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Abstract

We show that every planar straight line graph (PSLG) with n vertices can be augmented to
a 2-edge-connected PSLG with the addition of at most b(4n− 4)/3c new edges. This bound is
the best possible.

Edge-connectivity augmentation is a classic problem in combinatorial optimization motivated by
applications in fault-tolerant network design. Given an undirected graph G = (V,E) and a number
τ ∈ N, we want to find a set F of new edges of minimum cardinality such that G′ = (V,E ∪ F )
is τ -edge-connected. In this note, we consider edge-connectivity augmentation for planar straight
line graphs (PSLG) with n vertices in general position (no three collinear vertices).

Every graph with t ∈ N components can be augmented into a connected graph with the ad-
dition of t − 1 new edges. Every PSLG with n vertices can be augmented to a connected PSLG
(encompassing graph) with at most n− 1 new edges. Every connected PSLG on n vertices can be
augmented to a 2-edge-connected PSLG with at most b(2n− 2)/3c new edges [3]. Both bounds are
the best possible. The combination of the two bounds implies that every PSLG on n vertices can be
augmented to 2-edge-connectivity with the addition of at most b5(n− 1)/3c new edges. However,
this bound is not tight. We derive a better bound and show the following.

Theorem 1. Every PSLG with n ≥ 3 vertices can be augmented to a 2-edge-connected PSLG with
the addition of at most b(4n− 4)/3c new edges. This bound is the best possible.

The upper bound in Theorem 1 is attained for a triangulation on k ≥ 3 vertices, with an isolated
vertex placed in each of the 2k − 5 bounded faces and 3 vertices in the outer face that pairwise
do not see each other (that is, n = k + (2k − 5) + 3 = 3k − 2). The proof of the upper bound is
constructive and distinguishes between two cases depending on the number of components in the
graph. Due to space limitation, we give an outline of the proof here.

Let G be a PSLG on n ≥ 3 vertices in general position. Let c be the number of components in
G. In the first case c ≤ b(2n + 1)/3c, and we augment G to a 2-edge-connected PSLG as follows:
first use c− 1 new edges to obtain a connected PSLG, and then use b(2n− 2)/3c edges to make it
2-edge-connected [3]. The total number of new edges is at most

(c− 1) +

⌊
2n− 2

3

⌋
≤

⌊
2n+ 1
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⌋
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⌊
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⌋
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⌊
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⌋
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In the second case, when c ≥ b(2n + 1)/3c + 1 = b(2n + 4)/3c, we develop an augmentation
algorithm that uses a convex subdivision of G. A convex subdivision H is obtained from G by
successively shooting rays from the reflex vertices of all nonsingleton components of G, similar
to [2]. The isolated vertices of G lie in the interiors of the convex cells of H. For every convex
subdivision H constructed in this way, we derive an upper bound for the number of cells h.

Lemma 2. Let G be a PSLG with n vertices, b bridges, and c components. Then every convex
subdivision of G has at most h ≤ 2n− 2c− b+ 1 cells.

We augment G successively with new edges, and we always denote by G′ the current graph.
Graph G′ is a planar straight line multigraph (PSLMG). Let T ⊆ G′ denote the set of nonsingleton
connected components in G′.

Our augmentation algorithm works as follows:

1. Construct a convex subdivision H of G. Let C = {Ci : i = 1 . . . h} be the set of convex cells.
Compute T .

2. For each cell Ci ∈ C: a) for each nonsingleton component adjacent to Ci select an arbitrary
vertex incident to Ci; b) connect the selected vertices and singleton vertices in the cell Ci into
a simple polygon; c) recompute T .

3. Replace each bridge of G′ by a double edge.

4. Transform the multigraph G′ into a simple graph.

In step 2 we add c + h − 1 edges. Since we do not create any new bridges in step 2, we add b
edges in step 3. The total number of new edges e′ added is e′ ≤ c+ h− 1 + b. By Lemma 2, since
c ≥ b(2n+ 4)/3c, we obtain:

e′ ≤ c+ h− 1 + b ≤ 2n− c ≤ 2n−
⌊

2n+ 4

3

⌋
≤

⌊
4n− 4

3

⌋
. (2)

In step 4 we can transform the 2-edge-connected multigraph G′ into a 2-edge-connected simple
graph without increasing the number of edges by Lemma 3.

