
1

On the Efficiency of Iterative Ordered Subset
Reconstruction Algorithms for Acceleration on GPUs

Fang Xu1, Klaus Mueller1,
Mel Jones2, Bettina Keszthelyi2, John Sedat2, David Agard2

1 Center for Visual Computing, Computer Science Department, Stony Brook University, NY
2 Howard Hughes Medical Institute and the Keck Advanced Microscopy Center,

Department of Biochemistry & Biophysics, University of California at San Francisco, CA
Author contact: mueller@cs.sunysb.edu

Abstract. Expectation Maximization (EM) and the Simultaneous Iterative
Reconstruction Technique (SIRT) are two iterative computed tomography
reconstruction algorithms often used when the data contain a high amount of
statistical noise, such as in functional imaging, or have been acquired from a
limited angular range, such as in electron microscopy. A popular mechanism to
increase the rate of convergence of these types of algorithms has been by
performing the correctional updates within subsets of the projection data. This
has given rise to the method of Ordered Subsets EM (OS-EM) and the
Simultaneous Algebraic Reconstruction Technique (SART). However, we find
that the special architecture and programming model of commodity graphics
hardware (GPU) adds extra constraints on the real-time performance of ordered
subsets algorithms. These counteract the speedup benefits of smaller subsets.
Here, we study this behavior in the context of algebraic reconstruction, but
similar trends are likely also observed with EM. We find that there are optimal
subset sizes in terms of wall-clock time speed, given pre-set quality criteria.

Keywords: Iterative reconstruction, Computed tomography, Commodity
graphics hardware, GPU

1 Introduction

The rapid growth in speed and capabilities of programmable commodity graphics
hardware boards (GPUs) has propelled high performance computing to the desktop,
spawning applications far beyond those used in interactive computer games. High-end
graphics boards, such as the NVIDIA 8800GTX, featuring 500 G Flops and more, are
now available for less than $500, and their performance is consistently growing at a
triple of Moore’s law that governs the growth of CPUs. Speedups of 1-2 orders of
magnitude have been reported by many researchers when mapping CPU-based
algorithms onto the GPU, in a wide variety of domains [15], including medical
imaging [1][10][12][14]. These impressive gains originate in the highly parallel
SIMD (Same Instruction Multiple Data) architecture of the GPU and its high-

2

bandwidth memory access. For example, one of the current top boards, the NIVIDIA
8800 GTX, has 128 such SIMD pipelines.

It is important to note, however, that the high speedup rates facilitated by GPUs do
not come easy. They require one to carefully map the target algorithm from the
single-threaded programming model of the CPU to the multi-threaded SIMD
programming model of the GPU where each such thread is dedicated to computing
one element of the (final or intermediate) result vector. Here, special attention must be
paid to keep all of these pipelines busy. While there are 128 SIMD processors on the
GPU, many more threads need to be created to hide data fetch latencies. It is
important to avoid both thread congestion (too many threads waiting for execution)
and thread starvation (not enough threads available to hide latencies). These
conditions are in addition to avoiding possible contingencies in local registers and
caches that will limit the overall number of threads permitted to run simultaneously.
For example, in [12], it was shown that a careful mapping of Feldkamp’s filtered
backprojection algorithm to the GPU yielded a 20x speedup over an optimized CPU
implementation, enabling cone-beam reconstructions of 5123 volumes from 360
projections at a rate of 52 projections/s, greatly exceeding the data production rates of
modern flat-panel X-ray scanners that have become popular in fully-3D medical
imaging.

The subject of this paper is to explore iterative reconstruction algorithms in terms
of these concerns. Iterative algorithms are different from analytical algorithms in that
they require frequent synchronization which interrupts the stream of data, requires
context switches, and limits the number of threads available for thread management.
Iterative algorithms, such as Expectation Maximization (EM) [11] or the
Simultaneous Iterative Reconstruction Technique (SIRT) [5] consist of three phases,
executed in an iterative fashion: (1) projection of the object estimate, (2) correction
factor computation (the updates), and (3) backprojection of the object estimate
updates. Each phase requires a separate pass. Flexibility comes from the concept of
ordered subsets, which have been originally devised mostly because they accelerated
convergence. The projection data is divided into groups, the subsets, and the data
within each of these groups undergo each of the three phases simultaneously. Here, it
was found that the larger the number of subsets (that is, the smaller the groups) the
faster is typically the convergence, but adversely also the higher the noise since there
is more potential for over-correction. In EM, the method of Ordered Subsets (OS-EM)
has become widely popular. OS-EM conceptually allows for any number of subsets,
but the limit with respect to noise has been noted already in the original work by
Hudson and Larkin [7]. For the algebraic scheme, embodied by SIRT, the
Simultaneous Algebraic Reconstruction Technique (SART) [2] is also an OS scheme,
but with each set only consisting of a single projection. In SART, the over-correction
noise is kept low by scaling the updates by a relaxation factor λ<1. Block-iterative
schemes for algebraic techniques have been proposed as well [3]. In fact, the original
ART [6] is the algorithm with the smallest subset size possible: a single data point
(that is, ray or projection pixel).

