CS673 Interactive Syllabus
Course Syllabus and Schedule: CS673 (Spring 1998)
Computational Vision
Table of Contents
-
- 2.1 Introduction to Computer Vision
- 2.1.1 Sensors
- 2.1.2 1-D Seneor Arrays
- 2.2 Sampling and Quantization
- 2.2.1 Spatial Resolution
- 2.2.2 Image Resolution
- 2.3 Computer Vision Algorithm
- 2.4 Role of Knowledge
- 2.4.1 Domain Specific Knowledge
- 2.4.2 General Knowledge
- 2.5 Levels of Computation
- 2.5.1 Point Level
- 2.5.2 Local Level
- 2.5.3 Global Level
- 2.5.4 Object Level
-
- 3.1 Image Formation
- 3.1.1 Three classes of imaging system
- 3.1.1.1 Perspective projection
- 3.1.1.2 Orthographic projection
- 3.1.1.3 Lenses
- 3.2 Brightness
- 3.2.1 Image Brightness
- 3.2.2 Scene Brightness
- 3.3 Properties of Scene in Our Universe
- 3.3.1 Objects usually opaque
- 3.3.2 Medium for light rays
- 3.3.3 Surfaces are two-dimensional
- 3.4 lDepth of Field
- 3.5 View Volume
-
-
- 4.1 Image Acquisition
- 4.1.1 Structed Lighting
- 4.1.2 Image Detection
- 4.1.2.1 Tube Cameras
- 4.1.2.1 Vacuum Tubes
- 4.1.2.2 Older Technologies
- 4.1.2.3 TV Cameras
- 4.1.2.4 Higher Resolution
- 4.1.2.5 Color Quality
- 4.1.2.6 Low Light Intensity Senesitivity
- 4.2. Solid State Cameras
4.2.1 Two-Dimensional Sensor Arrays
- 4.2.2 One-Dimensional Sensor Arrays
- 5.1. Binary Images
- 5.1.1 Continuous Binary Images
- 5.1.2 Discrete Binary Images
- 5.1.2.1 Thresholding and Segmentation
-
- 6.1 Binary Algorithms
- 6.1.1 Basic Definition
- 6.1.1.1 Neighbors
- 6.1.1.2 Path
- 6.2 Local Counting
- 6.2.1 Global Operations
- 6.2.2 Local Operations
- 6.3 Connectivity
- 6.3.1 Reflexivity
- 6.3.2 Commutivity
- 6.3.3 Transitivity
- 6.4 Compactness
- 6.4.1 What shape is most compact?
- 6.4.2 What value will the computer have for that shape?
- 6.4.3 What class of shapes will be least compact?
- 6.5 Distance Measures
- 6.5.1 Euclidean
- 6.5.2 City-Block metric
- 6.5.3 Chessboard metric
- 6.6 Euler Number
- 6.6.1 Topological property
- 6.7 Iterative Modification
- 6.8 Skeleton Transformation
- 6.8.1 SAT(Symmetric Axis Transform)
- 6.8.2 SLS(Smoothed Local Symmetries)
- 6.8.3 PISA(Process Inferring Symmetry Axes)
-
- 7.1 Mathematical Morphology
- 7.1.1 Minkowski Addition
- 7.1.2 Minkowski Subtraction
- 7.2 Erosion
- 7.2.1 Shrinks and Translates
- 7.3 Dilation
- 7.3.1 Expands and Translates
- 7.4 Noise Reduction using Mathematical Morphology
-
- 8.1 Segmentation
- 8.1.1 How to determine what is a region?
