Computing the Rectilinear Center of Uncertain Points in the Plane*
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1 Introduction

In the real world, data is inherently uncertain due
to many facts, such as the measurement inaccuracy,
sampling discrepancy, resource limitation, and so
on. Problems on uncertain data have been studied
extensively, e.g., [1-3,5]. In this abstract, we con-
sider the one-center problem on uncertain points in
the plane with respect to the rectilinear distance.

Let P = {Py, P,...,P,} be a set of n uncertain
points in the plane, where each uncertain point P; €
P has m possible locations p;1, pi2, - - - , Pim and for
each 1 < j < m, p;; is associated with a probability
fij > 0 for P; being at p;; (which is independent of
other locations).

For any (deterministic) point p in the plane, we
use z, and y, to denote the z- and y-coordinates of
p, respectively. For any two points p and ¢, we use
d(p,q) to denote the rectilinear distance between p
and ¢, i.e., d(p,q) = |zp — zq| + |Yp — Yql-

Consider a point ¢ in the plane. For any uncer-
tain point P; € P, the expected rectilinear distance
between ¢ and P; is defined as

Ed(Pi,q) =) fij - d(pij a)-
j=1

Let Edmax(q) = maxp,ep EA(P;, q). A point ¢* is
called a rectilinear center of P if it minimizes the
value Edpax(¢*) among all points in the plane. Our
goal is to compute ¢*. Note that such a point ¢*
may not be unique, in which case we let ¢* denote
an arbitrary such point.

2  Our Results

We assume that for each uncertain point P; of P, its
m locations are given in two sorted lists, one by z-
coordinates and the other by y-coordinates. To the
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best of our knowledge, this problem has not been
studied before. We present an O(mn) time algo-
rithm. Since the input size of the problem is ©(nm),
our algorithm essentially runs in linear time, which
is optimal.

Further, our algorithm is applicable to the
weighted version of this problem in which each
P; € P has a weight w; > 0 and the weighted ez-
pected distance, i.e., w; - EA(P;, q), is considered. To
solve the weighted version, we can first reduce it
to the unweighted version by changing each f;; to
wi- fij foralll <i <mand1 < j < m,and then ap-
ply our algorithm for the unweighted version. The
running time is still O(mn).

3 Related Work

The problem of finding one-center among uncertain
points on a line has been considered in our previ-
ous work [7], where an O(nm) time algorithm was
given. An algorithm for computing k centers for gen-
eral k£ was also given in [7] with the running time
O(mnlogmn + nlognlogk). In fact, in [7] we con-
sidered the k-center problem under a more general
uncertain model where each uncertain point can ap-
pear in m intervals. We also studied the one-center
problem for uncertain points on tree networks in [6],
where a linear-time algorithm was proposed.

4 The Main Techniques

Consider any uncertain point P; € P and any (de-
terministic) point ¢ in the plane R?. We first show
that EA(P;, ¢q) is a convex piecewise linear function
with respect to ¢ € R?. More specifically, if we ex-
tend a horizontal line and a vertical line from each
location of P;, these lines partition the plane into a
grid G; of (m+1) x (m+1) cells. Then, Ed(F;, q) is
a linear function (in both the z- and y-coordinates
of q) in each cell of G;. In other words, Ed(F;,q)
defines a plane surface patch in 3D on each cell of



Figure 1. Illustrating the function Ed;(z,y) of an uncertain
point P; with m = 4.

G; (see Fig. 1). Then, finding ¢* € R? is equivalent
to finding a lowest point p* in the upper envelope
of the n graphs in 3D defined by Ed(F;,q) for all
P; € P (specifically, ¢* is the projection of p* onto
the zy-plane). As a basic computational geometry
problem, it may be of interest in its own right.

The problem of finding p* can be solved in
O(nm?) time by the linear-time algorithm for the
3D linear programming (LP) problem [4]. Indeed,
for a plane surface patch, we call the plane contain-
ing it the supporting plane. Let H be the set of the
supporting planes of the surface patches of the func-
tions Ed(P;,q) for all P; € P. Since each function
Ed(P;, q) is convex, p* is also a lowest point in the
upper envelope of the planes of H. Thus, finding p*
is an LP problem in R? and can be solved in O(|H|)
time [4]. Note that |H| = ©(nm?) since each grid
G; has (m + 1)? cells.

We give an O(mn) time algorithm without com-
puting the functions Ed(P;, q) explicitly. We use a
prune-and-search technique that extends Megiddo’s
technique for the 3D LP problem [4]. In each recur-
sive step, we prune at least n/32 uncertain points
from P in linear time. In this way, ¢* can be found
after O(logn) recursive steps.

Unlike Megiddo’s algorithm [4], each recursive
step of our algorithm itself is a recursive algorithm
of O(logm) recursive steps. Therefore, our algo-
rithm has O(logn) “outer” recursive steps and each
outer recursive step has O(logm) “inner” recursive
steps. In each outer recursive step, we maintain a
rectangle R that always contains ¢* in the zy-plane.
Initially, R is the entire plane. Each inner recursive
step shrinks R with the help of a decision algorithm.
The key idea is that after O(logm) steps, R is so

small that there is a set P* of at least n/2 uncertain
points such that R is contained inside a single cell
of the grid G; of each uncertain point P; of P* (i.e.,
R does not intersect the extension lines from the
locations of P;). At this point, with the help of our
decision algorithm, we can use a pruning procedure
similar to Megiddo’s algorithm [4] to prune at least
|P*|/16 > n/32 uncertain points of P*. Each outer
recursive step is carefully implemented so that it
takes only linear time.

In particular, our decision algorithm is for the
following decision problem. Let R be a rectangle in
the plane and R contains ¢* (but the exact location
of ¢* is unknown). Given an arbitrary line [ that
intersects R, the decision problem is to determine
which side of [ contains ¢*. Megiddo’s technique
[4] gave an algorithm that can solve our decision
problem in O(m?n) time. We give a decision algo-
rithm of O(mn) time. In fact, in order to achieve
the overall O(mn) time for computing ¢*, our deci-
sion algorithm has the following performance. For
each 1 < i < n, let a; and b; be the number of
columns and rows of the grid GG; intersecting R, re-
spectively. The running time of our decision algo-
rithm is bounded by O(>""_; (a; + b;)).
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