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1. Introduction

From a theoretical point of view, finding collisions between a pair
of polygonal objects is relatively easy: We simply have to check
each triangle of one object against all triangles of the other object.
The running-time of this naive algorithm is quadratic in the number
of triangles. Obviously, a quadratic running-time for objects con-
sisting of millions of polygons is not an option in practice. Hence,
a lot of work has been spent developing sophisticated heuristics to
reduce the number of required triangle tests, for instance by using
bounding volume hierarchies to early prune parts of the objects that
cannot collide. For most cases and configurations these heuristics
work reasonably. Unfortunately, the quadratic bound on the num-
ber of intersections is not an overestimated upper bound, but it can
be really met by certain objects like the Chazelle polyhedron: Each
triangle of one Chazelle polyhedron can intersect all triangles of an-
other Chazelle polyhedron. Actually, this worst-case does not hap-
pen very often, but it is impossible to foresee in advance when it
happens. In physical simulations we will simply notice a little stut-
tering in the framerate, but in case of time-critical applications like
robotics or haptics, exceeding a certain time budget can damage
expensive devices or even hurt people.

In contrast to many publications about the heuristics used in
practical collision detection, the work on the theoretical side is rela-
tively sparse. There exists some observations about special objects
like convex polyhedra. For instance, [DK90] used a hierarchical
representation of convex polyhedra to show that the distance be-
tween two of them can be computed in O(log(| P |) · log(| Q |))
with | P | and | Q | being the number of faces of P and Q respec-
tively. If closest features of polyhedra based on voronoi regions
are considered [LC91], the worst-case running time for finding the
distance is linear. For translations of convex polyhedra the running
time isO(n

8
5 +ε) [ST95a] andO(n

5
3 +ε) for rotational movements of

at most the second degree. Later, a generalization for more flexible
movements in o(n2) have been made [ST95b]. For pairs of general
polygonal objects, [WKZ06] showed an expected running time of
O(n) or O(log(n)), depending on the overlap of the root bounding
volumes and the diminishing factor of the AABB hierarchy that
was used in the proof. However, the running-time depends on the
respective bounding volume hierarchy and on the configuration of
the objects, i.e. their position and orientation, not on the object it-
self. When using other object representations instead of polygons,

e.g. sphere packings, it it possible to prove a linear complexity for
the number of collision [WFZ13].

We define a simple geometric predicate that allows us to identify
objects that may lead to a quadratic number of intersecting poly-
gons like the Chazelle polyhedron. We use this predicate to prove a
linear worst-case bound on the number of collisions for objects that
fulfill it. Our predicate depends only on the objects themselves and
not on the configuration of a pair of objects, i.e. on their motion.
Moreover, our proof implies a novel algorithm for the collision de-
tection that almost realizes a linear worst-case running time. Our
algorithm can be easily parallelized: This results in an even con-
stant parallel running-time by using only a linear number of pro-
cessors. It does not require any complicated pre-processing or data
structures, hence, it is perfectly suited also for deformable objects.

2. Our Geometric Predicate

In this section, we present the theoretical basis of our novel linear
time collision detection method. Firstly, we consider only triangu-
lated objects. However, we will extend our definitions and theorems
to arbitrary polygons later. We start with the definition of our crite-
rion that allows us to prove a linear number of intersections for ob-
jects that fulfill it. It basically relays on a simple observation: What
makes the analysis of the number of potentially colliding triangles
so atrocious is mainly the embedding of 2D objects, the triangles,
into a 3D world, because it allows us to stack an infinite number of
2D triangles into a small 3D volume. Obviously, this is an artificial
scenario. Hence, our definition aims to avoid these worst case sce-
narios by, in principle, assigning a certain volume to each triangle.

Definition 2.1 Let t ∈ A be a triangle in a triangle set A and k >
0 some constant. Let s be a sphere with radius r

2 , where r is the
radius of the the smallest enclosing sphere of t. We call t k-free if
|{t j ∈ A|r ≤ r j and t j ∩ (t⊕ s) 6= ∅}| < k, where r j is radius of the
smallest enclosing sphere of triangle t j and t⊕ s is the Minkowski
sum of s and t.
Accordingly, we call the whole set of triangles A k-free, if all trian-
gles ti ∈ A are k-free.

In other words, a triangle t is k-free if there are less than k trian-
gles of A with a larger minimum enclosing sphere that intersect the
object that results from sweeping a sphere around t. In the follow-
ing, we will call those triangles larger triangles in order to improve
the readability. More precisely, let ti and t j be two triangles with
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minimum enclosing spheres si and s j. Let ri be the radius of si and
r j be the radius of s j. Then we say ti is larger than t j if ri ≥ r j.

