensors
10.1.10.1.2 Optics

Lecture 11

11.1 Edge Detection
11.1.1 Two Goals
11.1.1.1 Find Location of intensity edges
11.1.1.2 Find Orientation of intensity edges

11.1.2 Classes of Edge Dectectors
11.1.2.1 Gradiant operators
11.1.2.2 Compass operators
11.1.2.3 Laplace operators
11.1.2.4 Stochastic gradiants

11.1.3 Functioning of Robert's operator

Lecture 12

12.1 Edge Detection Continued
12.1.1 Canny Operator
12.1.1.1 Type of compass operator and designed to satisfy three criteria
12.1.1.1.1 Good Detection
12.1.1.1.2 Good Localization
12.1.1.1.3 Only one response to a single edge

12.1.2 Witkin's Scale Space Filtering
12.1.2.1 Convolve with Gaussian
12.1.2.2 Find edges- Laplacian

12.1.3 Properties of Marr-Hildreth operator
12.1.4 Idea of Scale Space
12.1.5 How tomeasure edge detection performance

Lecture 13

13.1 Contours
13.1.1 Contour Images
13.1.1.1 Criteria for Contour representation
13.1.1.2 Two types of curve fitting
13.1.1.2.1 Interpolation
13.1.1.2.2 Approximation

13.1.2 Planar Curve Representation
13.1.2.1 Explicit
13.1.2.2 Implicit
13.1.2.3 Parametric
13.1.2.4 Unit Tagent Vector

13.1.3 Digital Curves
13.1.4 Chain Codes
13.1.5 Slope-Density Functions
13.1.6 Curve Fitting
13.1.7 How to model edge points using line segments?
13.1.7.1 Segment Merging

Lecture 14

14.1 Hough Transform
14.1.1 Local edge linking algorithms
14.1.2 Hough Transform
14.1.3 Rosenfeld
14.1.4 Hough Transform for a Circle
14.1.5 Fourier Desriptors

Lecture 15

15.1 Texture
15.1.1 Segmentation
15.1.2 Texture Identification
15.1.3 Texture Description
15.1.4 Different Approaches to Computer Vision
15.1.4.1 Machine Vision
15.1.4.2 Computational Vision
15.1.5 Grey-level Co-Occurance
15.1.6 Mathematical Morphology
15.1.6.1 Binary Images
15.1.7 Texton Theory
15.1.8 Develop analytical model of texture
15.1.8.1 Fourier model
15.1.8.2 Markov Random Field Model
15.1.8.3 Fractal Based Model
15.1.9 Shape from texture

Lecture 16

16.1. Reflectance Maps and Photometric Stereo
16.1.1 Scene Brightness from Image Brightness
16.1.2 Surface Orientation from Image Brightness
16.1.3 Light Reaching the Lens
16.1.4 Energy Reaching the Image Patch

16.2 The perspective transformation
16.2.1 Bidirectional Distribution Function
16.2.2 Surface Reflectance Properties

16.3 Reflectance Map

Lecture 17

17.1 Shape From Shading
17.1.1 Photometric Stereo
17.1.2 Shape From Shading for Linear Reflectance Map

Lecture 18

18.1 Color and Brightness
18.1.1 Monchromatic Light
18.1.2 Simple Correlation between Wavelength and Color

18.2 Colors are Cognitive Concepts
18.2.1 Perceptual Color Space
18.2.1.1 Brightness
18.2.1.2 Hue
18.2.1.3 Saturation

18.3 Lands Retirex Theory

18.4 Color Constancy
18.4.1 Spectural Distribution

Lecture 19

19.1 Stereo
19.1.1 Relative Depth
19.1.2 Absolute 3-D Coordinates

19.2 Stereo Geometry
19.2.1 Random-Dot Stereograms

19.3 Stereo Matching Algorithm for 1-D Binary Images

19.4 Range Images


Lecture 20

20.1 Calibration - Photogrammetry
20.1.1 Four Basic problems
20.1.1.1 Absolute orientation
20.1.1.2 Relative orientation
20.1.1.3 Exterior orientation
20.1.1.4 Interior orientation
20.1.2 Coordinate System
20.1.3 How do image to scene transformation?
20.1.4 Rigid Body Transformations
20.1.5 How to represent rotation?
20.1.5.1 Euler angles
20.1.5.2 Rotation Matrix
20.1.5.3 Axis of rotation
20.1.5.4 Unit Quaternions

Lecture 21

21.1 Curves and Surfaces
21.1.1 Shape-based Object Recognition
21.1.2 Fields
21.1.2.1 Uniform
21.1.2.2 Rectilinear
21.1.2.3 Irregular

21.1.3 Geometry of Curves
21.1.3.1 Implicit
21.1.3.2 Explicit
21.1.3.3 Parametric
21.1.4 Geometry of Surfaces
21.1.4.1 Implicit
21.1.4.2 Explicit
21.1.4.3 Parametric

21.1.5 Differential Geometry
21.1.6 Curve Representations
21.1.6.1 Cubic Spline Curves
21.1.7 Surface Representations
21.1.7.1 Polygonal Meshes


Lecture 22

22.1 Curves And Surfaces, Continued
22.1.1 Surface Patches
22.1.1.1 Bivariate Polynomials
22.1.1.1.1 Bilinear patches
22.1.1.1.2 Biquadratic patches
22.1.1.1.3 Bicubic patches
22.1.1.1.4 Biquadratic patches

22.2 Tensor-Product Surfaces
22.2.1 Parametric cubix polynomial curve

22.3 Surface Interpolation
22.3.1 Triangular Mesh Interpolation

22.4 Surface Approximation
22.4.1 Surface fitting
22.4.2 How to do Surface Approximation

22.5 Regression Splines
22.5.1 B-Splines

22.6 Surface Segmentation

Lecture 23

23.1 Motion and Optic
23.1.1 Simple Scheme For Motion Detection(1-D)
23.1.2 Optic Flow and Motion Flow
23.1.2.1 Motion Fields
23.1.2.2 Optic Flow-apparent Motion of Brightness Pattern

Lecture 24

24.1 How is the Optical Field Computed?
24.1.1 The Optical Flow Constraint Equation
24.1.2 Finding the Constraint Line

Lecture 25

25.1 Object Recognition
25.1.1 System Components
25.1.1.1 Model Database
25.1.1.2 Feature Detector
25.1.1.3 Hypothesizer
25.1.1.4 Hypothesis Verifier
25.1.2 Object Representaions
25.1.2.1 Constructive Solid Geometry
25.1.3 Spatial Occupancy
25.1.4 Multiple Representation
25.1.5 Surface Boundary Representation
25.1.6 Extended Gaussian Image
25.1.7 Pattern Classification
25.1.7.1 Scene analysis
25.1.7.2 Object recognition
25.1.8 Basic idea of Pattern Classification
25.1.8.1 Nearest Neighbor Classification
25.1.8.2 K Nearest Neighbor Classification
25.1.8.3 Nearest Centroid Classification
25.1.8.4 Use of Probability Density Models

Lecture 26

26.1 Object Recognition, Continued
26.1.1 Neural Networks
26.1.1.1 The Perceptron - Rosenblatt - Calspan
26.1.2 Least Mean Square Neural Network
26.1.2.1 Widrow and Hoff
26.1.3 Use of Neural Network in Object Recognition
26.1.4 Polyhedral Scenes
26.1.5 Huffman and Clowes
26.1.6 How to determine which are the possible labelings for trihedral world?
26.1.7 Geometric Constraints
26.1.8 Use orthogonal constraints to disambiguate drawings

END