- 8.1.1.1 Uniform intensity or color
- 8.1.1.2 Uniform Texture
- 8.1.1.3 Bounded by Edges
- 8.1.1.4 Uniform Motion
- 8.2 Possible Solution for Multiple Regions
- 8.2.1 Multidimensional Histograming
- 8.2.1 Multispectral Histograming
-
- 9.1 Segmentation Continued
- 9.1.1 Interactive vs Automatic Thresholding
- 9.1.2 Mode Method
- 9.1.3 Iterative Threshold Selection
- 9.1.4 Adaptive Thresholding
- 9.1.5 Variable Thresholding
- 9.1.5 Double Thresholding
- 9.1.5.1 Finding three regions
- 9.1.5.1.1 R1 contains only object pixels
- 9.1.5.1.2 R2 contains object and background pixels
- 9.1.5.1.3 R3 contains only background pixels
- 9.2 Split and Merge
- 9.2.1 Horowitz and Pavlidis
- 9.3 Representing Regions
- 9.3.1 Array Representation
- 9.3.1.1 Single 2D array
- 9.3.1.2 Multiple 2D arrays membership images, masks, bitmaps
- 9.4 Symbolic Representation
- 9.4.1 Bounding Box
- 9.4.2 Centroid
- 9.4.3 Moments
- 9.4.4 Euler Number
- 9.4.5 Compactness
- 9.4 Data Structure for Segmentation
- 9.4.1 Region Adjacency Graphs
- 9.4.1.1 Nodes
- 9.4.1.2 Arcs
- 9.4.2 Picture Tress
- 9.5 Super Grid
- 9.6 Removing Weak Edges
-
- 10.1 Continuous Image Processing
- 10.1.1 Linear System
- 10.1.2 Shift Invariant
- 10.1.3 Convolution
- 10.1.3.1 Sifting Properrty
- 10.1.4 Impulse Response of One-Dimensional Linear Shift Invariant System
- 10.1.5 Point Spread Function
- 10.1.6 Properties of Convolution
- 10.1.6.1 Commutivity
- 10.1.6.2 Associativity
- 10.1.7 Convolution and the Frequency Domain
- 10.1.7.1 1-D Signal Processing
- 10.1.7.2 2-D Image Processing
- 10.1.8 Two-Dimensional Fourier Transform Pairs
- 10.1.8.1 Image
- 10.1.8.2 Magnitude Fourier Spectrum
- 10.1.8.3 Frequency Content of Images
- 10.1.8.3.1 Low Frequency Components
- 10.1.8.3.2 High Frequency Components
- 10.1.8.4 Filtering in the frequency domain
- 10.1.8.4.1 Low-pass filtering
- 10.1.8.4.2 High-pass filtering
- 10.1.8.4.3 Band-pass filtering
- 10.1.8.4.4 Gaussian filtering
- 10.1.9 Discrete Images
- 10.1.10 Edge Effects
- 10.1.10.1 Bandlimiting
- 10.1.10.1.1 Sensors
- 10.1.10.1.2 Optics
-
- 11.1 Edge Detection
- 11.1.1 Two Goals
- 11.1.1.1 Find Location of intensity edges
- 11.1.1.2 Find Orientation of intensity edges
- 11.1.2 Classes of Edge Dectectors
- 11.1.2.1 Gradiant operators
- 11.1.2.2 Compass operators
- 11.1.2.3 Laplace operators
- 11.1.2.4 Stochastic gradiants
- 11.1.3 Functioning of Robert's operator
-
- 12.1 Edge Detection Continued
- 12.1.1 Canny Operator
- 12.1.1.1 Type of compass operator and designed to satisfy three criteria
- 12.1.1.1.1 Good Detection
- 12.1.1.1.2 Good Localization
- 12.1.1.1.3 Only one response to a single edge
- 12.1.2 Witkin's Scale Space Filtering
- 12.1.2.1 Convolve with Gaussian
- 12.1.2.2 Find edges- Laplacian
- 12.1.3 Properties of Marr-Hildreth operator
- 12.1.4 Idea of Scale Space
- 12.1.5 How tomeasure edge detection performance
-
- 13.1 Contours
- 13.1.1 Contour Images
- 13.1.1.1 Criteria for Contour representation
- 13.1.1.2 Two types of curve fitting
- 13.1.1.2.1 Interpolation
- 13.1.1.2.2 Approximation
- 13.1.2 Planar Curve Representation
- 13.1.2.1 Explicit
- 13.1.2.2 Implicit
- 13.1.2.3 Parametric
- 13.1.2.4 Unit Tagent Vector
- 13.1.3 Digital Curves
- 13.1.4 Chain Codes
- 13.1.5 Slope-Density Functions
- 13.1.6 Curve Fitting
- 13.1.7 How to model edge points using line segments?
- 13.1.7.1 Segment Merging
-
- 14.1 Hough Transform
- 14.1.1 Local edge linking algorithms
- 14.1.2 Hough Transform
- 14.1.3 Rosenfeld
- 14.1.4 Hough Transform for a Circle
- 14.1.5 Fourier Desriptors
-
- 15.1 Texture
- 15.1.1 Segmentation
- 15.1.2 Texture Identification
- 15.1.3 Texture Description
- 15.1.4 Different Approaches to Computer Vision
- 15.1.4.1 Machine Vision
- 15.1.4.2 Computational Vision
- 15.1.5 Grey-level Co-Occurance
- 15.1.6 Mathematical Morphology
- 15.1.6.1 Binary Images
- 15.1.7 Texton Theory
- 15.1.8 Develop analytical model of texture
- 15.1.8.1 Fourier model
- 15.1.8.2 Markov Random Field Model
- 15.1.8.3 Fractal Based Model
- 15.1.9 Shape from texture
-
- 16.1. Reflectance Maps and Photometric Stereo
- 16.1.1 Scene Brightness from Image Brightness
- 16.1.2 Surface Orientation from Image Brightness
- 16.1.3 Light Reaching the Lens
- 16.1.4 Energy Reaching the Image Patch
- 16.2 The perspective transformation
- 16.2.1 Bidirectional Distribution Function
- 16.2.2 Surface Reflectance Properties
- 16.3 Reflectance Map
-
- 17.1 Shape From Shading
- 17.1.1 Photometric Stereo
- 17.1.2 Shape From Shading for Linear Reflectance Map
-
- 18.1 Color and Brightness
- 18.1.1 Monchromatic Light
- 18.1.2 Simple Correlation between Wavelength and Color
- 18.2 Colors are Cognitive Concepts
- 18.2.1 Perceptual Color Space
- 18.2.1.1 Brightness
- 18.2.1.2 Hue
- 18.2.1.3 Saturation
- 18.3 Lands Retirex Theory
- 18.4 Color Constancy
- 18.4.1 Spectural Distribution
-
- 19.1 Stereo
- 19.1.1 Relative Depth
- 19.1.2 Absolute 3-D Coordinates
- 19.2 Stereo Geometry
- 19.2.1 Random-Dot Stereograms
- 19.3 Stereo Matching Algorithm for 1-D Binary Images
- 19.4 Range Images
-
- 20.1 Calibration - Photogrammetry
- 20.1.1 Four Basic problems
- 20.1.1.1 Absolute orientation
- 20.1.1.2 Relative orientation
- 20.1.1.3 Exterior orientation
- 20.1.1.4 Interior orientation
- 20.1.2 Coordinate System
- 20.1.3 How do image to scene transformation?
