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Abstract. Expectation Maximization (EM) and the Simultaneous Iterative 
Reconstruction Technique (SIRT) are two iterative computed tomography 
reconstruction algorithms often used when the data contain a high amount of 
statistical noise, such as in functional imaging, or have been acquired from a 
limited angular range, such as in electron microscopy. A popular mechanism to 
increase the rate of convergence of these types of algorithms has been by 
performing the correctional updates within subsets of the projection data. This 
has given rise to the method of Ordered Subsets EM (OS-EM) and the 
Simultaneous Algebraic Reconstruction Technique (SART). However, we find 
that the special architecture and programming model of commodity graphics 
hardware (GPU) adds extra constraints on the real-time performance of ordered 
subsets algorithms. These counteract the speedup benefits of smaller subsets. 
Here, we study this behavior in the context of algebraic reconstruction, but 
similar trends are likely also observed with EM. We find that there are optimal 
subset sizes in terms of wall-clock time speed, given pre-set quality criteria.          
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1 Introduction 

The rapid growth in speed and capabilities of programmable commodity graphics 
hardware boards (GPUs) has propelled high performance computing to the desktop, 
spawning applications far beyond those used in interactive computer games. High-end 
graphics boards, such as the NVIDIA 8800GTX, featuring 500 G Flops and more, are 
now available for less than $500, and their performance is consistently growing at a 
triple of Moore’s law that governs the growth of CPUs. Speedups of 1-2 orders of 
magnitude have been reported by many researchers when mapping CPU-based 
algorithms onto the GPU, in a wide variety of domains [15], including medical 
imaging [1][10][12][14]. These impressive gains originate in the highly parallel 
SIMD (Same Instruction Multiple Data) architecture of the GPU and its high-
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bandwidth memory access. For example, one of the current top boards, the NIVIDIA 
8800 GTX, has 128 such SIMD pipelines.  

It is important to note, however, that the high speedup rates facilitated by GPUs do 
not come easy. They require one to carefully map the target algorithm from the 
single-threaded programming model of the CPU to the multi-threaded SIMD 
programming model of the GPU where each such thread is dedicated to computing 
one element of the (final or intermediate) result vector. Here, special attention must be 
paid to keep all of these pipelines busy. While there are 128 SIMD processors on the 
GPU, many more threads need to be created to hide data fetch latencies. It is 
important to avoid both thread congestion (too many threads waiting for execution) 
and thread starvation (not enough threads available to hide latencies). These 
conditions are in addition to avoiding possible contingencies in local registers and 
caches that will limit the overall number of threads permitted to run simultaneously. 
For example, in [12], it was shown that a careful mapping of Feldkamp’s filtered 
backprojection algorithm to the GPU yielded a 20x speedup over an optimized CPU 
implementation, enabling cone-beam reconstructions of 5123 volumes from 360 
projections at a rate of 52 projections/s, greatly exceeding the data production rates of 
modern flat-panel X-ray scanners that have become popular in fully-3D medical 
imaging.     

The subject of this paper is to explore iterative reconstruction algorithms in terms 
of these concerns. Iterative algorithms are different from analytical algorithms in that 
they require frequent synchronization which interrupts the stream of data, requires 
context switches, and limits the number of threads available for thread management. 
Iterative algorithms, such as Expectation Maximization (EM) [11] or the 
Simultaneous Iterative Reconstruction Technique (SIRT) [5] consist of three phases, 
executed in an iterative fashion: (1) projection of the object estimate, (2) correction 
factor computation (the updates), and (3) backprojection of the object estimate 
updates. Each phase requires a separate pass. Flexibility comes from the concept of 
ordered subsets, which have been originally devised mostly because they accelerated 
convergence. The projection data is divided into groups, the subsets, and the data 
within each of these groups undergo each of the three phases simultaneously. Here, it 
was found that the larger the number of subsets (that is, the smaller the groups) the 
faster is typically the convergence, but adversely also the higher the noise since there 
is more potential for over-correction. In EM, the method of Ordered Subsets (OS-EM) 
has become widely popular. OS-EM conceptually allows for any number of subsets, 
but the limit with respect to noise has been noted already in the original work by 
Hudson and Larkin [7]. For the algebraic scheme, embodied by SIRT, the 
Simultaneous Algebraic Reconstruction Technique (SART) [2] is also an OS scheme, 
but with each set only consisting of a single projection. In SART, the over-correction 
noise is kept low by scaling the updates by a relaxation factor λ<1. Block-iterative 
schemes for algebraic techniques have been proposed as well [3]. In fact, the original 
ART [6] is the algorithm with the smallest subset size possible: a single data point 
(that is, ray or projection pixel).  

