
An efficient algorithm for computing the exact overlay of triangulations

Salles V. G. de Magalhães (salles@ufv.br)
Marcus V. A. Andrade (marcus@ufv.br)
Universidade Federal de Viçosa, Brazil

W. Randolph Franklin (mail@wrfranklin.org)
Wenli Li (liw9@rpi.edu)

Rensselaer Polytechnic Institute, USA

ABSTRACT
This paper presents a proposal for the development of 3D-
EPUGO (from 3D Exact Parallel Uniform Grid Overlay), an
efficient algorithm for exactly computing the intersection of 3D
triangulations. 3D-EPUGO will be innovative because of two
reasons. First, it will use rational numbers to represent spa-
tial data, thereby completely avoiding roundoff errors, what
could create topological impossibilities. The use of rationals
goes beyond merely using existing packages, which are inef-
ficient when used in parallel on large problems. Second, for
efficiency, 3D-EPUGO will use high performance computing
and a uniform grid to index the data.

To validate these ideas, we developed EPUGO, a version of
3D-EPUGO for overlaying polygonal maps. Preliminary ex-
periments showed that EPUGO was faster than GRASS GIS,
even though GRASS uses inexact arithmetic. This suggests
that the 3D version will also be efficient.

1. INTRODUCTION
Computing intersections is a very important boolean opera-

tion supported by many GIS and CAD systems. This kind of
operation is important not only in polygonal maps but also in
3D solids. However, according to Feito et al. [1], although 3D
models have been widely used in computer science, processing
them is still a challenge. Due to the algorithm implementation
complexity, the necessity of processing big volumes of data
and precision problems caused by floating point arithmetic,
software packages occasionally “fail to give a correct result, or
they refuse to give a result at all” [1].

There are several possible strategies to compute 3D overlays.
A common strategy is to use indexing to accelerate spatial op-
erations performed during the overlay process (such as com-
puting the triangle intersections). For example, Feito et al. [1]
uses octrees to intersect triangulations while Jing et al. [7] use
Oriented Bounding Boxes trees (OBBs). However, because of
floating-point errors robustness cannot be always guaranteed
in the traditional methods.

Even though in some situations an approximate algorithm is
acceptable, algorithms that are both efficient and robust are a
requirement in operations such as overlay, that are frequently
used as subroutines for other algorithms and, therefore, errors
and performance problems may propagate to these algorithms.

The goal of this work is to develop an efficient algorithm for
overlaying objects represented by triangulations. We intend
to use exact arithmetic to completely avoid errors caused by
floating point numbers. Special cases will be treated using
Simulation of Simplicity (SoS). Efficient indexing techniques
and parallel computing will be used for performance purposes.

As a proof of concept, we have developed a polygonal inter-
section algorithm (named EPUGO), that can efficiently inter-
sect 2D maps using exact arithmetic. EPUGO uses the same
techniques we intend to use for 3D triangulations overlay. As a
next step, our objective is to extend the ideas used in EPUGO
to compute the intersection between 3D triangulations.

2. ROUNDOFF ERRORS IN GIS
Usually, non-integer numbers are approximately represented
in computers with floating-point numbers. The difference be-
tween the value of a number and its approximation is often
referred as roundoff error. Even though these errors are usu-
ally small, arithmetic operations frequently create more errors
and a sequence of operations usually leads to larger errors.

In geometry, roundoff errors can generate topological incon-
sistencies causing globally impossible results for predicates like

f1

f2

f0

v0 v1

f1

v6 v7

v8

v5

v4

v3 v2

Map representation:

(v0,v1,f2,f0) ; (v1,v2,f2,f0);

(v2,v3,f2,f1) ; (v3,v0,f2,f0);

(v3,v4,f0,f1) ; (v4,v5,f0,f1);

(v5,v2,f0,f1) ; (v6,v7,f1,f0);

(v7,v8,f1,f0) ; (v8,v6,f1,f0);

Figure 1: 2D map: each edge e is represented by a
quadruple (vi,vj,fl,fr), where vi and vj are the vertices
of e and fl and fr are the left and right faces of e.

point inside polygon. Several techniques have been proposed
in order to overcome this problem. The simplest one consists
of using an ε tolerance to compare floating-point numbers.
However this is a formal mess because equality is no longer
transitive, nor invariant under scaling.

