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Abstract

We study the attraction trajectory of a point under the beacon model. We show that when a
point object p is attracted to a point beacon b, inside a simple polygon P , its trajectory is at most√

2 times the geodesic distance between p and b in P .

1 Introduction

In 2011, Biro et al. [2] introduced the beacon
model as a variation of visibility. Let P be a sim-
ple polygon containing points p and b, where b
represents a point beacon that can emit an attrac-
tive force on the point object p. The attractive
force of beacon b pulls object p directly towards
it. This attraction may land p onto an edge e
of P . Then p slides on e towards the point h,
the orthogonal projection of b on the supporting
line of e. Note that h has the shortest Euclidean
distance to b among all points on the support-
ing line of e. Therefore, the movement of p al-
ternates between moving towards b and sliding on
edges of P . A point in P is attracted by b if its
Euclidean distance to b is eventually decreased to
0. The attraction region of a beacon b is the set
of all points in P that b can attract and can be
computed in linear time [1]. Whenever p is at-
tracted to b we can define its attraction trajec-
tory denoted by AT (p, b) as the path p takes un-
til it reaches b. Let SP (p, b) denote the short-
est path between p and b inside the polygon P .
We use |SP (p, b)| and |AT (p, b)| to denote the
lengths of these paths. Tan and Kermarrec [4]
showed that |AT (p, b)| ≤ 3 |SP (p, b)|. In this
abstract we improve this bound to |AT (p, b)| <√

2 |SP (p, b)|. For additional results on the bea-
con model see [1, 3].

2 Results

Observation 1: AT (p, b) does not necessarily
pass through all the reflex vertices located on the
shortest path from p to b in P (see Fig. 1).

Lemma 1. Let SP (p, b) be the polygonal chain
p, v1, v2, ..., vk, b and assume b attracts p. If the

Figure 1: The attraction trajectory does not nec-
essary pass through all reflex vertices in SP (b, p).

edge vivi+1 ∈ SP (p, b) partitions P into two sub-
polygons such that b and p are in different sub-
polygons, then at least one of vi or vi+1 is on
AT (p, b). In addition vk is always on AT (p, b).

Proof. We omit the proof due to lack of space.

Observation 2: The attraction trajectory can
rotate with an arbitrary degree around b and
the length of AT (p, b) can be arbitrarily bigger
than the Euclidean distance between b and p (See
Fig. 2).

In order to determine the quality of the attrac-
tion trajectory we compare its length to the length
of SP (b, p) in P .

Theorem 1. |AT (p, b)| <
√

2 |SP (p, b)|.

Proof. We partition AT (p, b) into maximal sub-
paths that alternately coincide with and diverge
from S(p, b). We then show that each maximal di-
vergent subpath of AT (p, b) is at most

√
2 longer

than the corresponding part of SP (p, b). Let v be
the first reflex vertex of P such that both SP (p, b)
and AT (p, b) pass through v. Let AT (p, v) denotes
the part of AT (p, b) between p and v. It is suf-
ficient to show that |AT (p, v)| / |pv| <

√
2 (note

that |pv| ≤ |SP (p, v)|). By lemma 1, v is a reflex



Figure 2: The attraction trajectory my rotates
several time around b.

vertex on the shortest path between p and some
reflex vertex vi+1 ∈ SP (p, b), where vivi+1 is the
first edge that partitions p and b. Therefore, ac-
cording to shortest path properties, the part of the
shortest path between p and v is a convex chain
in P . Without loss of generality, assume that p, b
and v have relative positions as in Fig. 3 with the
following assumptions:
1) The attraction path does not cross pv or
SP (p, v). 2) Above v is the inside part of P .

Now let u be the first intersection of the ray
−→
pb

with the boundary of P . In the attraction of b, p
moves directly towards b until it reaches u then it
starts to slide. Consider a polar coordinate system
with the reference point b, with the components r
(the distance of the point to b) and φ (the counter
clockwise angle between the axis and a line join-
ing b to the point). During the motion of p from
its original position to v, by the definition of the
beacon model, the r-coordinate of p monotonically
decreases. In addition, we can prove that during
each slide in AT (p, v) the φ-coordinate does not
increase.
Consider an attraction trajectory from p to v
(shown in red in Fig. 3). We convert this attrac-
tion trajectory to a longer one by considering each
slide to end on a right angle with the line going
through b and the end of slide (shown in green).
Next we convert to an even longer attraction tra-
jectory by forcing each slide to be parallel to the
green ones but with an end point located on the
edge pv (shown in blue in Fig. 4). Note that parts
of the blue and the green chains that do not collide
form a trapezoid where the angle between the two
green segments is greater than π/2. This guaran-
tees that the blue chain is longer than the green

chain. Now consider a triangle with two blue line
segments and the portion of pv between these two
line segments. As the angle between the blue line
segments is at least π/2, the total length of the
blue path is at most

√
2 of the length of pv.

Figure 3: Converting to a longer attraction tra-
jectory.

Figure 4: Converting to even a longer attraction
trajectory.
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