It is well known that SART converges much faster than SIRT, and a well chosen λ 
can overcome the problems with streak artifacts and reconstruction noise, allowing it 
produce good reconstruction results [1]. On the CPU, faster rate of convergence is 
directly related to faster time performance. But, as we shall show, when it comes to 



3 

acceleration on a streaming architecture such as the GPU, SART is not the fastest 
algorithm in terms of time performance. In fact, the time performance is inversely 
related to the number subsets, making SIRT the faster scheme. This due to the 
overhead incurred by the frequent context switching when repeatedly moving through 
the three iterative phases: projection, correction, and backprojection. In our 
experiments, we have found that there are specific subset sizes that optimize both 
reconstruction quality and performance. Here we note, however, that the optimal 
setting is likely application dependent, making the reasonable assumption that a 
certain application will always incur similar types of data and thus an optimal 
parameter setting, once found, will be close to optimal for all data within that 
application setting. In that sense, our aim for this paper is not to provide an optimal 
subset setting for all types of data, but rather to raise awareness to this phenomenon 
and offer an explanation.  

Our paper is structured as follows. First, in Section 2, we discuss iterative 
algorithms in the context of ordered subsets, present a generalization of SIRT to OS 
SIRT, and describe their acceleration on the GPU. Then, in Section 3, we study the 
impact of subset size on GPU reconstruction performance and present the results of 
our studies. Finally, Section 4 ends with conclusions.  

2 Iterative Reconstruction and its Acceleration on GPUs 

 
In the following discussion, we have only considered algebraic reconstruction 
algorithms (SART, SIRT), but our arguments and conclusions readily extend to 
expectation maximization (EM) algorithms as well since they are very similar with 
respect to their mapping to GPUs [13].  

2.1   Iterative Algebraic Reconstruction: Decomposition into Subsets  

Most iterative CT techniques use a projection operator to model the underlying image 
generation process at a certain viewing configuration (angle) φ. The result of this 
projection simulation is then compared to the acquired image obtained at the same 
viewing configuration. If scattering or diffraction effects are ignored, the modeling 
consists of tracing a straight ray ri from each image element (pixel) and summing the 
contributions of the (reconstruction) volume elements (voxels) vj. Here, the weight 
factor wij determines the contribution of a vj to ri and is given by the interpolation 
kernel used for sampling the volume. The projection operator is given as:  

where M and N are the number of rays (one per pixel) and voxels, respectively. Since 
GPUs are heavily optimized for computing and less for memory bandwidth, 
computing the wij on the fly, via bilinear interpolation, is by far more efficient than 
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storing the weights in memory. The correction update for projection-based algebraic 
methods is computed with the following equation: 
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For the purpose of this paper, we have written this equation as a generalization of the 
original SART and SIRT equations to support any number of subsets. Here, the pi are 
the pixels in the M/S acquired images that form a specific (ordered) subset OSs where 
1 ≤ s ≤ S and S is the number of subsets. The factor λ is the relaxation factor, which 
will be chosen as a function of subset size (for SIRT where S=M, λ=1). The factor k is 
the iteration count, where k is incremented each time all M projections have been 
processed. In essence, all voxels vj on the path of a ray ri are updated (corrected) by 
the difference of the projection ray ri and the acquired pixel pi, where this correction 
factor is first normalized by the sum of weights encountered by the (back-projection) 
ray ri. Since a number of back-projection rays will update a given vj, these corrections 
need also be normalized by the sum of (correction) weights. For SIRT, these 
normalization weights are trivial.     