Another techniques are the Exact Geometric Computation
(EGC)[5] model, which represents mathematical objects ex-
actly using algebraic numbers, and snap rounding (SP) [3],
whose basic idea is to use some rounding method to convert
an arbitrary precision arrangement of segments into a fixed-
precision representation. While EGC has interesting features,
its main drawback is the performance penalty (even determin-
ing the sign of an expression is nontrivial). Snap rounding has
been used in GIS packages such as GRASS, but it can generate
some inconsistencies by changing the map topology.

The formally proper way to effectively eliminate roundoff er-
rors is to use exact computation based on rational number with
arbitrary precision [4]. In this work we intend to develop 2D
and 3D overlay algorithms that are efficient enough to perform
the computations using rationals.

3. DATA REPRESENTATION
We intend to represent the maps using simple representations
that do not keep global topology information. This is impor-
tant because the more explicit topological information is stored
the more difficult it is to guarantee robustness [1].

A 2D map will be composed of a set of faces. A face does
not need to be a connected set and, therefore, the face repre-
senting the USA in a map of countries could include Alaska
and Hawaii. The faces are represented implicitly by a set of
oriented line segments representing their boundaries. Each
segment stores the identification numbers of the faces on its
right and left sides. Figure 1 presents an example of map.

In this work, we represent 3D maps using a similar strategy.
A 3D map is composed of a set of objects. Similarly to the 2D
maps, the objects do not need to be connected sets and they
are represented implicitly by a set of oriented triangles. Each
triangle stores the identification number of the objects above
(that is, on the side of its normal) and below it.

4. USING A UNIFORM GRID FOR INDEXING
EPUGO uses a uniform grid for indexing the map edges. The
idea is to create a G×G grid and superimpose it to the map.
The edges are, then, inserted into the grid cells they intersect.

Uniform grids are very parallelizable and can be quickly con-
structed by doing one pass through the data: for each edge e
in the input, e is rasterized and inserted into the grid cells
it intersects. This simplicity is important mainly when ratio-
nals are used, since more complex indexing techniques usually
require several arithmetic operations to be constructed.

Furthermore, these grids can efficiently handle uneven data
[2]. To improve the performance for very uneven data, EPUGO
supports the use of multi-level uniform grids. The idea is to re-



fine cells containing more edges than a threshold, what created
a nested grid. This refinement could be recursively repeated
in a process similar to a quad-tree creation but, according to
our preliminary experiments, for the overlay problem a good
performance is obtained by using only one or two levels.

Since uniform grids performed well in EPUGO, we intend
to extend this strategy to 3D. The idea is to create a 3D grid
and insert in the grid cells the triangles intersecting them.

5. 2D INTERSECTION
We have developed the algorithm EPUGO for exactly overlay-
ing maps. All coordinates are represented with GMP rationals.
Special cases are treated handled using SoS.

Since the map is represented as a unstructured set of edges
that contain information about the neighbor faces, the overlay
operation is performed by computing the intersection between
the edges and classifying them. Algorithm 1 summarizes the
overlay process.

Algorithm 1 Computes the overlay of two maps A and B

1: Create the uniform grid
2: Compute the intersection between all edges of the maps
3: Locate all vertices of map A in map B and vice-versa
4: Classify the edges and create the resulting map

Initially, the uniform grid is created. This process is easily
parallelized over the edges. If the algorithm is configured to
use more than one level in the grid, the cells containing too
many edges are refined creating a nested grid in them.

After creating the index, the intersections between edges in
each grid cell are computed. For each cell c, the intersection
between pairs of edges from both maps in c are computed.
Again, this step is highly parallelizable over the grid cells.

Then, we compute the face from one map in which each
vertex from the other map is. This process is performed by
creating, for each vertex v, a semi-infinite vertical ray starting
in v and determining what is the lowest edge e directly above
v. The face containing v is one of the two faces adjacent to
e. If there is no edge above v, v is in the outside face. This
process also uses a uniform grid to index the edges that need to
be tested for intersection with the vertical rays. Furthermore,
this step is highly parallelizable over the vertices being located.

Finally, in the next step the output edges are computed.
If an input edge e from map A does not intersect any edge
from the map B, it will be an output edge if and only if it is
inside a face f (that is not the exterior face) of B (this can
be determined by checking in what face of B one of its two
vertices is) and its left and right faces will be the intersection
between f and the faces from B that are around e.