It is well known that SART converges much faster than SIRT, and a well chosen λ
can overcome the problems with streak artifacts and reconstruction noise, allowing it
produce good reconstruction results [1]. On the CPU, faster rate of convergence is
directly related to faster time performance. But, as we shall show, when it comes to

3

acceleration on a streaming architecture such as the GPU, SART is not the fastest
algorithm in terms of time performance. In fact, the time performance is inversely
related to the number subsets, making SIRT the faster scheme. This due to the
overhead incurred by the frequent context switching when repeatedly moving through
the three iterative phases: projection, correction, and backprojection. In our
experiments, we have found that there are specific subset sizes that optimize both
reconstruction quality and performance. Here we note, however, that the optimal
setting is likely application dependent, making the reasonable assumption that a
certain application will always incur similar types of data and thus an optimal
parameter setting, once found, will be close to optimal for all data within that
application setting. In that sense, our aim for this paper is not to provide an optimal
subset setting for all types of data, but rather to raise awareness to this phenomenon
and offer an explanation.

Our paper is structured as follows. First, in Section 2, we discuss iterative
algorithms in the context of ordered subsets, present a generalization of SIRT to OS
SIRT, and describe their acceleration on the GPU. Then, in Section 3, we study the
impact of subset size on GPU reconstruction performance and present the results of
our studies. Finally, Section 4 ends with conclusions.

2 Iterative Reconstruction and its Acceleration on GPUs

In the following discussion, we have only considered algebraic reconstruction
algorithms (SART, SIRT), but our arguments and conclusions readily extend to
expectation maximization (EM) algorithms as well since they are very similar with
respect to their mapping to GPUs [13].

2.1 Iterative Algebraic Reconstruction: Decomposition into Subsets

Most iterative CT techniques use a projection operator to model the underlying image
generation process at a certain viewing configuration (angle) φ. The result of this
projection simulation is then compared to the acquired image obtained at the same
viewing configuration. If scattering or diffraction effects are ignored, the modeling
consists of tracing a straight ray ri from each image element (pixel) and summing the
contributions of the (reconstruction) volume elements (voxels) vj. Here, the weight
factor wij determines the contribution of a vj to ri and is given by the interpolation
kernel used for sampling the volume. The projection operator is given as:

where M and N are the number of rays (one per pixel) and voxels, respectively. Since
GPUs are heavily optimized for computing and less for memory bandwidth,
computing the wij on the fly, via bilinear interpolation, is by far more efficient than

1
 1, 2,...,

N

i j ij
j

r v w i M
=

= ⋅ =∑ (1)

4

storing the weights in memory. The correction update for projection-based algebraic
methods is computed with the following equation:

(1) () ()

1

1

i s

N
k k ki i

j j i il lN
p OS l

il
l

p rv v r w v
w

λ+

∈ =

=

−= + = ⋅∑ ∑
∑

(2)

For the purpose of this paper, we have written this equation as a generalization of the
original SART and SIRT equations to support any number of subsets. Here, the pi are
the pixels in the M/S acquired images that form a specific (ordered) subset OSs where
1 ≤ s ≤ S and S is the number of subsets. The factor λ is the relaxation factor, which
will be chosen as a function of subset size (for SIRT where S=M, λ=1). The factor k is
the iteration count, where k is incremented each time all M projections have been
processed. In essence, all voxels vj on the path of a ray ri are updated (corrected) by
the difference of the projection ray ri and the acquired pixel pi, where this correction
factor is first normalized by the sum of weights encountered by the (back-projection)
ray ri. Since a number of back-projection rays will update a given vj, these corrections
need also be normalized by the sum of (correction) weights. For SIRT, these
normalization weights are trivial.

