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Abstract

We study computational aspects of the Gen-

eral Position Subset Selection problem
defined as follows: Given a set of points in
the plane, find a maximum-cardinality sub-
set of points in general position. We prove
that General Position Subset Selection

is NP-hard, APX-hard, and give several fixed-
parameter tractability results.

Problem definition and motivation. For a
set P = {p1, . . . , pn} ⊆ Q2 of n points in the
plane, a subset S ⊆ P is in general position if
no three points in S are collinear (that is, lie
on the same line). Whereas a frequent assump-
tion for point set problems in computational ge-
ometry is that the given point set is in general
position, surprisingly, the problem of choosing a
maximum-cardinality subset of points in general
position, from a given set of points, has received
little attention from the computational complex-
ity perspective, although not from the combina-
torial geometry perspective. In particular, up to
our knowledge, the classical complexity of the
aforementioned problem is unresolved. Formally,
the decision version of the problem is:

General Position Subset Selection

Input: P ⊆ Q2 and k ∈ N.
Question: Is there a subset S ⊆ P in general
position of cardinality at least k?
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The special case of General Position Sub-

set Selection, referred to as the no-three-in-
line problem, which asks to place a maximum
number of points in general position on an n×n-
grid, received considerable attention in discrete
geometry. Since at most two points can be
placed on any grid-line, the maximum number
of points in general position that can be placed
on an n× n grid is at most 2n. Indeed, only for
small n it is known that 2n points can always be
placed on the n×n grid. Erdős [7] observed that,
for sufficiently large n, one can place (1 − ǫ)n
points in general position on the n × n grid, for
any ǫ > 0. This lower bound was improved by
Hall et al. [4] to (32 − ǫ)n. It was conjectured
by Guy and Kelly [3] that, for sufficiently large
n, one can place more than π√

3
n many points in

general position on the n × n grid. This conjec-
ture remains unresolved, hinting at the challeng-
ing combinatorial nature of the no-three-in-line
problem, and hence of the General Position

Subset Selection problem as well.

Observing that the computational complex-
ity of the closely-related Point Line Cover

problem (given a point set in the plane, find
a minimum-cardinality set of lines, the size of
which is called the line cover number, that cover
all points) was intensively studied, we try to fill
the gap by providing both computational hard-
ness and fixed-parameter tractability results for
the much less studied General Position Sub-

set Selection. In doing so, we particularly
consider the parameters solution size k (size of
the sought subset in general position) and its
dual h := n − k, and investigate their impact
on the computational complexity of General

Position Subset Selection.



Related Work. Payne and Wood [6] provide
improved lower bounds on the size of a point set
in general position, a question originally stud-
ied by [2]. In his master’s thesis, Cao [1] gives a
problem kernel of O(k4) points forGeneral Po-

sition Subset Selection (there called Non-

Collinear Packing problem) and a simple
greedy O(

√
opt)-factor approximation algorithm

for the maximization version. He also presents
an Integer Linear Program formulation for Gen-

eral Position Subset Selection, and shows
that it is in fact the dual of an Integer Linear Pro-
gram formulation for the Point Line Cover

problem. As to results for the much better stud-
ied Point Line Cover, we refer to [5].

Our Contributions. We show the NP-
hardness and the APX-hardness of General

Position Subset Selection. Our main algo-
rithmic results concern the power of polynomial-
time data reduction for General Position

Subset Selection: we give an O(k3)-point ker-
nel and an O(h2)-point kernel, and show that
the latter kernel is asymptotically optimal un-
der a reasonable complexity-theoretic assump-
tion. Table 1 summarizes our results. The NP-
hardness and the APX-hardness results are ob-
tained using reductions from variants of the In-

dependent Set problem. The kernelization re-
sults with respect to the parameter solution size
are obtained using: (1) an extremal result by
Payne and Wood [6] that gives a lower bound
on the the cardinality of a subset in general po-
sition in a point-set of bounded collinearity, and
(2) data reduction rules. The upper bound on
the kernel size with respect to the dual parame-
ter is obtained via a reduction to the 3-Hitting

Set problem, and the lower bound on the kernel
size is obtained via a reduction from the Vertex

Cover problem combined with techniques that
are based on oracle communication protocols.
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Table 1: Overview of the results we obtain
for General Position Subset Selection,
where n is the number of input points, k is the
parameter size of the sought subset in general
position, h = n− k is the dual parameter, and ℓ

is the line cover number.
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(15k3)-point kernel (in O(n2 log n) time)
O(n2 log n+ 41k · k2k)-time solvable
(120ℓ3)-point kernel (in O(n2 log n) time)
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aUnless the Exponential Time Hypothesis fails.
bUnless coNP ⊆ NP/poly.
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