2.2   GPU-Accelerated Reconstruction: Threads and Passes   

As mentioned, the NVIDIA 8800 GTX board has 128 generalized SIMD processors. 
Up to very recently, the only way to interface with GPU hardware was via a suitable 
graphics API, such as OpenGL or DirectX, and using CG [4] (or GLSL or HLSL) for 
coding shader programs to be loaded and run on the SIMD fragment processors. 
With the introduction of a new API, CUDA (Compute Unified Device Architecture) 
[16], the GPU can now directly be perceived as a multi-processor. With CUDA, the 
CG fragments become the CUDA (SIMD) computing threads and the shader 
programs become the computing kernels. With the CUDA specifications, much more 
information about the overall GPU architecture is now available, which helps 
programmers to fine-tune thread and memory management to optimize performance, 
viewing GPUs as the multi-processor architecture it really is. Reflecting this GPGPU 
(General Programming on GPUs) trend, new GPU platforms have now become 
available that do not even have graphics display capabilities, such as the NVIDIA 
Tesla board. Although we used CG shaders to obtain the results presented in this 
paper, similar symptoms also occur in CUDA where synchronization operations have 
to be formally called to finish executions of all threads within a thread block to 
resume the pipeline. After all, the underlying hardware and its architecture remain the 
same, just the API is different.  

A number of papers [12][13] have described in great detail how projection and 
backprojection operations (phases 1 and 3) can be efficiently performed on the GPU. 
Since the subject of this paper is mainly the impact of the iterative update schedule on 
the management of computing threads, we shall express all operations in that context, 
neglecting the API used for implementation (CG or CUDA). In this work, the 3D 
object estimate is stored as a stack of slices (2D arrays). For projection a thread is 
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spawned for each target pixel, interpolating the slices according to the projective 
viewing transform. For backprojection a thread is spawned for each target voxel and 
projection image, interpolating the projection images according to the (same) 
projective viewing transform. The computation of the correction factors and the 
normalizations are simple vector operations.   

The GPU memory model differentiates itself significantly from its CPU 
counterpart, posing greater restrictions on memory access operations in order to 
reduce latency and increase bandwidth. Here not only registers and local memory are 
reduced or even completely eliminated – the global memory also allows only read 
instructions during the computation. Further, the write operator can be executed only 
at the end of a computation, when the thread (or fragment) is released from the 
pipeline, to be blended with the target. Therefore, in general-purpose computing using 
GPUs, computations are triggered by initializing a “pass”. A pass includes setting up 
the computation region and attaching a kernel program to simultaneously apply 
specific operations on every thread generated. The data is then streamed into the 
pipeline, where the modification can be done only at the end of the pass. Cycles and 
loops within a program can be implemented either inside the kernel or by running 
multiple passes. The former is generally faster since evoking a rendering pass and 
storing intermediate results in memory are costly, but there exists a register count 
limit in the current hardware which prevents unconstrained use of loops in the kernel.   

2.3  Ordered Subsets: GPU-Accelerated Reconstruction From Projections 

Having described the relevant elements of the underlying GPU hardware we are now 
ready to describe their impact in the context of subsets. Equation 2 above described 
the generalization of algebraic reconstruction into an OS configuration. What is left to 
define is how the subsets OSs are composed and how λ  is chosen for given number of 
subsets S. As specified above, OSs is the set of projections contained in each subset, to 
be used in a pair of simultaneous forward projections and simultaneous backward 
projections. In our application, each subset has the same number of projections, that is 
|OSs|=|OS|, which is typical. Thus, the total number of projections M = |OS|·S. The 
traditional way of filling a certain subset OSs is to select projections whose indices m 
(1 ≤ m ≤ M) satisfy m mod S = s. This is what has been adopted in OS-EM. In 
contrast, we use a randomized approach to fill the subsets, which we find yields better 
results than the regular subset population approach. For this, we simply generate a 
projection index list in random order and sequentially divide this list into S subsets.  

The relaxation factor λ to be used for an arbitrary S is chosen by linearly 
interpolating the optimal λSART  for SART and the typical value of λ=1 used for SIRT 
(we have found that λSART  = 0.1 works well in practice): 

1( 1)( ) 1         1
1SART

S S N
N

λ λ −= − + ≤ ≤
−

 (3) 

This scheme balances the smoothing effect achieved by the application of a set of 
simultaneous projections with that obtained by using a lower relaxation factor: the 
lesser projections in a subset, the lower the λ.     