Lemma 3. [1] Let G′ be a 2-edge-connected PSLMG and let e be a double edge in G′. Then we
can obtain a 2-edge-connected PSLMG from G′ by decrementing the multiplicity of e by one and
adding at most one new edge of multiplicity 1.
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Abstract

We show that every planar straight line graph (PSLG) with n vertices can be augmented to
a 2-edge-connected PSLG by adding at most b4(n− 1))/3c new edges. This bound is tight.

1 Introduction

Edge-connectivity augmentation is a classic problem in combinatorial optimization motivated by
applications in fault-tolerant network design. Given an undirected graph G = (V,E) and an integer
τ ∈ N, find the a set F of new edges of minimum cardinality such that G′ = (V,E ∪ F ) is τ -edge-
connected. For abstract graphs, the problem admits a polynomial-time solution for every τ ∈ N [12].
Moreover, the Successive Augmentation Property holds [5, 8], that is, if G is `-edge-connected, then
there exists a sequence G = G0, G1, . . . of supergraphs of G such that Gi is a subgraph of Gj for
all i < j and Gi is an optimal (`+ i)-edge-connected augmentation of G for all i ∈ N.

In this note, we consider edge-connectivity augmentation for planar straight line graphs (PSLGs)
with n vertices in general position (no three collinear vertices). It is NP-hard to decide whether
a given PSLG can be augmented to τ -edge-connectivity by adding at most k new edges, for τ =
2, . . . , 5 [9]. By Euler’s polyhedron formula, every planar graph has a vertex of degree at most 5, this
is an upper bound on the maximum edge-connectivity. Every triangulation on n noncollinear points
is 2-edge-connected, therefore every PSLG can be augmented to 2-edge-connectivity. However,
some point sets do not admit 3-edge-connected triangulations [3], and so not all PSLGs are 3-edge-
augmentable.

Every graph with t ∈ N components can be augmented into a connected graph with the ad-
dition of t − 1 new edges. Every PSLG with n vertices can be augmented to a connected PSGL
(encompassing graph) with at most n− 1 new edges [4]. Every connected PSLG on n vertices can
be augmented to 2-edge-connectivity with at most b(2n − 2)/3c new edges [11]. Both bounds are
the best possible. The combination of the two bounds implies that every PSLG on n vertices can be
augmented to 2-edge-connectivity with the addition of at most b5(n− 1)/3c new edges. However,
this bound is not tight. Answering a question posted in [2, 7], we show the following.

Theorem 1. Every PSLG G with n ≥ 3 vertices can be augmented to a 2-edge-connected PSLG
with the addition of at most b(4n− 4)/3c new edges. This bound is the best possible.

The lower bound construction is a triangulation on k vertices, with an isolated vertex placed in
each of 2k − 5 bounded faces and 3 vertices in the outer face that pairwise do not see each other
(Fig. 1). Each singletons requires two new edges for 2-edge-connectivity, that is, at least 4k−4 new
edges are needed. In terms of n = 3k − 2, the graph requires 4(k − 1) = b4(n− 1)/3c new edges.
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Figure 1: Graph on n=19 vertices. Each of b(2n − 2)/3c = 12 singletons requires two edges to
increase edge connectivity of the graph to two.

2 Convex Subdivisions

Our proof for Theorem 1 is constructive, and we describe an algorithm for augmenting a given PSLG
in Section 4. The main tool for our algorithm is a convex subdivision [3, 4, 7]. Let G = (V,E)
be a PSLG with no isolated vertices. A convex subdivision H = (VH , EH) is obtained from G by
adding new edges and vertices, and by subdividing some of the edges of G, such that all bounded
faces of H are convex. First augment G with the vertices and edges of a bounding box of G; and
then successively shoot rays from each reflex vertex of G in the direction of any one edge incident
to the reflex vertex (Fig. 2b). Each ray extends until it hits the bounding box, an edge or G, or a
previous ray. Let VH be the set of all vertices of G, the bounding box, and the endpoints of the ray
segments. Let EH be the set of maximal line segments along the edges of G, along the bounding
box, and along the the ray segments between consecutive vertices in VH . By construction, H is a
PSLG. The bounded faces of H (called cells) are convex, and they tile the interior of the bounding
box. Note, however, that s convex subdivision H is not unique: it depends on the direction of the
rays, and the order in which the rays are shot.

