
Time-Space Trade-offs for Triangulating a Simple Polygon∗

Boris Aronov† Matias Korman‡ Simon Pratt§ André van Renssen¶‖ Marcel Roeloffzen¶‖

October 11, 2015

1 Introduction

An s-workspace algorithm is an algorithm that has read-only
access to the input data and uses only O(s) additional words
of space. We give a randomized s-workspace algorithm for
triangulating a simple n-gon P , for any s ∈ Ω(log n) ∩O(n),
in O(n2/s) expected time. Minor modifications of our
approach can be used to compute other similar structures
such as the shortest-path map (or tree) of any point p ∈ P ,
or to partition P by diagonals into sub-polygons of size Θ(s).
See arXiv preprint for details [1].

The first constrained-workspace algorithm for triangulating
simple polygons, due to Asano et al. [2], runs inO(n2) time us-
ing O(1) variables. An algorithm for triangulating monotone
polygons, by Asano and Kirkpatrick [3], requires O(n logs n)
time using O(s) variables. Despite extensive research on the
problem, neither time-space trade-off algorithm for general
simple polygons nor trade-off lower bounds are known.

2 Preliminaries

We use the s-workspace model of computation in which the
input data is given in a read-only array or a similar structure.
In our case, the input is a simple polygion P , given by the
list v1, v2, . . . , vn of its vertices in clockwise order around its
boundary. We assume that, given an index i, in constant
time we can access the coordinates of the vertex vi. We also
assume that the usual word RAM operations (say, given i,
j, k, finding the intersection point of the line vivj and the
horizontal line through vk) can be performed in constant time.

Besides read-only data, an s-workspace algorithm can
use only O(s) variables for internal computation. Implicit
memory consumption (such as the stack space needed in
recursive algorithms) is included in the size of the workspace.
We assume that each variable or pointer is stored in a data
word of Θ(log n) bits. Thus an s-workspace algorithm uses
O(s log n) bits of storage.

We study the problem of triangulating a simple n-gon P
in this model. A triangulation of P is a maximal crossing-free

∗Work on this paper by B.A. has been partially supported by NSF
Grants CCF-11-17336 and CCF-12-18791. M.K. was supported in
part by the ELC project (MEXT KAKENHI No. 24106008). S.P. was
supported in part by the Ontario Graduate Scholarship and The Natural
Sciences and Engineering Research Council of Canada.
†Polytechnic School of Engineering, New York University, Brooklyn,

USA. boris.aronov@nyu.edu
‡Tohoku University, Sendai, Japan. mati@dais.is.tohoku.ac.jp
§Cheriton School of Computer Science, University of Waterloo,

Canada. Simon.Pratt@uwaterloo.ca
¶National Institute of Informatics (NII), Tokyo, Japan. {andre,

marcel}@nii.ac.jp
‖JST, ERATO, Kawarabayashi Large Graph Project.

straight-line graph whose vertices are the vertices of P
and whose edges lie inside P . Unless s is very large, the
triangulation cannot be stored explicitly. Thus, the goal is
to report a triangulation of P in a write-only data structure.
After a value is reported, it cannot be accessed or modified.

3 Algorithm

Let π be the geodesic between v1 and vbn/2c. At high
level, our algorithm runs the procedure of Har-Peled [5] to
incrementally compute π in expected O(n2/s) time. We use
the edges of π to subdivide P into smaller problems that can
be solved recursively.

Vertices v1 and vbn/2c split the boundary of P into two
chains. We say vi is a top vertex if 1 < i < bn/2c and a
bottom vertex if bn/2c < i ≤ n; c is an alternating diagonal if
it connects a top and a bottom vertex. We will use alternating
diagonals to partition P into two parts. For simplicity of expo-
sition, given a diagonal d, we regard both components of P \ d
as closed sets (i.e., the diagonal belongs to both components).

Observation 1. Let c be a diagonal of P not adjacent to v1
or vbn/2c. Then v1 and vbn/2c belong to different components
of P \ c if and only if c is an alternating diagonal.

Corollary 1. Let c be a non-alternating diagonal of P . The
component of P \ c that contains neither v1 nor vbn/2c has
at most dn/2e vertices.

While triangulating the polygon, we maintain an alternat-
ing diagonal ac, such that the connected component of P \ ac
not containing vbn/2c has already been triangulated, and at
least one endpoint of ac is a vertex of π that has already been
computed by the shortest-path algorithm.

With these definitions in place, we can give an intuitive
description of our algorithm: we start by setting ac as
the degenerate diagonal from v1 to v1. We then use the
shortest-path algorithm of Har-Peled to walk along π until
we find a new alternating diagonal anew. At that moment
we pause the traversal of π, recursively triangulate the
subpolygons of P that have been created (and contain neither
v1 nor vbn/2c), update ac to the newly found alternating
diagonal, and then resume the shortest-path algorithm.

Although our approach is intuitively simple, we must
address several technical difficulties. Ideally, the set of
diagonals we walked along π is small enough to be stored
explicitly. However, if we do not find an alternating diagonal
in just a few steps (indeed, π may contain none!), we need
to use other diagonals. We also need to make sure that the
size of each recursive subproblem is reduced by a constant

1



v1

vbn/2c

ac

P1

Pbn/2c

Q2

R

Q0

w1 w2

Q1

vc = w0
w3

w4

Figure 1: Partitioning P into P1, Pbn/2c, R, Q1, . . ., Qk−2.
Two alternating diagonals are marked by thick red lines.

fraction, that we never exceed space bounds, and that no part
of the triangulation is reported more than once.