- 20.1.4 Rigid Body Transformations
- 20.1.5 How to represent rotation?
- 20.1.5.1 Euler angles
- 20.1.5.2 Rotation Matrix
- 20.1.5.3 Axis of rotation
- 20.1.5.4 Unit Quaternions
-
- 21.1 Curves and Surfaces
- 21.1.1 Shape-based Object Recognition
- 21.1.2 Fields
- 21.1.2.1 Uniform
- 21.1.2.2 Rectilinear
- 21.1.2.3 Irregular
- 21.1.3 Geometry of Curves
- 21.1.3.1 Implicit
- 21.1.3.2 Explicit
- 21.1.3.3 Parametric
- 21.1.4 Geometry of Surfaces
- 21.1.4.1 Implicit
- 21.1.4.2 Explicit
- 21.1.4.3 Parametric
- 21.1.5 Differential Geometry
- 21.1.6 Curve Representations
- 21.1.6.1 Cubic Spline Curves
- 21.1.7 Surface Representations
- 21.1.7.1 Polygonal Meshes
Lecture 22
- 22.1 Curves And Surfaces, Continued
- 22.1.1 Surface Patches
- 22.1.1.1 Bivariate Polynomials
- 22.1.1.1.1 Bilinear patches
- 22.1.1.1.2 Biquadratic patches
- 22.1.1.1.3 Bicubic patches
- 22.1.1.1.4 Biquadratic patches
- 22.2 Tensor-Product Surfaces
- 22.2.1 Parametric cubix polynomial curve
- 22.3 Surface Interpolation
- 22.3.1 Triangular Mesh Interpolation
- 22.4 Surface Approximation
- 22.4.1 Surface fitting
- 22.4.2 How to do Surface Approximation
- 22.5 Regression Splines
- 22.5.1 B-Splines
- 22.6 Surface Segmentation
Lecture 23
- 23.1 Motion and Optic
- 23.1.1 Simple Scheme For Motion Detection(1-D)
- 23.1.2 Optic Flow and Motion Flow
- 23.1.2.1 Motion Fields
- 23.1.2.2 Optic Flow-apparent Motion of Brightness Pattern
Lecture 24
- 24.1 How is the Optical Field Computed?
- 24.1.1 The Optical Flow Constraint Equation
- 24.1.2 Finding the Constraint Line
Lecture 25
- 25.1 Object Recognition
- 25.1.1 System Components
- 25.1.1.1 Model Database
- 25.1.1.2 Feature Detector
- 25.1.1.3 Hypothesizer
- 25.1.1.4 Hypothesis Verifier
- 25.1.2 Object Representaions
- 25.1.2.1 Constructive Solid Geometry
- 25.1.3 Spatial Occupancy
- 25.1.4 Multiple Representation
- 25.1.5 Surface Boundary Representation
- 25.1.6 Extended Gaussian Image
- 25.1.7 Pattern Classification
- 25.1.7.1 Scene analysis
- 25.1.7.2 Object recognition
- 25.1.8 Basic idea of Pattern Classification
- 25.1.8.1 Nearest Neighbor Classification
- 25.1.8.2 K Nearest Neighbor Classification
- 25.1.8.3 Nearest Centroid Classification
- 25.1.8.4 Use of Probability Density Models
Lecture 26
- 26.1 Object Recognition, Continued
- 26.1.1 Neural Networks
- 26.1.1.1 The Perceptron - Rosenblatt - Calspan
- 26.1.2 Least Mean Square Neural Network
- 26.1.2.1 Widrow and Hoff
- 26.1.3 Use of Neural Network in Object Recognition
- 26.1.4 Polyhedral Scenes
- 26.1.5 Huffman and Clowes
- 26.1.6 How to determine which are the possible labelings for trihedral world?
- 26.1.7 Geometric Constraints
- 26.1.8 Use orthogonal constraints to disambiguate drawings
END