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Introduction

Various authors have studied the problem of minimizing the

distortion of embedding points from one metric space into

another metric space. In this work we consider the problem

of embedding N+1 points from R
K+1 into R

K where all but

one of the N +1 points are in R
K . Given such a set of N +1

points, how much distortion must necessarily be incurred,

by the best embedding, and how does that compare to the

case where an arbitrary number of points can lie outside of

R
K (i.e. outside of any hyperplane of R

K+1)? Questions

of this nature are important in many application areas, from

data compression to machine learning.

Notation: Let Π be an embedding of one metric space, M1

into a second metric space, M2. Let d1(x,y) denote the dis-

tance between two points x,y ∈ M1 and let d2(x,y) denote

the distance between two points x,y ∈ M2. If one of the met-

ric spaces is a Euclidean space RK , then denote the distance

between points by dK(x,y).

Definition: Let P be a finite point set in a metric space M1,

and let Π : P→M2 be a mapping (embedding) of P into M2.

Then the distortion of the mapping Π, Dist(Π) is given by

Dist(Π) =

max
(

max
x,y∈P

d2(Π(x),Π(y))

d1(x,y)
,max

x,y∈P

d1(x,y)

d2(Π(x),Π(y))

)

.

If Π is non-contracting then

Dist(Π) = max
x,y∈P

d2(Π(x),Π(y))

d1(x,y)
,

while if Π is non-expanding then

Dist(Π) = max
x,y∈P

d1(x,y)

d2(Π(x),Π(y))
.

1 Background and Related Work

A fundamental reference that discusses the Lipschitz exten-

sion theorem of Kirszbraun (see next section), and the now

classical Johnson-Lindenstrauss-Schechtman lemmas is [4].

[1] and [2] study embedding metric spaces into a line, and

into the two-dimensional plane. Our work is most closely

related to [3], which discusses online metric embeddings.

2 Embeddings Points on a Sphere

into R
2 and Points on a Circle into

R

Badiou [2] et al. showed that any embedding of a dense

set of points on the unit sphere, under the Euclidean metric
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of R3 embeds into R
2 with distortion Ω(

√
N). The proof

uses the Borsuk-Ulam Theorem together with Kirszbraun’s

Theorem [4], which says that a Liptschitz embedding of a

subset of a Hilbert Space into another Hilbert Space can be

extended to a Liptschitz embedding of the full space, with

the same Liptschitz constant. The same argument can be

used to show that any embedding of a dense set of points

on the unit circle, under the Euclidean metric of R2 embeds

into R with distortion Ω(N).

3 Embedding N Points on a Line and

One Point off the Line onto a Line

Lemma 1 Consider a collection of an odd number, N, of

points on a line, each point one unit from the next, together

with one additional point at height
√

N above the center

point of the points on the line. Then any embedding of these

points into a line has distortion Ω(
√

N).

Proof. Label the points consecutively along the line by P=
{p1, ..., pN}, and refer to the point above the line at distance√

N by q. Further, denote the central point among the points

in P, p N+1
2

, by pcent.

We prove the lemma by contradiction. Thus suppose we

have a non-contracting embedding Π of the points P∪{q}
into a line, which we suppose has distortion that is o(

√
N).

We suppose first that some of the points in P are mapped un-

der Π to one side of Π(q) and some to the other. It must then

be the case that some pair of adjacent points pi and pi+1 are

mapped by Π to opposite sides of Π(q) (if not, then starting

with p1, p2 we could inductively conclude that all points are

to one side of Π(q)). But if pi is mapped to one side of Π(q)
and pi+1 is mapped to the other, then, by non-contraction,

the distance between Π(q) and each of its closest neighbors

is at least
√

N and thus d(Π(pi),Π(pi+1)≥ 2
√

N so the dis-

tortion in Π is at least 2
√

N. We therefore conclude that

for Π to have distortion o(
√

N) all points in the embedding

Π(pi) must be to one side of Π(q).

Since all points Π(pi) are to one side of Π(q) there is a

closest neighbor Π(p∗) to Π(q). Divide the points of P, as

evenly as possible into four sequential quarters (being exact

is unimportant since the argument will just involve orders

of magnitude in N). p∗ either comes from one of the outer

quarters of {p1, ..., pN} or from one of the two inner quar-

ters. Label these quarters P1/4,P2/4,P3/4 and P4/4, respec-

tively.

