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1 Introduction

The homological sensor network (HSN) coverage prob-
lem is to verify that a collection of sensors cover an
unknown, bounded domain. The sensors can be in-
terpreted as a collection of discs with uniform radius
in R2, or more generally, uniform d-balls centered at a
set of points Rd. Moreover, it is assumed that the net-
work is known only through neighbor relationships,
and the coordinates of the points are unknown.

Over a series of papers de Silva and Ghrist de-
veloped a theory of coordinate-free coverage which
used the relative homology of a sample to a sampled
boundary to verify coverage of a domain. Assuming
the network is sampled from domain with a smooth
boundary it is shown that coverage of the domain by
a sensor network can be verified by looking at the per-
sistent homology of the network sensor’s radius rela-
tive to a sampled boundary. The work culminated in
a simple, computable topological coverage criterion
(TCC), a necessary (but not sufficient) condition to
guarantee a collection of sensors cover the unknown
domain [4].

This paper provides a new proof of the TCC that
allows us to extend results about HSNs in several
different directions. The main contributions are as
follows:

1. We give a new proof of correctness for the TCC
that replaces the assumption that the boundary
of the domain is a smooth manifold with a very
weak topological condition.

2. We extend the TCC to weighted k-nearest neigh-
bor distance in order to allow verification of
coverage by k weighted sample points. The
weights allow for different radii.

3. We give an algorithm for certified homology in-
ference, i.e. we compute the homology of the do-
main and provide some guarantee if there was
sufficient data.

2 Background

Throughout the domain D is a compact, locally con-
tractible set with boundary B forming a pair (D,B).
The pair (P,Q) is composed of a sample P ⊂ D and
Q = P ∩Bα for a fixed scale α ≥ 0. In order to gener-
alize coverage in the TCC we consider verifying cov-
erage of the domain by k sensors with distinct radii.
This is achieved by defining a distance function from
points in Rd to subsets of k weighted sample points.
For a compact point set A ⊂ Rd let

(
A
k

)
be the set of

k-element subsets of A. The weighted distance from
a point x ∈ Rd to a weighted point y ∈ A is de-
fined as the power distance ρy(x)2 := ‖x− y‖2 +w2

y.
The weighted k-nearest neighbor distance from
a point x to k points in a weighted compact set A is
defined as

dk(x,A)2 := inf
K∈(A

k)
max
y∈K

ρy(x).

We define the weighted (k, ε)-offsets of a point set
A ⊂ Rd to be

Aεk := {x ∈ X | dk(x,A) ≤ ε}.

The k-barycentric decomposition of a simplicial com-
plex K is a new simplicial complex that has a vertex
for every simplex of K of dimension at least k−1. The
simplices are flags of these simplices, i.e., sequences
ordered by inclusion. By the Nerve Theorem and [3],
the weighted (k, ε)-offsets are homotopy equivalent to
the k-barycentric decomposition of the Nerve of the
sample point’s weighted offsets, or Čech complex at
scale ε denoted Ckε (P ).

Although the Čech complex is homotopy equiva-
lent to the offsets, a related complex, the (Vietoris-
)Rips complex can be computed directly from the
network information. This complex has a simplex
for every clique of the intersection graph of the balls.
By [3] the k-barycentric decomposition of the Rips
complex, denoted Rkε(A), is a ϑd-approximation to
the (k, ε)-offsets Aεk for a weighted set A at scale ε.
This generalizes an important result about the rela-
tionship of Čech and Rips complexes following from
Jung’s Theorem [2], relating the diameter of a point
set P and the radius of the minimum enclosing ball
as follows:

Ckε (P ) ⊆ Rkε(P ) ⊆ Ckϑdε
(P ) (1)

where ϑd =
√

2d
d+1 . Our new TCC proof is greatly

simplified by working directly with the union of balls
(Pϑdε
k , Qϑdε

k ) to first give the geometric underpinnings
and then using the relationship from Jung’s The-
orem to give an algorithm in terms of a sampled
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pair of weighted (k, ε)-Rips complexes, denoted Rk
ε =

(Rkε(P ),Rkε(Q)).
The Alexander Duality is used to turn questions

about coverage into questions about connectivity. The
d-dimensional cohomology of the pair (D,B) is iso-
morphic to the 0-dimensional homology of its com-
plement. Under the duality this is equivalent to the
number of connected components in the shrunken do-
main that are disconnected from the complement of
the domain.

Hd(D,B) ∼= H0(B, D) ∼= H0(D \ B).

3 The TCC

To certify coverage without coordinates we need to
make assumptions on the shape of our bounded do-
main as a subset of Rd. In our full paper, the new
TCC posed in Theorem 1 is proven first in terms of
the union of balls. The computable condition about
the homology of Rips coplexes then follows via the
the Rips-Čech interleaving and the so-called Persis-
tent Nerve Lemma. The proof is based on the follow-
ing diagrams. Since Q ⊆ Bα, for ε ≥ 0, Qεk ⊆ Bα+ε

we have that Diagram 2 commutes where the maps
are inclusions on the pairs of spaces.

(Pαk , Q
α
k ) �
� //

� _

��

(P βk , Q
β
k)� _

��
(D2α,B2α)

� � // (Dα+β ,Bα+β)

(2)

We can then use the Alexander duality to construct
the following commutative diagram which allows us
to state our assumptions in terms of connectivity.

H0(Bα+β ,Dα+β)
j∗ //

��

H0(B2α,D2α)

��
H0(Qβk , P

β
k )

i∗ // H0(Qαk , P
α
k )

(3)

Theorem 1 poses the TCC in terms of the number of
connected components of the domain relative to its
boundary.

Theorem 1 (Generalized TCC). Let D ⊂ Rd be a
set with boundary B, a weighted sample P and Q =
P ∩Bα where β ≥ 3α. If

j∗ = H0((D \ Bα+β) ↪→ (D \ B2α))

is an isomorphism and

Hd

(
Rk
α/
√

2
↪→ Rk

β

)
= rank j∗

then D \B2α ⊆ Pαk

4 Algorithm

Algorithm 1 is used to check coverage of the shrunken
domain i.e., that D\B2α ⊆ Pαk , assuming we can cal-
culate or know a priori the number of connected com-
ponents m of D\B2α. In order to apply the criterion

Algorithm 1 Check if D \B2α ⊆ Pαk
1: procedure Coverage(α, β, P,Q,m)
2: construct Rk

α/ϑd
and Rk

β

3: let r := rank Hd(R
k
α/ϑd

↪→ Rk
β)

4: if m = r then return True
5: else return False

to cases where the number of connected components
is not known we generalize Algorithm 1 to give a cer-
tification of coverage on those components that have
been sampled. Then, even if we do not know the
number of connected components of D0, as long as
we know which components have been sampled we
can provide a condition which certifies weighted k-
coverage of the sampled subdomain.

Certified Coverage

By throwing out points too close to the boundary we
can do homology inference under the assumption we
only have partial coverage. We can use the topolog-
ical coverage criterion to certify coverage assuming
the number of connected components is known by
taking a subsample of P of points far enough from
the boundary. Under the stronger shape hypothesis
that the so-called weak feature size of B is sufficiently
large as in [1], all of the Betti numbers can be com-
puted from the homology of subsamples inclusions of
Rips complexes. This connects results on homology
inference to results on HSNs.
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