Lemma 2. Let H be a convex subdivision of a PSLG G constructed by the above procedure. Let
C ⊂ H be a cycle in H other than the bounding box. Then C passes through a vertex of G.

Proof. We partially orientation the edges of H. Along each ray emitted by a reflex vertex v, orient
all edges of H away from v; and leave all other edges of H undirected (i.e., the edges of G and the
bounding box are undirected). Note that the outdegree of every vertex in H is at most one.

Let C be a cycle C in H other than the bounding box. Since H is a plane graph, we may
assume that C is a simple cycle. If C is contained in G, then it passes through a vertex of G. So
we may assume that C contains a directed edge. Let γ = (p1, . . . , pk) be a maximal directed path
along C. First notice that p1 6= pk (that is, γ does not cover C). Suppose, to the contrary that
p1 = pk. Then at every vertex of the cycle C, one ray hits another ray. Since no three vertices of G
are collinear, none of the vertices of C is a vertex of G. However, the rays were created successively,
and the first ray along C cannot hit any previous ray along the cycle C. This contradiction proves
our claim.

The first vertex of γ is incident to some edge p0p1 of C. The edge p0p1 is undirected, by the
maximality of γ and by the fact that the maximal out-degree is one in H. Since the ray containing
p1p2 does not cross any edges of G, and does not pass through any vertices of G, it must be emitted
by p1. Consequently, p1 is a reflex vertex in C.
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A cell of a convex subdivision may be incident to vertices from one or more connected compo-
nents of G. If a cell is adjacent to vertices of only one component, then we say that is is adjacent
to one component ; otherwise we say that this cell is shared or adjacent to several components.

Lemma 3. Let G be a PSLG with no singletons and t ≥ 2 non-singleton components, and let H
be a convex subdivision of G. If S is the union of less than t components of G, then S adjacent to
a cell shared with some component of G− S.

Proof. We define the region R as the union of the closures of all cells incident to some vertices S
(region R need not be connected, and it may have holes). Let C be a cycle in the boundary of R.
By Lemma 2 is passes through a vertex v of G. By construction, v cannot be in S, hence it is a
vertex of G−S. Then vertex is v is incident to a cell in the interior of R, which in turn is incident
to a vertex in S.

The following properties of a convex subdivision will be instrumental for controlling the number
of new edges in our augmentation algorithm in Section 4.

Lemma 4. For every PSLG G with f bounded faces, r reflex vertices, and t non-singleton compo-
nents, every convex subdivision of G has h = f + r − t+ 1 cells.

Proof. Let B be the bounding box of H and let H0 = G ∪ B. Let Hi be the graph obtained by
shooting a ray ri in Hi−1, i = 1, . . . , r. Then H = Hr. Initially, H0 has f + 1 bounded faces. The
bounded faces of H0 may have holes. In fact, each connected component of G forms a hole in a
face of H0, hence the faces of H0 have a total of t holes.

Each ray ri either decreases the number of holes of Hi−1 by one or increases the number
of bounded faces Hi−1 by one. None of the faces of Hr have any holes, since they are convex.
Consequently, r− t rays each increases the number of bounded faces by one. It follows that H has
f + 1 + r − t = f + r − t+ 1 cells.

Lemma 4 implies that every convex subdivision of a PSLG G has the same number of cells.
Souvaine and Tóth [10] showed that f + r ≤ 2n − 2 for every PSLG on n vertices. Al-Jubeh et
al. [3] extended this result to the following.

Lemma 5 (Corollary in [3]). Let G be a PSLG with b bridges, s singleton, t non-singleton compo-
nents, f bounded faces, n vertices, r of which are reflex. Then

b+ t+ f + r + 2s ≤ 2n,

with equality if and only if G is a forest in which all vertices are reflex.