Suppose first that p∗ ∈ P1/4∪P4/4. Then consider the dis-

tortion in the mapping of q and pcent:



d(Π(q),Π(pcent))

d(q, pcent)
=

d(Π(q),Π(p∗))+ d(Π(p∗),Π(pcent))√
N

≥
N
4
+ N

4√
N

=

√
N

2
.

On the other hand, suppose that p∗ ∈ P2/4 ∪ P3/4.

Then without loss of generality we may as-

sume we have a left to right ordering of points

Π(q),Π(p∗),Π(p1),Π(pN). Note that this ordering

could equally well be Π(q),Π(p∗),Π(pN),Π(p1), or the

points Π(p∗),Π(p1),Π(pN) could all be to the left of Π(q)
– these differences do not affect our argument. By a trivial

argument analogous to the one we gave earlier, we can

conclude that there must be consecutive points pi, pi+1 with

Π(pi) to one side of Π(p1) and Π(pi+1) to the other side

of Π(p1) and pi ∈ {pk, pk+1, ..., pN−1} where p∗ = pk. But

now consider the distortion in the mapping of pi and pi+1,

keeping in mind that pi and pi+1 are in the 2nd, 3rd or 4th

quartile, and the mapping is non-contracting:

d(Π(pi),Π(pi+1))

d(pi, pi+1)
=

d(Π(pi),Π(p1))+ d(Π(p1),Π(pi+1))

1

≥ N

4
+

N

4
=

N

2
.

In all cases then Π has distortion Ω(
√

N) and the lemma is

established. ✷

4 Embedding N Points on a Plane and

One Point off the Plane onto a Plane

Lemma 2 Consider a dense set of N points, each approxi-

mately unit distance from its closest neighbors, inside a disk

of radius
√

N and one additional point at height N1/4 above

the center point of the points in the disk. Then any embed-

ding of these points into the plane has distortion Ω(N1/4).

Proof (sketch). Suppose we have a non-expanding em-

bedding Π of the N points, P, in the disk, together with the

point above the center of the disk, which we again call q,

into the plane. Extend Π to be a non-expanding embedding

of all of R3 into R
2 by Kirszbraun’s Theorem. Since Π is

Lipschitz (with Lipschitz constant at most 1), Π is contin-

uous. Let pcent be the centerpoint in P directly below q.

Consider the image under Π of the vertical diameter of the

disk Π(diam). This image is a continuous curve through

Π(pcent). Color the top half of Π(diam) red and the bottom

half green. Now consider the image Π(diam) as the diame-

ter turns through 180 degrees. Continue to color Π(top-half)
red and Π(bottom-half) green. A straight forward argument

shows that either the endpoints of the red and green halves of

these curves collectively form a closed curve with Π(pcent)
in its interior or at some point in the turning of the diam-

eter either the end point of the green curve intersects the

red curve or the end point of the red curve intersects the

green curve. Suppose one of these latter two cases holds,

say it is that the end point of the red curve intersects the

green curve. If pre is the pre-image of the end point of the

red curve at this juncture, then there is a point pg which

is the pre-image of a point along the green curve such that

d(Π(pre),Π(pg))≈ 1 while the points pre , pg lie along a di-

ameter and are at least
√

N apart in the pre-image. Thus, in

this case, Dist(Π) = Ω(
√

N).

On the other hand, if Π(pcent) is in the interior of the im-

age of the disk then consider Π(q), the image of the point

above pcent. If Π(q) lies inside the image of the boundary of

the disk, then since Π is non-expanding there is a point of

the disk that is approximately distance 1 or less from Π(q).
Since the point started at least at distance N1/4, the incurred

distortion is Ω(N1/4). On the other hand, if the boundary of

the disk lies between Π(q) and Π(pdent) then we again find

a distortion of Ω(N1/4). ✷

Future Work

These results are just the first of a hoped for more detailed

characterization of how one incurs distortion on a point-by-

point basis embedding from one Euclidean space into an-

other of smaller dimension. In general if N points in R
k can

incur some maximum distortion when the points are embed-

ded in R
k′ , for k′ < k, how much distortion can be incurred

from a point set of the same size N but where all but M of

the N points lie in some k′-flat, where M = o(N)?
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