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1. INTRODUCTION

Nerve complexes are discrete structures used
for computing topological information about a
continuous space, but they often suffer from ex-
ponential blowup in size. Sparsifying these com-
plexes allows one to retain most topological in-

formation while maintaining a significantly smaller

complex. We present a geometric perspective on
sparse filtrations, viewing them as a nerve of geo-
metric cones, rather than a union of nerves. This
new perspective leads to simpler algorithms, sim-
pler proofs with more general results. We also

provide the runtime for our construction and prove

that vertex removal can be implemented as a se-
quence of edge collapses. A video illustrating
this approach is available [2].

2. BACKGROUND

2.1. Distances and Metrics. The input is a
finite set P C R? with a convex metric d, e.g.
the Euclidean or L, metric (for p > 1). Let
ball(c,r) = {z € R? | d(z,¢) < r} denote the
closed metric ball centered at ¢ with radius 7.
For all « > 0, the «a-offsets of P are defined
as P* = (J,cpball(p,@). The family of offsets
parameterized by « is called the offset filtration,
denoted {P*},>0. It is a filtration because P* C
PP if a < B.

FIGURE 1. Left to right: point
set, offsets and nerve complex

2.2. Persistent Homology. The homology of
a space tells one the number of holes in each di-
mension in the space. Homology is useful for
characterizing spaces topologically and is invari-
ant under homeomorphisms. Given an offset fil-
tration {P},>0, each set in the filtration has
its own homology. The differences between the
homology of P® and P? for o < $ indicate at
what scales features are “born” and “die”. A
feature’s lifespan can be represented by an inter-
val [b,d] where b is the birth time and d is the
death time. Collectively, the lifespan intervals of
all features is the persistence barcode and the in-
formation provided is the persistent homology of
the filtration. We say the persistent homology
of two spaces are c-approzimate if we can pair
each’s intervals such that the birth and death
times respectively are within a multiplicative fac-
tor ¢ and those for which d/b < ¢ can be ignored.

2.3. Simplicial Complexes and Nerves. A
simplicial complex is a collection of subsets of
a vertex set that is closed under taking subsets.
The nerve of a collection of closed, convex sets
U={U,...,U,} is a simplicial complex defined
as Nrv(U) := {I C [n] | ;¢; U;j # 0}. The nerve
has as a vertex for each set, an edge for each two-
way intersection, a triangle for each three way in-
tersection etc. In the case of an offset filtration,
P% is covered by {ball(p,«) | p € P}. Each ball
grows throughout the filtration, and by taking
the nerve of the cover of each P%, we get a filtra-
tion of nerves. Given a collection of filtrations
of closed, convex sets U = {{Uf'},...,{US}}, ,
where U := {U}, ..., U5}, the Persistent Nerve
Lemma [3] implies the filtrations {{J U/ }o>0 and
{Nrv(U*)}a>0 have identical persistent homol-
ogy i.e. their barcodes are the same.

2.4. Greedy Permutations. Given a set P of
n points in a metric space with metric d, we
say that P = {p1,...,pn} is a greedy permuta-
tion of P if for all i € {1,...,n}, d(p;, Pi—1) =
max,cp d(p, Pi—1), where P; = {p1,...,p;}. The
insertion radius of a point p; is the value \; :=
d(p;, Pi—1). By convention, A\; = oo. Greedy
permutations have the nice property that P; is



>

FIGURE 2. The cones of the offsets

a \i-net—for all p,q € P;, d(p,q) > \; [packing]
and P C P} [covering].

3. RESuULTS

3.1. Sparsification. We consider a point set P =
{p1,...,pn} ordered by a greedy permutation.
We fix a sparsification constant € € (0,1). The
radius of the ball at p; is limited to \;(1 4 €)/e
and so the radius at scale « is defined as r;(a) =
min{a, A;(1+¢)/e}. The perturbed a-offsets are
defined as P := Uiepn Pall(pi, ri(a)). The spar-
sification process is induced by the a-balls, which
are defined as b;(a) = ball(p;, ri(«)) if « < \j(1+
£)?/e, and empty otherwise. There are far fewer
intersections between a-balls and so the result-
ing nerve will be much smaller.

Proposition 1. The persistence barcode of the
perturbed offsets {P*}o>0 (1 + €)-approzimates
the persistence barcode of the offsets {P®}a>0.

3.2. Sparse filtration. In previous work, sparse
filtrations were defined as a union of nerves at

different scales. We provide a simpler geomet-

ric view of a sparse filtration as a nerve of cones.

We add another spatial dimension to the a-balls,

viewing « as the height of a cone. Formally, the

perturbed cone for p; is the set U := Js,, (bi(6)x
{6}) (see Fig. 2). This leads to an equivalent

definition of the sparse nerve filtration, {S%} =

{Nrv{U{"} }axo-

Theorem 2. The persistence barcode of the sparse

nerve filtration {S®}a<o is a (14-¢)-approzimation
to the persistence barcode of the offsets { P*}4>0.

3.3. Algorithmic construction. In our full pa-
per [1], we create a data structure that allows in-
sertion of points given a greedy permutation. We
define the predecessor of p; as the point pred(p;)
such that \; = d(p;,pred(p;)). With this data
structure one can compute the edges in linear
time. From the edges, one can find the k-simplices
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in the standard way: For each point p, check if
the cones of each k-tuple of adjacent points along
with the cone of p intersect at some o < oo, and
if so the simplex defined by this (k+1)-tuple is in
the filtration. With the simplex birth times and
the maximal complex, we know the sparse nerve
filtration. Theorem 3 summarizes the runtime of
our algorithm.

Theorem 3. Given a finite metric (P, d) and a
greedy permutation of P with pred(p;) for each
pi € P, one can find the k-simplices of {S*} in
kOFP)py time, where p is the doubling dimension
of d, k = (2 +3c+2)/e, and ¢ € (0,1).

3.4. Removing vertices. Since the sparse fil-
tration is a filtration, we do not remove the ver-
tices when we delete the a-balls at some scale.
In practice, one may wish to remove the vertices
and we prove this is possible using an operation
called an edge contraction. Dey et al.[4] prove
that if an edge satisfies the so-called Link Con-
dition, then the topology of a simplicial complex
is unchanged by contracting that edge. Theo-
rem 4 uses this result and implies vertices can
be removed by edge contractions as the scale «
increases.

Theorem 4. If (P, d) is a finite subset of a con-
vex metric space and { S} is its sparse filtration,
then the last vertex p, inserted has a neighbor p;
such that the edge [pnp;] € S satisfies the link
condition, where o > N\i(1 +¢)?/e and N, is the
insertion radius of py.
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