2.2 GPU-Accelerated Reconstruction: Threads and Passes

As mentioned, the NVIDIA 8800 GTX board has 128 generalized SIMD processors.
Up to very recently, the only way to interface with GPU hardware was via a suitable
graphics API, such as OpenGL or DirectX, and using CG [4] (or GLSL or HLSL) for
coding shader programs to be loaded and run on the SIMD fragment processors.
With the introduction of a new API, CUDA (Compute Unified Device Architecture)
[16], the GPU can now directly be perceived as a multi-processor. With CUDA, the
CG fragments become the CUDA (SIMD) computing threads and the shader
programs become the computing kernels. With the CUDA specifications, much more
information about the overall GPU architecture is now available, which helps
programmers to fine-tune thread and memory management to optimize performance,
viewing GPUs as the multi-processor architecture it really is. Reflecting this GPGPU
(General Programming on GPUs) trend, new GPU platforms have now become
available that do not even have graphics display capabilities, such as the NVIDIA
Tesla board. Although we used CG shaders to obtain the results presented in this
paper, similar symptoms also occur in CUDA where synchronization operations have
to be formally called to finish executions of all threads within a thread block to
resume the pipeline. After all, the underlying hardware and its architecture remain the
same, just the API is different.

A number of papers [12][13] have described in great detail how projection and
backprojection operations (phases 1 and 3) can be efficiently performed on the GPU.
Since the subject of this paper is mainly the impact of the iterative update schedule on
the management of computing threads, we shall express all operations in that context,
neglecting the API used for implementation (CG or CUDA). In this work, the 3D
object estimate is stored as a stack of slices (2D arrays). For projection a thread is

5

spawned for each target pixel, interpolating the slices according to the projective
viewing transform. For backprojection a thread is spawned for each target voxel and
projection image, interpolating the projection images according to the (same)
projective viewing transform. The computation of the correction factors and the
normalizations are simple vector operations.

The GPU memory model differentiates itself significantly from its CPU
counterpart, posing greater restrictions on memory access operations in order to
reduce latency and increase bandwidth. Here not only registers and local memory are
reduced or even completely eliminated – the global memory also allows only read
instructions during the computation. Further, the write operator can be executed only
at the end of a computation, when the thread (or fragment) is released from the
pipeline, to be blended with the target. Therefore, in general-purpose computing using
GPUs, computations are triggered by initializing a “pass”. A pass includes setting up
the computation region and attaching a kernel program to simultaneously apply
specific operations on every thread generated. The data is then streamed into the
pipeline, where the modification can be done only at the end of the pass. Cycles and
loops within a program can be implemented either inside the kernel or by running
multiple passes. The former is generally faster since evoking a rendering pass and
storing intermediate results in memory are costly, but there exists a register count
limit in the current hardware which prevents unconstrained use of loops in the kernel.

2.3 Ordered Subsets: GPU-Accelerated Reconstruction From Projections

Having described the relevant elements of the underlying GPU hardware we are now
ready to describe their impact in the context of subsets. Equation 2 above described
the generalization of algebraic reconstruction into an OS configuration. What is left to
define is how the subsets OSs are composed and how λ is chosen for given number of
subsets S. As specified above, OSs is the set of projections contained in each subset, to
be used in a pair of simultaneous forward projections and simultaneous backward
projections. In our application, each subset has the same number of projections, that is
|OSs|=|OS|, which is typical. Thus, the total number of projections M = |OS|·S. The
traditional way of filling a certain subset OSs is to select projections whose indices m
(1 ≤ m ≤ M) satisfy m mod S = s. This is what has been adopted in OS-EM. In
contrast, we use a randomized approach to fill the subsets, which we find yields better
results than the regular subset population approach. For this, we simply generate a
projection index list in random order and sequentially divide this list into S subsets.

The relaxation factor λ to be used for an arbitrary S is chosen by linearly
interpolating the optimal λSART for SART and the typical value of λ=1 used for SIRT
(we have found that λSART = 0.1 works well in practice):

1(1)() 1 1
1SART

S S N
N

λ λ −= − + ≤ ≤
−

 (3)

This scheme balances the smoothing effect achieved by the application of a set of
simultaneous projections with that obtained by using a lower relaxation factor: the
lesser projections in a subset, the lower the λ.

