
Segmented ODETLAP Compression
Wenli Li, W. Randolph Franklin, Salles V. G. Magalhães

Rensselaer Polytechnic Institute, Troy, NY, USA
liw9@rpi.edu, mail@wrfranklin.org, vianas2@rpi.edu

ABSTRACT
We have designed an algorithm of segmented ODETLAP
compression for spatial data simplification. It can be more
than 3 times as fast as unsegmented ODETLAP compression
and use less than 10% more points for similar or better
compression errors. When hardware is available, it can also
process segments in parallel.

1. INTRODUCTION
Overdetermined Laplacian partial differential equations (ODET-
LAP) is a spatial data approximation and compression method
[1]. The motivation of ODETLAP approximation is the
smooth approximation of digital elevation models from con-
tours, in which a method like natural neighbor interpola-
tion produces terracing artifact. There are two objectives:
minimizing the smoothness measure of the approximation,
which is measured by the 2D integration of the Laplacian,
and minimizing the approximation error of known points.
The input of ODETLAP approximation is a set of known
points S = {(xi, yi)}k and values f(xi, yi), i = 1 . . . k, and
the output is the approximated values of all grid points
u(xi, yi), i = 1 . . . n. The algorithm is to build and solve an
overdetermined system of two groups of equations. The first
group is Laplace’s equations for all grid points

R(u(x−1, y)+u(x+1, y)+u(x, y−1)+u(x, y+1)−4u(x, y) = 0),

where R is a weight called the smoothing factor. The second
group is known point equations u(x, y) = f(x, y). The system
has n + k equations and n unknowns, and is solved by linear
least squares.

ODETLAP compression is based on ODETLAP approxima-
tion [5]. The input is a point dataset and the output is a
set of known points and values S. The basic objective of
ODETLAP compression is to find an S of limited size, such
that the maximum absolute point error of its ODETLAP
approximation to the dataset is minimized. The basic algo-
rithm starts with a small subset of the dataset as an initial
S, and iteratively selects new points from the dataset. In
each iteration, it computes the ODETLAP approximation of
S, and adds to S the data point with the greatest absolute
approximation error. The algorithm stops when the size
or approximation error of S reaches a threshold. Besides
compression, the method is also useful for the progressive
transmission of large datasets. ODETLAP approximation
is reasonably fast, but ODETLAP compression is slow with
thousands or tens of thousands iterations. In this paper, we
try to accelerate ODETLAP compression by exploring the
local behavior of ODETLAP approximation.

To accelerate ODETLAP approximation, Stookey [4] paral-
lelized it on an IBM Blue Gene/L by dividing a grid into
overlapping patches. For example, to approximate a ter-
rain, the method divides the grid and known points into
overlapping patches of size 100× 100, whose lower left cor-
ners are at (50i, 50j), i, j = 0, 1, . . . Then it computes an
approximation for each patch and merges the results using

Table 1: Unsegmented results

Points Time AVGEE RMSEE MAXEE

6386 52m26s 12.0 15.6 50.0

bilinear interpolation. The patches are grouped into blocks
that are processed in parallel. To save time and memory for
ODETLAP approximation, Li [2] used a method that divides
a grid into two overlapping sets of boxes. Then it computes
an approximation for each box and merges the results from
the two sets using weighted average.

Mitášová and Mitáš [3] developed a segmentation procedure
for the interpolation of large datasets using completely regu-
larized splines. The method is based on the local behavior
of the interpolation function. It divides a grid into square
segments so that the number of known points in each seg-
ment and its neighborhood is less than a threshold. Then it
computes an interpolation for each segment from the points
in its neighborhood of 3× 3, 5× 5 or more segments, so that
the number of points is more than a threshold.

2. SEGMENTED ODETLAP COMPRESSION
Solving large linear systems is time-consuming but can be
accelerated by parallel processing on GPU. We implemented
ODETLAP approximation using the Cusp library, which is
based on the Thrust library. On our server, the speedup of
ODETLAP approximation is about 8 times using an NVIDIA
Tesla K20Xm, over using a single thread of an Intel Xeon E5-
2687W. With GPU-accelerated ODETLAP approximation,
we can afford to process bigger datasets, and to add one
point in each iteration of the greedy point selection method.
However, it is still a time-consuming process. For example,
Figure 1 shows a 600× 600 DEM down-sampled from NED
1 × 1 degree block n43w074. Point values are in integer
meters and have a range of [−1, 1138].

0 100 200 300 400 500 600

0

100

200

300

400

500

600

Figure 1: Sample dataset.

Table 1 shows the number
of selected points, running
time and compression errors
of adding one point per it-
eration to an initial set of
40×40 regular points at posi-
tions (15i + 7, 15j + 7), until
the maximum absolute eleva-
tion error (MAXEE) is less
than 50 meters. The other
errors are average absolute el-
evation error (AVGEE) and
root-mean-square elevation error (RMSEE) in meters. The
smoothing factor of ODETLAP approximation is R = 0.01.

ODETLAP approximation shows local behavior in that the
influence of a known point decreases with the increase of
distance. Instead of segmented approximation, we designed
segmented compression such that adding a point only requires
an approximation for a single segment.