The main idea behind the definition of our criterion is that each
triangle occupies a certain amount of its environment more or less
exclusively. This guarantees that a single triangle cannot intersect
too much larger triangles of a k-free triangle set:

Lemma 2.1 Let A be a k-free set of triangles and let t /∈ A be an
arbitrary triangle that is not included in A. Then t intersects at most
a constant number of larger triangles t j ∈ A. More precisely, the
number of intersections between t and larger triangles t j ∈ A is at
most 3k.

The proof of this lemma relays on a simple geometric observa-
tion:

Lemma 2.2 Let t be a triangle in 2D and c its minimum enclosing
circle with radius r. Then we need at most three circles of radius r

2
to completely cover t.

Proof Note, c is not necessarily the circumcircle of the triangle.
This is only true for acute triangles, i.e., all three angles are less
than 90◦. In this case, the center of the circle corresponds to the in-
tersection point of the three perpendicular bisectors and it is located
inside the triangle. In this case, we can subdivide t into six disjoint
sub-triangles that are all right triangles: Their hypotenuses are the
lines from the center of c to the vertices and the catheti are the sides
of the original triangle and the perpendicular bisectors. The length
of the hypotenuses of all the triangles is obviously r. Assume a cir-
cle with diameter r around each hypotenuse with the center located
in the center of the respective hypotenuse. Due to Thales’ theorem,
these circles have to pass through the intersections between the per-
pendicular bisectors and the original triangles’ sides, because the
sub-triangles are right triangles. Consequently, each of these three
circles with diameter r covers two of the sub-triangles completely.
Overall, we found a complete covering of t by three circles of ra-
dius r

2 . The proof for obtuse triangles is very similar and omitted
here.

With this lemma we can finish the proof of Lemma 2.1:

Proof Let c be the minimum enclosing circle of t in the plane that
is spanned by t and let r be the radius of c. We construct a circle
covering of t according to Lemma 2.2. We claim, that there are can
be at most k triangles ti ∈ A intersecting a circle of radius r

2 .
Assume that there are k+1 triangles intersecting a circle of radius
r
2 . We arbitrarily chose ta as on of of these triangles. By definition,
the radius ra of the minimum enclosing sphere of ta has at most the
same size as r. Hence, there have to be k triangles in ta⊕ sa, where
sa is a sphere with radius ra

2 . This is a contradiction to A is k-free.

Theorem 2.3 Let A and B be two k-free sets of triangles. Then the
total number of colliding triangles of A and B is in O(n), where n
is the number of triangles in A and B. More precisely, the number
of intersections is at most 3nk.

Proof We test each triangle of A against all larger triangles of B and
vice versa. For each of these tests we get at most 3k intersections
according to Lemma 2.1. Moreover, we find all pairs of colliding
triangles, because either of the triangles in a pair of intersecting
triangles must be larger. Overall, we get at most 3nk intersections.

Unfortunately, Lemma 2.2 does not necessarily hold for arbitrary
polygons. However, in order to get an upper bound we can cover the
whole circumcircle of the polygon with circles that have half of its
radius. This is possible with at most 7 of these spheres. This results
in a slightly worse upper bound for arbitrary polygon soups:

Theorem 2.4 Let A and B be two k-free sets, each consisting of n
polygons. Then the total number of colliding polygons of A and B
is in O(n). More precisely, the number of intersections is at most
9nk.

3. Applications and Future Work

We can use the theoretical foundation to define an algorithm that al-
most realizes this linear worst-case running-time. The main idea is
similar to the proof of Theorem 2.3: We test polygons only against
larger polygons. A hierarchical grid allows a fast identification of
possible colliding polygons. In principle, we simply double the cell
size in each level of the hierarchy and assign the polygons with
respect to their minimum enclosing sphere to the respective lev-
els. This hierarchical grid adds a logarithmic factor to the running
time. Fortunately, this factor depends only on the ratio between the
largest polygon to the smallest polygon in each object, but not on
the number of polygons. This algorithm can be easily parallelized
by simply checking all polygons in parallel.

In practice, for instance in time-critical collision detection, it is
essential that the upper bound on the number of collisions is as
tight as possible in order to not waste computation power. In our
predicate, we simply chose the radius r of the minimum enclosing
sphere of each polygon. However, all the proofs hold for all 0 <
ε ≤ r. Obviously, a smaller ε would result in smaller values for k.
On the other hand, we would require a larger number of circles to
cover the polygon. An optimal choice of ε remains an interesting
question.

Another avenue for future works would be to find a geometric
predicate for the opposite direction. Until now, our predicate de-
fines only a sufficient but not a necessary criterion, i.e., it is able
to exclude objects with a quadratic worst-case complexity like the
Chazelle polyhedron, but there can be also objects that do not fulfill
it but still have a linear number of collisions.
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