6

In the projection phase, each (pixel) thread computes its entry point, exit point, and
ray direction vector (or it looks these up from a texture) and interpolates the slices in
SIMD lock step. So, when the size of the subset increases (the OSs projections), more
threads are being spawned. In the backprojection, each voxel (thread) computes its
mapping to all OSs projections and interpolates its updates. Having a greater number
of projections in the set makes the kernel program longer and increases its efficiency.
This is in addition to the reduction of the number of context switches as OSs increases.

3 Experiments and Results

For the following experiments we used the 2D Barbara test image to evaluate the
performance of the different reconstruction schemes described above. We used this
image, popular in the image processing literature, since it has several coherent regions
with high-frequency detail, which present a well observable test for the fidelity of a
given reconstruction scheme. The target 2D image is obtained by cropping the
original image to an area of 256×256 pixels resolution. We obtained 180 projections
at uniform angular spacing of [-90˚,+90˚] in a parallel projection viewing geometry.
We also simulated a limited-angle scenario, where iterative algorithms are often
employed. Here, we produced 140 projections in the interval [-70˚, +70˚]. All
reconstructions used linear interpolation.

We observed that for a given number of iterations, reconstruction results from
SART achieved the best score but needed the longest time to compute. As motivated
above, the reason for this stems from the fact that SART requires more rendering
passes on the GPU. SIRT, on the other hand, requires the fewest number of passes per
iteration and thus completes it the fastest, but the speed of convergence is the slowest,
that is, a greater number of iterations are needed. Again, we note that these findings
are specific to GPU-based reconstructions, since here the number of passes is
particularly important. A CPU-based reconstruction, in contrast, would be much less
sensitive to this relationship since the cost here is dominated by the elementary
operations of projection/backprojection, which are massively accelerated on GPUs.

We shall now explore if there is an optimum in terms of the number of subsets.
Such an optimal subset size could then be used to generate the best reconstruction in
the smallest amount of (wall-clock) time. We will use the cross-correlation coefficient
(CC) as the metric to measure the degree of similarity between the original image and
its reconstruction:

2 2

()()

() ()

j r j o
j

j r j o
j j

r o

CC
r o

μ μ

μ μ

− −

=
− −

∑

∑ ∑
 (4)

where j counts the number of image pixels, rj and oj are pixels in the reconstruction
and original image, respectively, and the μ factors are their mean values. Figures 1
and 2 show the reconstruction results, for both the full and the limited angle case, for
a fixed CC (comparing reconstruction with the original) which means that all
reconstructed images are nearly identical to each other (in terms of statistical error).

7

There we observe that the smaller the number of subsets, the greater the number of
iterations that are required to reach the set convergence threshold. As mentioned
above, the wall clock time on the CPU is directly related to the number of iterations,
so SIRT is roughly 87/6=14 times slower than SART on the CPU. However, due to
the mentioned overhead involved in the GPU-based framework, different wall-clock
times are produced with a GPU implementation. We measured that SART on the
GPU takes nearly twice as long as SIRT and using 10 subsets (5 for the limited angle
case with fewer projections) achieves the best timing performance compared to the
other subset configurations.

More insight can be gained by studying the development of the CC metric both in
terms of the number of iterations and the actual wall clock time. Figure 3 shows plots
for both. In the top graph we observe that the smaller the number of subsets, the
slower the speed of convergence in terms of CC. At the upper limit is SART which
converges fastest. While this relationship has been known, the plot on the bottom is
more novel. It reveals that there is a certain subset number for which the highest CC
value can be maintained, consistently at all times. In the current experiment (the
Barbara image reconstructed from 180 (140) evenly distributed projections), this
number is 10 (5). However, this optimal number may vary in different reconstruction
scenarios and applications.

Our next experiment deals with the composition of the subsets themselves. Figure
4 shows the performance of OS SIRT with three different numbers of subsets (here,
10, 20, and SART) using a regular interleaved projection selection (as it has been
suggested for OS-EM) and our proposed random projection selection scheme. The
results show that the random approach always performs better than the regular
method, and the difference margin increases when more subsets are used, with the
largest difference obtained with SART.

The tendency of SART to produce reconstructions noisier than the original and that
of SIRT to produce reconstructions smoother than the original is also demonstrated in
Figure 5, where we show the renditions of a line profile across another area of the
Barbara image (only for the original image and reconstructions with SART and
SIRT).

