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Art Gallery Theorems for Polyhypercubes
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Abstract

We consider variations of the original art gallery prob-
lem where the domain is a polyomino, a polycube, or
a polyhypercube. An m-polyomino is the connected
union of m unit squares called pixels, an m-polycube
is the connected union of m unit cubes called voxels,
and an m-polyhypercube is the connected union of m
unit hypercubes in a d dimensional Euclidean space. In
this paper we generalize and unify the known results
about guarding polyominoes and polycubes and obtain
simpler proofs. We also obtain new art gallery theorems
for guarding polyhypercubes. This paper has been pre-
sented at the European Conference on Combinatorics,
Graph Theory and Applications held in Bergen, Nor-
way, August 31 – September 4, 2015. (see [10].)

1 Introduction

The original art gallery problem, posed by Klee in 1973,
asks to find the minimum number of guards sufficient
to cover any polygon with n vertices. The first solution
to this problem was given by Chvátal [2], who proved
that bn/3c guards are sometimes necessary, and always
sufficient to cover a polygon with n vertices. Later Fisk
[3] provided a shorter proof of Chvátal’s theorem using
an elegant graph coloring argument. Klee’s art gallery
problem has since grown into a significant area of study.
Numerous art gallery problems have been proposed
and studied with different restrictions placed on the
shape of the galleries or the powers of the guards. (See
the monograph by O’Rourke [8], and the survey by
Shermer [11].)

In this paper we consider variations of the art
gallery problem where the gallery is an m-polyomino,
consisting of a connected union of m 1× 1 unit squares
called pixels, or an m-polycube, consisting of a con-
nected union of m 1×1×1 unit cubes called voxels. We
will also consider higher dimensional cases where an m-
polyhypercube is the connected union of m unit hyper-
cubes in a d dimensional Euclidean space. Throughout
this paper Pm denotes an m-polyomino when d = 2, an
m-polycube when d = 3, or an m-polyhypercube when
d is not specified. We say that a point a ∈ Pm covers
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a point b ∈ Pm provided a = b, or the line segment
ab does not intersect the exterior of Pm. We say that
a pixel/voxel A covers a point b, provided some point
a ∈ A covers b. A set of points G is called a point guard
set for Pm if for every point b ∈ Pm there is a point
a ∈ G such that a covers b. A set of pixels/voxels G is
called a pixel/voxel guard set for Pm if for every point
b ∈ Pm there is a pixel/voxel A ∈ G such that A covers b.

In [4], Irfan et al. show that bm+1
3 c point guards

are always sufficient and sometimes necessary to cover
any m-polyomino Pm, with m ≥ 2. (See also Biedl et
al. [1] for a detailed proof by case analysis.) Recently,
Massberg [6] provided an alternate proof using perfect
graphs. In [5], Iwerks claims that the same bound holds
for polycubes and asks whether the result extends to
polyhypercubes in d ≥ 4 dimensions. In Section 2
we unify and generalize all these results proving that
bm+1

3 c point guards are always sufficient and some-
times necessary to cover any m-polyhypercube Pm,
with m ≥ 2 in any dimension d ≥ 2. While our lower
bound example is a straight forward generalization of
the examples in 2 and 3 dimensions, our argument for
the upper bound is simpler than previous arguments,
and works in every dimension.

In [9], Pinciu shows that bm+1
11 c+ bm+5

11 c+ bm+9
11 c pixel

guards are always sufficient and sometimes necessary
to cover an m-polyomino. Lower bounds and upper
bounds for the number of voxels required to cover an
m-polycube in 3D can be found in [5], but no sharp
bounds are currently known when the dimension d ≥ 3.
In Section 3 we provide lower bounds for the number
of pixel/voxels required to cover an m-polyhypercube
in d dimensions. Our bounds are dependent on d, and
we conjecture that they are sharp.

In Section 4 we provide upper bounds indepen-
dent of d for the number of pixel/voxel guards required
to cover an m-polyhypercube.

2 Point Guards in PolyHypercubes

In [10], we use Algorithm 1 to construct three point
guard sets G1, G2 and G3 such that |G1| + |G2| + |G3| ≤
m + 1, and we obtain our main result:

Theorem 1 For any m-polyhypercube Pm with m ≥ 2
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in d ≥ 2 dimensions, bm+1
3 c point guards are always

sufficient, and sometimes necessary to cover Pm.

Algorithm 1 Construction of G1, G2 and G3.

1: procedure
2: G1 :=the unique vertex of A1 that is in V1

3: G2 :=the unique vertex of A1 that is in V2

4: G3 := ∅
5: for i := 2 to m do
6: let Aj with j < i be the parent of Ai in the

construction of Tm.
7: let u be the unique vertex of Aj in V1.
8: let v be the unique vertex of Aj in V2.
9: let w be the unique vertex of Ai in V1 ∪ V2

such that w 6= u and w 6= v.
10: choose distinct integers k, l ∈ {1, 2, 3} such

that u ∈ Gk and v ∈ Gl. (such integers might not be
unique.)

11: G6−k−l := G6−k−l ∪ {w}
12: end for
13: end procedure

3 Voxel Guards in PolyHypercubes: Bounds Depen-
dent of d

The following theorem provides a lower bound for the
number of pixel/voxel guards required to cover all m-
polyhypercubes in d dimensions:

Theorem 2 For any integer d ≥ 2 and for any inte-
ger m ≥ 2 there exists an m-polyhypercube Pm in d di-
mensions such that the minimum number of pixel/voxel
guards necessary to cover Pm is:

2d−3∑
i=1

⌊
m + 3i− 2

6d− 1

⌋
+

⌊
m + 6d− 7

6d− 1

⌋
+

⌊
m + 6d− 3

6d− 1

⌋
.

We conjecture that the bound from Theorem 3 is
sharp:

Conjecture 1 For any m-polyhypercube Pm in dimen-
sion d ≥ 2 with m ≥ 2,

2d−3∑
i=1

⌊
m + 3i− 2

6d− 1

⌋
+

⌊
m + 6d− 7

6d− 1

⌋
+

⌊
m + 6d− 3

6d− 1

⌋
pixel/voxel guards are always sufficient, and sometimes
necessary to cover Pm.

The conjecture is true when d = 2, and the proof can
be found in [9].

Theorem 3 For any m-polyomino Pm with m ≥ 2,
bm+1

11 c + bm+5
11 c + bm+9

11 c pixel guards are always suf-
ficient, and sometimes necessary to cover Pm.

4 Voxel Guards in PolyHypercubes: Bounds Inde-
pendent of d

The following theorem (see [10]) gives us an upperbound
for the number of pixel/voxel guards that depends on
the number of hypercubes only, and is independent of
d:

Theorem 4 (a) For any m-polyhypercube Pm with
m ≥ 3 in d ≥ 2 dimensions, b 13mc pixel/voxel
guards are always sufficient to cover Pm.

(b) For any positive real number c < 1
3 , there exist pos-

itive integers m and d and an m-polyhypercube Pm

which requires more than bcmc pixel/voxel guards.
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