Let vc denote the closest to vbn/2c endpoint of ac that lies
onπ. Note that the subpolygon induced byac containing v1 has
already been triangulated. Let w0, . . . , wk be the portion of π
up to the next alternating diagonal. That is, π = (v1, . . . , vc =
w0, w1, . . . , wk, . . . , vbn/2c), where w1, . . . , wk−1 are of the
same type as vc, and wk is of different type (or wk = vbn/2c
if all vertices between vc and vbn/2c are of the same type).

The path w0w1 . . . wk partitions P into subpolygons: P1

is the subpolygon induced by ac that does not contain vbn/2c.
Similarly, Pbn/2c is the subpolygon induced by the alternating
diagonal wk−1wk that does not contain v1. For any i < k − 1,
Qi is the subpolygon induced by the non-alternating diagonal
wiwi+1 that contains neither v1 nor vbn/2c. Finally, R is the
remaining component of P , see Figure 1. Note that some
of these subpolygons may degenerate to a line segment (for
example, when wiwi+1 is an edge of the boundary of P ).

Lemma 1. R, Q1, Q2, . . ., Qk−2 have at most dn/2e+k ver-
tices each. If wk = vbn/2c, Pbn/2c has at most dn/2e vertices.

This result allows us to treat the easy case of our algorithm.
When k is small (say, a constant number of vertices), we pause
the shortest-path computation, explicitly store all vertices wi,
recursively triangulate R and Qi, i = 1, . . . , k − 2), update
ac to the edge wk−1wk, and resume computing π.

Handling the case where k is large is more involved. Note
that we do not know the value of k until we find the next
alternating diagonal, but we need not compute it explicitly.
We fix a parameter τ = sκi, where κ is a suitably chosen
absolute constant, and i is the current recursion level. We
say that the distance between two consecutive alternating
diagonals is long whenever we have encountered τ consecutive
vertices of π besides vc, all of the same type as vc. That is,
π = (v1, . . . , vc = w0, w1, . . . , wτ , . . . , vbn/2c) and vertices
w0, w1, . . . , wτ are all of the same type. In particular, the
vertices w0, . . . , wτ must form a convex chain (see Figure 1).
Rather than continue walking along π, we identify a vertex
u of P such that uwτ is an alternating diagonal. We then
partition P into τ − 2 subpolygons using the diagonals
ac, w0w1, w1w2, . . . , wτ−1wτ , and uwτ , similarly to the easy
case: P1 is the part induced by ac which does not contain vbn/2c,
Pbn/2c is the part induced by uwτ which does not contain v1,
Qi is the part induced by the edge wiwi+1, which contains
neither v1 nor vbn/2c, and R is the remaining component.

Lemma 2. There is a vertex u such that uwτ is an alternating
diagonal. It can be found inO(n) time usingO(1) space. More-
over, R, Q1, Q2, . . ., Qτ−2 has at most dn/2e+τ vertices each.

At a high level, our algorithm walks from v1 to vbn/2c. We
stop after walking τ steps or when we find an alternating
diagonal (whichever comes first). This generates several
subproblems of smaller complexity that are solved recursively.
Once the recursion is done we update ac to keep track of the
portion of P that has been triangulated, and continue walking
along π. The walking process ends when the walk reaches
vbn/2c. In this case, in addition to triangulating R and the
subpolygons Qi as usual, we must also triangulate Pbn/2c.

The algorithm at deeper levels of recursion is almost
identical. There are only three minor changes that need to
be introduced. First, we compare the size of the polygon
to τ = sκi rather than s. Recall that τ denotes the amount
of space available to the current instance of the algorithm. If
τ is comparable to n (say, 10τ ≥ n), then the whole polygon
fits into memory and can be triangulated in linear time [4].
Otherwise, we continue with the recursive approach.

For ease in handling the subproblems, at each step we also
indicate the vertex that fulfils the role of v1 (i.e., one of the ver-
tices from which the shortest path must be computed). Recall
that we have random access to the vertices of the input. Thus,
once we know which vertex takes the role of v1, we can also find
the vertex that plays the role of vbn/2c in constant time as well.

Theorem 1. Let P be a simple polygon of n vertices.
A triangulation of P can be computed in O(n2/s) expected
time using O(s) variables, for any s ∈ Ω(log n) ∩O(n).

References

[1] B. Aronov, M. Korman, S. Pratt, A. van Renssen, and
M. Roeloffzen. Time-space trade-offs for triangulating a simple
polygon. CoRR, abs/1509.07669, 2015.

[2] T. Asano, K. Buchin, M. Buchin, M. Korman, W. Mulzer,
G. Rote, and A. Schulz. Memory-constrained algorithms
for simple polygons. Computational Geometry: Theory and
Applications, 46(8):959–969, 2013.

[3] T. Asano and D. Kirkpatrick. Time-space tradeoffs for
all-nearest-larger-neighbors problems. In Proc. 13th Int. Conf.
Algorithms and Data Structures (WADS), pages 61–72, 2013.

[4] B. Chazelle. Triangulating a simple polygon in linear time.
Discrete & Computational Geometry, 6:485–524, 1991.

[5] S. Har-Peled. Shortest path in a polygon using sublinear
space. In Proceedings of the 31st International Symposium on
Compututational Geometry (SoCG), pages 111–125, 2015.

2