Finally, Figure 6 shows the results obtained with a medical dataset, reconstructed
with the same framework. The projection data were obtained by a high-quality X-ray
simulation from a CT dataset, labeled ‘Original’ in Figure 6. Similar outcomes are
observed: a subset size of 10 achieved the best wall-clock time performance. Here we
used the R-factor as the error metric, where the difference between the simulated and
the scanner projections (the data) is divided by the sum of all pixels values from the
scanner projections. We observe that OS SIRT with 10 subsets of 18 projections each
reaches a preset R-factor=0.007 26% faster than SIRT and 86% faster than SART.

4 Conclusions

We have shown that iterative reconstruction methods used in medical imaging, such
as EM or SIRT, have special properties when it comes to their acceleration on GPUs.
While splitting the data used within each iterative update into a larger number of

8

smaller subsets has long been known to offer greater convergence and computation
speed on the CPU, it is vastly slower on the GPU. This was a direct consequence of
the thread fill rate in the projection and backprojection phase. Larger subsets spawn a
greater number of threads, which keeps the pipelines busier and also reduces the
latencies incurred by a greater number of passes and context switches. Seeking to
identify the optimal subset size and number, we then generalized the popular
Simultaneous Iterative Reconstruction Technique (SIRT) to OS SIRT. This
generalization allows researchers to optimize the wall clock time required for a GPU-
accelerated reconstruction, enabling high-quality reconstructions to be obtained faster,
taking full account of the particularities associated with the GPU architecture and
programming model. This OS SIRT can optimize the reconstruction performance by
choosing the optimal number of subsets into which the projections are distributed (in
random order). Here, it is likely that this optimal number of subsets will vary
depending on the domain application and the general reconstruction scenario. Thus, in
order to identify the optimal subset number for a new application setting, to be used
later for repeated reconstructions within this application setting, one may simply run a
series of experiments with different numbers of subsets and use the setting with the
shortest wall clock time required for the desired reconstruction quality. In fact, such
strategies are typical for GPU-accelerated general-purpose computing applications
(GPGPU). For example, the GPU bench was designed to run a vast benchmark suite
[17] to determine the capabilities of the tested hardware. Our findings with SIRT
readily extend to EM since the two methods have, as far as the computations are
concerned, similar operations and overhead. In future work, we plan to devise a more
sophisticated λ schedule, which we believe will positively affect the reconstruction
performance. It will most probably shift the optimal subset size to some degree, but it
will not negate the general finding of this paper, which is that larger subsets are to be
favored.

Although we have used CG shaders to obtain the results presented in this paper,
similar symptoms also occur in CUDA where synchronization operations have to be
formally called to finish executions of all threads within a thread block to resume the
pipeline. In general, the underlying hardware, its architecture, and the overall thread
management remain the same – just the API is different, enabling a tighter control
over the threads. In future work, we plan to study the reported effects to a more
detailed extent in CUDA, to determine if a shift in the performance-optimal subset
configuration occurs. In fact, this is likely to happen for every new generation of the
hardware. The main goal of this paper was not to recommend a specific optimal
number of subsets, but to raise awareness to these interesting platform-related
phenomena.

References

[1] A. Andersen, "Algebraic reconstruction in CT from limited views," IEEE Trans. on
Medical Imaging, 8:50-55, 1989.

[2] A. Andersen, A. Kak, "Simultaneous Algebraic Reconstruction Technique (SART): a
superior implementation of the ART algorithm," Ultrasonic Imaging, 6:81-94, 1984.

9

[3] Y. Censor, "On block-iterative maximization," J. Information and Optimization Science,
8:275-291, 1987.

[4] R. Fernando, M. Kilgard, The Cg Tutorial: The Definitive Guide to Programmable Real-
Time Graphics, Addison-Wesley Professional, 2003.

[5] P. Gilbert, "Iterative methods for the 3D reconstruction of an object from projections," J.
Theoretical Biology, 76:105-117, 1972.

[6] R. Gordon, R. Bender, G. Herman, "Algebraic reconstruction techniques (ART) for three-
dimensional electron microscopy and X-ray photography," J. Theoretical Biology,
29:471-481, 1970.

[7] H. Hudson, R. Larkin, "Accelerated Image Reconstruction Using Ordered Subsets of
Projection Data," IEEE Trans. Medical Imaging, 13:601-609, 1994.

