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Abstract
We introduce the restricted constrained Delaunay triangulation (restricted CDT).
The restricted CDT generalizes the restricted Delaunay triangulation, allowing us
to define a triangulation of a surface that includes a set of constraining segments.
Under certain sampling conditions, the restricted CDT includes every constrained
segment and suggests an algorithm that produces a triangulation of the surface
that contains every constraining segment.

1. Introduction
Surface triangulations are used in computer graphics, simulations of

thin plates and shells, and boundary element methods for solving partial
differential equations. Given a surface Σ⊂R3 (without boundary) and a
finite set of sample points V ⊂ Σ, the restricted Delaunay triangulation
of V with respect to Σ is a rigorous way to define a Delaunay-like sur-
face triangulation whose mathematical properties facilitate algorithms
for generating meshes with guaranteed quality [1]. Here, we study a
variant where we are also given a set S of line segments whose end-
points are in V . Our goal is to construct a triangulation T of Σ that
contains every segment in S. See Figure 1.

Figure 1: Given a set of points sampled from Σ and a set of segments,
red, we wish to compute a triangulation of Σ that contains all of the red
segments.

Let T be a simplicial complex. The underlying space of T is |T |=
∪τ∈T τ , the union of all simplicies in T . We say that T is a trian-
gulation of Σ if |T | is homeomorphic to Σ. The goal of surface mesh
generation is to compute a triangulation T of Σ that also approximates
the geometry of Σ well.

The medial axis M of Σ is the closure of the set of all points in Rd

that have at least two closest points on Σ. Intuitively, the medial axis
of Σ is meant to capture the middle of the object. The local feature size
function is lfs : Σ→R, p 7→ d(p,M) where d(p,M) denotes the distance
from p to M. A finite point set V is called an ε-sample of Σ if for every
point p∈ Σ, d(p,V )≤ ε lfs(p). That is, there is some sample point v∈V
whose distance from p is no greater than ε lfs(p).

We assume that the reader is familiar with Delaunay triangulations
and Voronoi diagrams, as well as their basic properties. Consider a
Voronoi cell Vorv for some v ∈V . We define the Voronoi cell restricted
to Σ as Vor |Σv = Vorv∩ Σ. We can define every lower-dimensional
Voronoi face similarly. The restricted Voronoi diagram Vor |ΣV is the

set of all restricted Voronoi cells and their faces. The restricted Delau-
nay triangulation Del |ΣV is the simplicial complex dual to Vor |ΣV . A
j-simplex σ is in Del |ΣV if and only if ∩v∈σ Vor |Σv 6= /0. In words, a
simplex in DelV is in Del |ΣV if and only if its dual Voronoi face inter-
sects Σ [1].

Our main result is that, under certain sampling conditions on V and S,
we can construct a triangulation T of Σ that contains the segments in S.
To this end, we introduce the restricted constrained Delaunay triangu-
lation, which is a generalization of the restricted Delaunay triangulation
to enforce constraining edges.

2. Portals
Informally, a portal P is a subset of a topological space X that acts as

a doorway between topological spaces. A portal has two “sides” along
each of which we glue a new topological space, say Y and Y ′. A path
entering P from one side continues in Y , whereas a path entering from
the other side continues in Y ′. Let X = R3 and let S be a set of line
segments. For each segment s ∈ S, the user specifies a plane hs that
includes s. Denote by ns a unit vector normal to hs.

Now consider the diametric ball Bs of s — the smallest circumscribing
ball of s. The intersection Bs∩hs is a disk which we call Ps. The disk Ps
is the diametric ball of s with respect to the space hs. The disk Ps will
serve as our portal. The relative interior of Ps is the interior of Ps with
respect to its affine hull hs. By a slight abuse of notation we will denote
the relative interior by IntPs.

We construct the space Xs = X − IntPs, R3 with the interior of Ps
removed. The space Xs can be endowed with a metric as follows. Let
γ : [0,1]→ Xs be a continuous curve and define the length of γ as

L(γ) = sup
0=t0≤t1≤...≤tn−1≤tn=1

n

∑
i=1

d(γ(ti−1),γ(ti))

where the supremum is taken over all subdivisions of γ and d is the
Euclidean metric on X . Then the induced length metric d̂ is given by

d̂(x,y) = inf
γ

L(γ). (1)

It can be easily checked that the space (Xs, d̂) is a metric space. No-
tice that Xs is not complete as a metric space because IntPs is missing.
For any metric space Y , the completion of Y , denoted Y , is a complete
metric space that includes Y as a dense subset. Every metric space can
be shown to have a completion by defining an equivalence relation over
the set of all Cauchy sequences and adding a convergence point for each
equivalence class of Cauchy sequences.

The metric d̂ on Xs distinguishes Cauchy sequences that approach Ps
from different sides of hs. Thus the completion X s contains two distinct
copies of IntPs, denoted by P+

s ,P−s , one for each side of hs. Let x≡ y if
x and y have the same coordinates. Let R3

+,R3
− be two copies of R3 and

define an equivalence relation ∼ as



x∼ y ⇐⇒





x = y x,y ∈ X s or x,y ∈ R3
+ or x,y ∈ R3

−
x≡ y x ∈ R3

+ and y ∈ P+
s

x≡ y x ∈ R3
− and y ∈ P−s .