The combination of Lemmata 4 and 5 yield the following.

Corollary 6. Let G be a PSLG with n vertices, b bridges, s singletons, and t non-singleton com-
ponents. Then every convex subdivision of G has at most h ≤ 2n− 2s− b− 2t+ 1 cells.
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3 Preliminaries

The following two results are used in the proof of correctness of the augmentation algorithm. The
variant of Lemma 7 can be found in [6]. Here we give a short proof applicable to our situation.

Lemma 7. Let G = (V,E) be a connected PSLG that lies in a convex closed polygon P , and let w
be a point on the boundary of P . Then w sees an entire edge of G.

Proof. Let (v1, . . . , vk) be the sequence of vertices of G visible from w in counterclockwise order.
Since G is connected, w sees part of some edge ei in each wedge ∠(w, vi, vi+1) for 1 ≤ i ≤ k − 1.
If w does not see an entire edge ei, then ei is partially occluded by vertex vi or vi+1 (since we
assume general position of vertices in G, a vertex cannot occlude an entire edge). However, v1 and
vk cannot occlude any edge of G, since wv1 and wvk are tangents from w to ch(G); and each vertex
vi, 2 ≤ i ≤ k − 1, can occlude at most one of ei−1 and ei. By the pigeonhole principle, one of the
edges ei is not occluded, and so it is fully visible from w.

In some intermediate steps of our augmentation algorithm we allow multigraphs. Lemma 8
shows that the edge count derived for multigraphs are applicable to simple graphs.

Lemma 8 ([1]). Let G = G1 ∪ G2 be the a multigraph formed by two simple PSLGs such that G
is 2-edge connected. Let u and v be two vertices of G that are joined by an edge of G1 and an edge
of G2, e1 and e1, respectively. Then we can either eliminate e2 or substitute it by another f such
that G− e2 or G− e2 + f is 2-edge-connected. In the second case, f can be chosen such that it does
not create a new double edge.

Theorem 9 ([11]). Every connected PSLG with n ≥ 3 vertices in general position in the plane can
be augmented to a 2-edge-connected PSLG with at most b(2n− 2)/3c new edges. This bound is the
best possible.

4 Proof of Theorem 1

Proof. Let G be a PSLG on n ≥ 3 vertices in general positon. Let s be the number of singletons
and t the number of non-singleton components.

If the number of components in G is s + t ≤ b(2n + 1)/3c, then we augment G to 2-edge
connectivity as follows: First use s + t − 1 new edges to make the graph connected, and then use
b(2n − 2)/3c edges to make it 2-edge-connected by Theorem 9. The total number of new edges is
at most

(s+ t− 1) +

⌊
2n− 2

3

⌋
≤
⌊

2n+ 1

3

⌋
− 1 +

⌊
2n− 2

3

⌋
≤
⌊

4n− 4

3

⌋
.

In the remainder of the proof, we assume that s + t ≥ b(2n + 1)/3c + 1 = b(2n + 4)/3c. We
shall augment G successively with new edges, and we always denote by G′ the current graph. We
allow double edges, which will be removed at the end of the algorithm suing Lemma 8.

Notation. Let H denote a convex subdivision of G, and let h be the number of cells in H. Let
C = {Ci|i = 1 . . . h} denote a set of cells of H. Let Si denote a set of singletons in cell Ci. Let
T ⊆ G′ denote a set of non-singleton connected components in G′. Let c(i) ⊆ T , i = 1, . . . , h, denote
a number of components incident to cell Ci. Let Gik, k = 1, . . . , c(i) denote the k-th component
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adjacent to cell Ci, and let wik be an arbitrary vertex of Gik incident to Ci. Our algorithm will
create a simple polygon Pi in the each nonempty cell Ci, and we denote by E(Pi) the set of edges
of Pi. Let Br(G) and Br(G′) denote sets of bridges of graphs G and G′ respectively. Let b be the
number of bridges in G, that is, b = |Br(G)|.