If e intersects n edges from the other map, e is divided in n+1
sub-edges and each sub-edge ei is classified using a strategy
similar to the one used when an edge does not intersect other
edges: ei will be an output edge iff it is inside a face of the
other map and the new faces to its left and right sides will be
determined based on the face of the other map where ei is and
on the faces of e’s map that are around e.

Since there is no data dependency between the edges, they
can be easily processed in parallel.

It is worth mentioning that preliminary experiments have
showed that simply using rationals in an implementation cre-
ated for floating-point numbers isn’t fast. For example, in
our implementation we avoid recreating temporary variables
in expressions since the creation of rational numbers usually
lead to memory allocations on the heap, what is significantly
slow when these expressions are evaluated in parallel. Thus,
EPUGO needed to be carefully implemented to be efficient.

The current parallel implementation is very efficient and our
experiments showed that its performance is comparable to the
performance of the overlay module present in GRASS GIS. For

example, in our largest experiment using maps with 20 and 30
million edges, EPUGO was 50% faster than GRASS GIS that,
even though is sequential, does not use exact arithmetic.

6. 3D INTERSECTION
We intend to extend the ideas used in EPUGO to compute
the intersection between two triangulations. The initial steps
of the new method, named 3D-EPUGO, were already imple-
mented and will be described in this section.

Initially, a 3D uniform grid is created and the triangles are
inserted into the grid cells they intersect. For performance
purposes, the axis-aligned bounding boxes (AABBs) of the
triangles are computed in parallel and, then, the triangles are
inserted in the grid cells intersecting their AABBs.

We intend to use the uniform grid as a filtering structure
to accelerate the computation of the intersection, that is, the
presence of a triangle in a grid cell c that does not actually
intersect c does not affect the correctness of the algorithm.
Thus, the choice of inserting the triangles into the grid basing
on their AABBs simplifies the creation of the uniform grid
while it adds an overhead for the steps of the algorithm that
relies in the grid to index the data. As a future work we intend
to study these overheads in order to choose the grid creation
strategy that leads to the best performance.

The most critical step of the overlay is computing the inter-
section between the triangles. This step was implemented us-
ing a strategy similar to the one used in EPUGO: for each grid
cell, the intersections between pairs of triangles from the two
triangulations are computed. For efficiency, the pairs of trian-
gles are intersected using the algorithm presented by Möller
[6], that uses several techniques to avoid unnecessary compu-
tations.

The next steps (computing and classifying the output tri-
angles basing on the intersections computed in the previous
step) are still under development and, thus, they will be im-
plemented as future work. Furthermore, the current version
of this algorithm does not handle the special cases and, thus,
using SoS to handle these cases is also object of future work.

6.1 Conclusions
This paper presented a proposal for the development of 3D-
EPUGO, an efficient algorithm for exactly computing the over-
lay of triangulations. 3D-EPUGO will use arbitrary-precision
rational numbers to represent and process the spatial data.

As a proof of concept, we have developed EPUGO, a 2D
version of 3D-EPUGO. Our preliminary experiments have
showed that, due to the techniques we used, EPUGO was
able to efficiently compute overlays. Thus, we expect that
3D-EPUGO will be also efficient.

This research was partially supported by NSF grant IIS-
1117277 and by CAPES (Ciencia sem Fronteiras).

7. REFERENCES
[1] F. Feito and C. Ogayar et al. Fast and accurate

evaluation of regularized boolean operations on
triangulated solids. Computer-Aided Design, 2013.

[2] W. R. Franklin and N. Chandrasekhar et al. Efficiency of
uniform grids for intersection detection on serial and
parallel machines. In Proc. Comp. Graphics Int. 1988.

[3] J. D. Hobby. Practical segment intersection with finite
precision output. Comput. Geom., 13(4):199–214, 1999.

[4] C. M. Hoffman. The problems of accuracy and robustness
in geometric computation. Computer, 22(3):31–40, 1989.

[5] C. Li. Exact geometric computation: theory and
applications,. PhD thesis, Department of Computer
Science, Courant Institute - NYU, 2001.

[6] T. Möller. A fast triangle-triangle intersection test.
Journal of graphics tools, 2(2):25–30, 1997.

[7] J. Yongbin and W. Liguan et al. Boolean operations on
polygonal meshes using obb trees. In ESIAT, 2009.