In words, we glue R3
+ to X s along P+

s and glue R3
− along P−s . With

∼ we construct the quotient space

X̃ = X stR3
+tR3

−/∼ .

We refer to X s as the principal branch and refer to each of R3
+,R3

− as
secondary branches. Figure 2 illustrates this construction in R2.
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Figure 2: Completing the slitted plane creates a hole in R2 bounded
by two curves marked in blue and orange. The equivalence relation ∼
identifies the blue path in the principal branch with the one in R2

− and
similarly for the orange path. A path in the principal branch that enters
the portal on one side continues in the appropriate secondary branch.

The space X̃ can then be endowed with the induced length metric d̂ as
in Equation 1. When considering the length of a continuous curve γ the
length of each segment in the subdivision is measured using the metric of
the branch it is contained in. However since the metrics on each branch
are identical this does not cause any difficulties. The following fact is
immediate.

Lemma 1. Let (X̃ , d̂) be the metric space defined above and let γ :
[0,1]→ X̃ be a shortest path between x,y ∈ X̃ . Then γ is a piecewise
curve comprised of straight line segments.

The construction works for any number of segments. We start by
removing the portals Ps of all segments from X , XS = X −∪s∈S IntPs,
then take the completion XS. Then we construct the quotient space with
2m copies of R3 glued along the 2m portals bounding the m holes in the
completion XS. The resulting space X̃ can again be endowed with the
induced length metric d̂. Lemma 1 still holds.

We also surgically modify Σ and embed an extended surface in X̃ .
Consider a segment s with endpoints p,q and let γs = hs ∩Σ∩Bs. As
hs locally intersects Σ transversally, the intersection hs ∩Σ is a curve,
possibly with multiple components. Thus γs is a curve along Σ contained
in Bs from p to q.

We can then extrude the curve γs into each of the secondary branches
connected to the portal Ps. For each point x ∈ γs we extrude a ray in the
direction of ns into R3

+, and another in the direction of −ns into R3
−.

More precisely, we define the ruled surfaces

Σ
+
s = {γs(u)+ vns ∈ R3

+ : u ∈ [0,1],v ∈ [0,∞)}

and

Σ
−
s = {γs(u)− vns ∈ R3

− : u ∈ [0,1],v ∈ [0,∞)},

which are extruded into R3
+ and R3

− respectively. Define an equivalence
relation ∼Σ that identifies points along γs on all three surfaces. Our
extended surface Σ̃ = Σt

⊔
s∈S Σ+

s t
⊔

s∈S Σ−s /∼Σ. See Figure 3.
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Figure 3: The plane hs intersects Σ in a curve. We consider the portion
of hs∩Σ included in the diametric ball Bs. The curve γs is extruded into
R3
+ in the direction ns orthogonal to hs. The surface Σ+

s thus defined is
then glued to Σ along γs at the entrance to the portal Ps.

3. Restricted Constrained Delaunay Triangulations
Voronoi diagrams can be defined in an obvious way for any metric

space. To define the restricted constrained Delaunay triangulation, we
start by defining the extended Voronoi diagram in X̃ . For any v ∈V , the
extended Voronoi cell of v is defined as

Evorv = {x ∈ X̃ : d̂(x,v)≤ d̂(x,u), ∀u ∈V}.

Then the extended Voronoi diagram EvorV is the set of all extended
Voronoi cells and their faces.

Next we define the restricted extended Voronoi cell. Let v ∈ V and
consider the extended Voronoi cell Evorv. Its restriction to Σ̃ is

Evor |
Σ̃

v = Evorv∩ Σ̃.

The restricted extended Voronoi diagram is the cell complex contain-
ing Evor |

Σ̃
v for all v∈V , along with all their faces. Finally we define the

restricted constrained Delaunay triangulation (restricted CDT) Del |
Σ̃
V

as the simplicial complex dual to the restricted extended Voronoi dia-
gram. The restricted CDT Del |

Σ̃
V contains a Delaunay simplex if its

dual Voronoi face intersects Σ̃. Under a standard nondegeneracy as-
sumption, no Voronoi vertex intersects Σ̃ so Del |

Σ̃
V contains no Delau-

nay tetrahedra. The following results hold.

Lemma 2. Let V be an ε-sample and let s ∈ S be a segment with end-
points p,q ∈V . If d(p,q)≤ ρ lfs(p) for ρ < 2−

√
2, then Ps is disjoint

from the medial axis.

Lemma 3. Let s ∈ S be a segment with endpoints p,q ∈V . Then
Evor |

Σ̃
p∩Evor |

Σ̃
q 6= /0.

Lemma 3 is the reason for the seemingly complicated construction
and gives merit to the name restricted constrained Delaunay triangula-
tion. In the full paper we establish further properties of restricted CDTs
and show how to use them for surface reconstruction.
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