(a) (b) (c)

Figure 2: Neighborhood types.

2.1 Algorithm
The main idea of the algorithm is to divide an nrows × ncols
dataset into nrows

SS
× ncols

SS
segments of size SS ×SS , and then

compress each segment in association with neighboring seg-
ments. Given a segmented dataset, it selects points from each
segment until the maximum absolute approximation error of
each segment is less than a threshold. The approximation of
a segment is computed as part of the approximation of its
neighborhood. A segment still needs processing if either its
maximum approximation error is not less than the threshold,
or new points are selected in its neighborhood from other
segments. When a point is selected, all segments whose
neighborhood contains it will need processing. To maintain
uniform progress among all segments, they are processed in a
round-robin manner. The details are shown in Algorithm 1.

Algorithm 1: Segmented compression

Data: a segmented dataset
Result: a set S of selected points
add the center of each segment to S;
mark all segments as needing processing;
while there are segments that need processing do

for each segment s that needs processing in an order do
while s needs processing for up to a number of
iterations do

compute the ODETLAP approximation of s’s
neighborhood;
if the maximum absolute error in s is less than a
threshold then

mark s as not needing processing;
else

add the worst point p in s to S;

for each other segment t in s’s neighborhood do
if p is in t’s neighborhood then

mark t as needing processing;

The parameters are SS : segment size; NT : neighborhood
type; MAXITER: the maximum number of iterations in
processing a segment; and ORDER: the order of processing
the segments that need processing.

2.2 Experiments
We considered three neighborhood types: (a) one extra point
wide, (b) SS

2
extra points wide, and (c) one extra segment

wide. Figure 2 shows each type of neighborhood as a gray
box when SS = 5.

In experiments, we set SS = 15 and the maximum approxima-
tion error threshold of each segment to 50. The initial point
set consists of the center of each segment, or 40× 40 regular
points. The smoothing factor of ODETLAP approximation

Table 2: Segmented results (NT )

NT Points Inflation Time Speedup AVGEE RMSEE MAXEE

(a) 8071 1.26× 6m45s 7.76× 12.0 15.6 50.0
(b) 7483 1.17× 9m26s 5.56× 11.8 15.3 50.0
(c) 7014 1.10× 20m14s 2.59× 11.8 15.3 50.0

Table 3: Segmented results (MAXITER)

M.I. Points Inflation Time Speedup AVGEE RMSEE MAXEE

3 6915 1.08× 16m40s 3.15× 11.8 15.3 49.9
4 6898 1.08× 15m53s 3.30× 11.8 15.3 50.0
5 6888 1.08× 15m40s 3.35× 11.9 15.4 50.0

R = 0.01. Table 2 shows the results of the algorithm using
different NT ’s, with MAXITER = 1 and ORDER being row-
column order. The approximation of a dataset consists of
the approximation of each segment. The table also shows the
inflation of the number of selected points and the speedup
of running time. As neighborhood size increases from (a) to
(c), the inflation, speedup and errors all decrease.

Table 3 shows the results using different MAXITER’s, with
NT being (c) and ORDER being row-column order. In
general, as MAXITER increases, the speedup decreases but
converges quickly, while the other results are similar.

Table 4 shows the results with NT being (c), MAXITER = 4
and ORDER being random order. Random order is slightly
faster than row-column order.

3. CONCLUSIONS
We have designed segmented ODETLAP compression. For
the sample dataset and a maximum error of 50, it is more
than 3 times as fast as unsegmented compression. Average
and RMS errors are sightly better, but the number of selected
points is about 7% larger. Because a GPU is less efficient
with a smaller problem size, the relative speedup is greater if
all computation is on CPU. The algorithm also works better
for more unbalanced datasets. Besides, when hardware is
available, segments can be processed in parallel.

Acknowledgement. This research was partially supported
by NSF grant IIS-1117277 and CAPES (Ciência sem Fron-
teiras).

4. REFERENCES
[1] W. R. Franklin and M. Gousie. Terrain elevation data

structure operations. In C. P. Keller, editor, Proceedings of
the 19th International Cartographic Conference, pages
1011–1020, Aug. 1999.

[2] Y. Li. CUDA-accelerated HD-ODETLAP: a high dimensional
geospatial data compression framework. PhD thesis,
Rensselaer Polytechnic Institute, 2011.

[3] H. Mitášová and L. Mitáš. Interpolation by regularized spline
with tension: I. theory and implementation. Mathematical
Geology, 25(6):641–655, 1993.

[4] J. Stookey. Parallel terrain compression and reconstruction.
Master’s thesis, Rensselaer Polytechnic Institute, 2008.

[5] Z. Xie. Representation, compression and progressive
transmission of digital terrain data using over-determined
laplacian partial differential equations. Master’s thesis,
Rensselaer Polytechnic Institute, 2008.

Table 4: Segmented results (ORDER)

Points Inflation Time Speedup AVGEE RMSEE MAXEE

6821 1.07× 15m28s 3.39× 11.9 15.4 50.0