[8] J. Kole, F. Beekman, "Evaluation of accelerated iterative x-ray CT image reconstruction
using floating point graphics hardware", Physics in Medicine and Biology, 51:875-889,
2006.

[9] J. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kruger, A.E. Lefohn, and T. Purcel,
"A Survey of General-Purpose Computation on Graphics Hardware," Eurographics 2005,
pp. 21-51, 2005.

[10] T. Schiwietz, T. Chang, P. Speier and R. Westermann, “MR image reconstruction using
the GPU,” Proc. SPIE 6142, pp. 1279–90, 2006.

[11] L. Shepp, Y. Vardi, "Maximum likelihood reconstruction for emission tomography,"
IEEE Trans. on Medical Imaging, 1:113-122, 1982.

[12] F. Xu, K. Mueller, "Real-Time 3D Computed Tomographic Reconstruction Using
Commodity Graphics Hardware," Physics in Medicine and Biology, 52:3405–3419, 2007.

[13] F. Xu, K. Mueller, "Accelerating popular tomographic reconstruction algorithms on
commodity PC graphics hardware," IEEE Trans. on Nuclear Science, 52:654-663, 2005.

[14] X. Xue, A. Cheryauka, D. Tubbs, “Acceleration of fluoro-CT reconstruction for a mobile
C-Arm on GPU and FPGA hardware: a simulation study,” Proc. SPIE 6142, pp. 1494–
501, 2006.

[15] http://www.gpgpu.org
[16] http://www.nvidia.com/object/cuda_develop.html
[17] http://graphics.stanford.edu/projects/gpubench

10

Fig. 1. Reconstructions obtained with various subset sizes for a fixed CC=0.95 and 180
projections in an angular range of 180˚. We observe that OS SIRT with 10 subsets of 18
projections each reaches this fixed CC value 12% faster than SIRT and 50% faster than SART.

Fig. 2. Reconstructions obtained with various subset sizes for a fixed CC=0.93 and 140
projections in an angular range of 140˚. We observe that OS SIRT with 5 subsets of 28
projections each reaches this set CC value 2% faster than SIRT and 84% faster than SART.

Original SIRT OS SIRT 10

iterations 87 47
time (s) 5.89 5.17

OS SIRT 20 OS SIRT 60 SART

32 15 6
11.28 9.9 10.28

Original SIRT OS-SIRT 5

iterations 75 56
time (s) 2.46 2.43

OS-SIRT 20 OS-SIRT 70 SART

30 15 12
8.96 4.53 15.84

11

Fig. 4. CC values for regular OS SIRT and randomized OS SIRT.

0.9

0.905

0.91

0.915

0.92

0.925

0.93

0.935

0.94

0.945

0.95

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Iteration

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

SIRT-10

SIRT-10-ran

SIRT-20

SIRT-20-ran

SART

SART-ran

Fig. 3. (top) CC vs. number of iterations; (bottom): CC vs. wall clock time. We observe that
while SART achieves the best results with the smallest number of iterations, OS SIRT achieves
it in the smallest amount of time, within a GPU-accelerated framework.

.

0.7

0.75

0.8

0.85

0.9

0.95

1

0 1 2 3 4 5 6 7 8

Reconstruction timings (second)

C
ro

ss
 C

or
re

la
tio

n-
C

oe
ff

ic
ie

nt

SIRT
OS-10
OS-20
OS-60
SART

0.7

0.75

0.8

0.85

0.9

0.95

1

1 10 19 28 37 46 55 64 73 82 91 100

Iteration

C
ro

ss
 C

or
re

la
tio

n-
C

oe
ffi

ci
en

t

SIRT
OS-10
OS-20
OS-60
SART

12

180

182

184

186

188

190

192

194

196

198

200

1

Original
SIRT
SART

Fig. 5. Line profiles of the image background for SART, SIRT, and the original Barbara image.

.

Original SIRT OS-SIRT 3

iterations / time (s) 100 / 18.86 85 / 17.69

OS-SIRT 10 OS-SIRT 60 SART

54 / 13.99 16 / 79.9 6 / 102.79

Fig. 6. Reconstructed baby head using high-quality simulated projection data of the volume
labeled ‘Original’. Results were obtained with various subset sizes for a fixed R-factor = 0.007
and 180 projections in an angular range of 180˚. OS SIRT with 10 subsets of 18 projections
each reaches this set R-factor value 26% faster than SIRT and 86% faster than SART.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