(a) Graph (b) Step 1. Convex subdivision

(c) Step 2. Processing cells
(d) Step 3. Creating a double edge for each
bridge

Figure 2: Steps of the algorithm

Augment edges in the graph G according to the following algorithm:

1. Construct a convex subdivision H of G. Let C be the set of convex cells. Compute the T ,
c(i), Gik and wik for all i = 1, . . . , h and k = 1, . . . , c(i).

2. For each cell Ci ∈ C:

(a) If Si = ∅ and c(i) ≥ 2,

i. add an edge wi1wi2;

ii. double the edge wi1wi2 to create a cycle Pi.

(b) If |Si| = 1,

i. connect the unique vertex v ∈ Si to vertex wi1 with an edge vwi1;

ii. double the edge vwi1 to create a cycle Pi.

(c) If |Si| ≥ 2,

i. connect the vertices of Si into a simple polygon Pi (if Si = 2, we create a double
edge);

ii. pick an edge ab ∈ E(Pi) entirely visible from wi1, and replace edge ab with a new
path (a,wi1, b).

(d) For each vertex wik /∈ Pi, pick an edge ab ∈ E(Pi) entirely visible from wik, and replace
edge ab with a new path (a,wi1, b).
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(f) Si ≥ 2, Step 2d

Figure 3: Step 2 of the algorithm

(e) Update T , c(i), Gik and wik for all i = 1, . . . , h and k = 1, . . . , c(i).

3. Replace each bridge of G′ by a double edge.

4. Apply Lemma 8 successively to each double edge to obtain a simple graph.

This completes the description of the algorithm.

Proof of correctness. We fist show that each step of the algorithm is valid. In step 2, all new
edges lie within a cell Ci. In step 2(b)i we connect the singleton v to a vertex wi1 of an incident
component. Lemma 2 guarantees existence of a vertex wi1 adjacent to cell the Ci. In step 2(c)i we
connect all singletons in Ci by a simple polygon Pi, for example, Pi can be the Euclidean TSP of
the points. In steps 2(c)ii and step 2d, we incrementally expand an existing polygon by replacing
an edge ab with two new edges (a,w, b), where ab is entirely visible from w. The existence of an
edge ab is guaranteed by Lemma 7.

We now argue that the final graph G′ is 2-edge-connected. After step 2d, all components
incident to a cell Ci (both singletons and non-singleton components) merge into one component.
Each iteration of step 2 reduces the total number of components by c(i)−1. The graph G′ becomes
connected after step 2, since there are not isolated components in T by Lemma 3.

In step 3, we create a double edge for each bridge in Br(G′). Hence after step 3, each edge of G′

is part of some cycle. A (multi-)graph G′ is 2-edge-connected if and only if it is connected and each
edge is a part of some cycle. This proves that G′ is a 2-edge-connected multigraph after step 3. In
step 4, we eliminate all double edges using Lemma 8, and obtain a 2-edge-connected simple graph.

Bounding the number of new edges. In steps 2(b)i and 2(c)i, we add |Si| new edges in each
cell Ci; the total number of such edges is s = |S| =

∑h
i=1 |Si|. In steps 2(a)i, 2(b)ii, and 2(c)ii,
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we add one edge in each cell Ci; the total number of such edges is h. In steps 2(a)ii and 2d, we
increase the number of edges by one and decrease the total number of components of G′ by one;
the number of steps edges is t− 1. The total number of new edges added in step 2 is s+ h+ t− 1.

In step 3 we create a double edge for each bridge in Br(G′). Since we have added a cycle in each
cell Ci, no new bridges have been created, and we have Br(G′) = Br(G) after step 2. Consequently,
we add b new edges in step 3. By Lemma 8, step 4 does not increase the number of edges.

Altogether, the number of new edges is at most e′ ≤ s + h + (t − 1) + b. By Corollary 6, we
have h ≤ 2n− 2s− b− 2t+ 1. It follows that

e′ ≤ s+ h+ (t− 1) + b ≤ s+ (2n− 2s− b− 2t+ 1) + (t− 1) + b ≤ 2n− (s+ t).

Since, s+ t ≥ b(2n+ 4)/3c, we have

e′ ≤ 2n− (s+ t) ≤ 2n−
⌊

2n+ 4

3

⌋
≤
⌊

4n− 4

3

⌋
,

as claimed.
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