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1 Overview

In this paper, we study the following generalization of Voronoi diagram, called Influence-based Voronoi
Diagram (IVD): Given a set of (possibly overlapping) clusters C = {C1, C2, . . . , Cn} of points in space
Rd for some fixed integer d > 0, construct a Voronoi diagram of C so that the Voronoi cell of each cluster
Ci ∈ C is the union of points in the space which have a larger joint influence from Ci than any other
cluster in C, where the influence from a cluster Ci to a point q ∈ Rd is measured by a non-negative
influence function F (Ci, q). The cluster Ci ∈ C which has the largest joint influence on q is called the
Maximum Influence Cluster (MIC) of q, and the process of finding MIC for a point (or a Voronoi cell)
is called Assignment. There are two major differences between IVD and a traditional Voronoi diagram
(VD). One difference is that each Voronoi site of IVD is a given point cluster, while the Voronoi site of
a traditional VD is often one input point. The other difference is that IVD is influence based, while the
traditional VDs are in general distance based, meaning that when determining the Voronoi cell for a
point q, IVD measures the joint influence from all points in a Voronoi site to q by an influence function,
but the traditional VDs mainly compute the distance (e.g., Euclidean or Hausdorff distance) between
the Voronoi site and q.

Chen et al. were the first ones to study joint influence in Voronoi diagram. In a recent work called
Clustering Induced Voronoi Diagrams (CIVD) [3], they showed that for any set P of n points in Rd

and an influence function F (C, q) satisfying certain general conditions, it is possible to partition the Rd

space into O(n log n) cells so that all points in each cell share a common subset of P as their (1 − ε)-
approximate MIC for some small constant ε > 0. CIVD considers all possible subsets (i.e., the power
set) of P as its potential Voronoi sites, and the Voronoi sites, as well as the cells, are solely induced by
the influence function. It is showed in [3] that a general technique called Approximate Influence (AI)
decomposition exists for a large class of influence functions to partition the space, however it is quite
unlikely to find a common assignment algorithm for such a class of influence functions (the assignment
problem was solved in [3] in a problem-dependent manner).

In some sense, the IVD model can be viewed as a special case of CIVD by restricting the Voronoi
sites to be the set of given clusters C, instead of the power set of the input points. We expect that
such a restriction can enable us to characterize a set of general conditions (which are slightly different
from those of the CIVD model) such that for any influence function satisfying this set of conditions its
corresponding IVD can be computed by a common algorithm, thus simultaneously solving the space
partition and assignment problems.

The IVD model is motivated by a recent interesting application of joint influence in medicine. In [10,
11], Wang et al. showed that by constructing a Voronoi diagram of a collection of density-based clusters
of already identified candidate neutrophils, it is possible to significantly improve the accuracy (by about
10%) of identifying true unidentified neutrophils in H&E staining histology tissue images. Their method
suggests that an unidentified neutrophil in the Voronoi cell of a cluster of already identified neutrophils
is more likely to be a true neutrophil. This provides a new way (i.e., using the joint influence of a set
of identified neutrophils to discover true neutrophils) to solve a challenging medical imaging problem.

It is worthy pointing out that several distance-based Voronoi diagrams allow their Voronoi sites to
have multiple points. These include the k-th order Voronoi diagrams [8], the Hausdorff Voronoi diagrams



[9, 2, 13], and the two-point site Voronoi diagrams [1, 4–7, 12]. The distance functions used in these works
are often defined by the closest (or farthest) point in the Voronoi sites, not by a collective effect of all
points of these sites. The IVD problem studied in this paper is more general as the aforementioned
problems can be viewed as its special cases.

To solve the IVD problem, our main idea is to utilize the CIVD technique’s ability of handling
influence functions for space partition. Particularly, we first treat the set C of clustered input points
as a set P of unclustered points (i.e., the union of all clusters) and use CIVD to partition the space
for P . Then, we develop a divide-and-conquer algorithm to solve the assignment problem for a large
class of influence functions. One challenge of such an approach is that the cells partitioned by CIVD are
intended for clusters automatically induced by the influence function, which may be quite different from
the given clusters in the input. Thus, the difficulty is how to resolve the inconsistency between the two
types of clusters and still generates a small-size space partition for the IVD problem. To overcome this
difficulty, we first extend the AI decomposition of CIVD to an Assisted AI decomposition. This ensures
that the resulting space partition has certain property. This property is then used by the divide-and-
conquer algorithm to recursively relate the cells of P to the cells of subsets of P . Such a relationship
enables us to recursively resolve the assignment problem, and thus overcomes a main difficulty of CIVD.
Consequently, we obtain a (1 − ε)-approximation algorithm for IVD which yields a Voronoi diagram
of size O(N logN) in O(T2(N)N log2N + T1(N)) time, where N is the total number of points in C,
ε > 0 is a small constant, and T1(N) is the time needed for building a data structure for reporting a
(1± ε)-approximate value of F (Ci, q) in T2(N) time for any Ci ∈ C and q ∈ Rd.

Since our technique does not need to know the exact form of the influence function (as long as it
satisfies some general properties), we expect that it will be applicable to many applications.
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