6 

In the projection phase, each (pixel) thread computes its entry point, exit point, and 
ray direction vector (or it looks these up from a texture) and interpolates the slices in 
SIMD lock step. So, when the size of the subset increases (the OSs projections), more 
threads are being spawned. In the backprojection, each voxel (thread) computes its 
mapping to all OSs projections and interpolates its updates. Having a greater number 
of projections in the set makes the kernel program longer and increases its efficiency. 
This is in addition to the reduction of the number of context switches as OSs increases. 

3 Experiments and Results 

For the following experiments we used the 2D Barbara test image to evaluate the 
performance of the different reconstruction schemes described above. We used this 
image, popular in the image processing literature, since it has several coherent regions 
with high-frequency detail, which present a well observable test for the fidelity of a 
given reconstruction scheme. The target 2D image is obtained by cropping the 
original image to an area of 256×256 pixels resolution. We obtained 180 projections 
at uniform angular spacing of [-90˚,+90˚] in a parallel projection viewing geometry. 
We also simulated a limited-angle scenario, where iterative algorithms are often 
employed. Here, we produced 140 projections in the interval [-70˚, +70˚]. All 
reconstructions used linear interpolation. 

We observed that for a given number of iterations, reconstruction results from 
SART achieved the best score but needed the longest time to compute. As motivated 
above, the reason for this stems from the fact that SART requires more rendering 
passes on the GPU. SIRT, on the other hand, requires the fewest number of passes per 
iteration and thus completes it the fastest, but the speed of convergence is the slowest, 
that is, a greater number of iterations are needed. Again, we note that these findings 
are specific to GPU-based reconstructions, since here the number of passes is 
particularly important. A CPU-based reconstruction, in contrast, would be much less 
sensitive to this relationship since the cost here is dominated by the elementary 
operations of projection/backprojection, which are massively accelerated on GPUs.   

We shall now explore if there is an optimum in terms of the number of subsets. 
Such an optimal subset size could then be used to generate the best reconstruction in 
the smallest amount of (wall-clock) time. We will use the cross-correlation coefficient 
(CC) as the metric to measure the degree of similarity between the original image and 
its reconstruction: 
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where j counts the number of image pixels, rj and oj are pixels in the reconstruction 
and original image, respectively, and the μ factors are their mean values. Figures 1 
and 2 show the reconstruction results, for both the full and the limited angle case, for 
a fixed CC (comparing reconstruction with the original) which means that all 
reconstructed images are nearly identical to each other (in terms of statistical error). 
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There we observe that the smaller the number of subsets, the greater the number of 
iterations that are required to reach the set convergence threshold. As mentioned 
above, the wall clock time on the CPU is directly related to the number of iterations, 
so SIRT is roughly 87/6=14 times slower than SART on the CPU. However, due to 
the mentioned overhead involved in the GPU-based framework, different wall-clock 
times are produced with a GPU implementation. We measured that SART on the 
GPU takes nearly twice as long as SIRT and using 10 subsets (5 for the limited angle 
case with fewer projections) achieves the best timing performance compared to the 
other subset configurations.   

More insight can be gained by studying the development of the CC metric both in 
terms of the number of iterations and the actual wall clock time. Figure 3 shows plots 
for both. In the top graph we observe that the smaller the number of subsets, the 
slower the speed of convergence in terms of CC. At the upper limit is SART which 
converges fastest. While this relationship has been known, the plot on the bottom is 
more novel. It reveals that there is a certain subset number for which the highest CC 
value can be maintained, consistently at all times. In the current experiment (the 
Barbara image reconstructed from 180 (140) evenly distributed projections), this 
number is 10 (5). However, this optimal number may vary in different reconstruction 
scenarios and applications. 

Our next experiment deals with the composition of the subsets themselves. Figure 
4 shows the performance of OS SIRT with three different numbers of subsets (here, 
10, 20, and SART) using a regular interleaved projection selection (as it has been 
suggested for OS-EM) and our proposed random projection selection scheme. The 
results show that the random approach always performs better than the regular 
method, and the difference margin increases when more subsets are used, with the 
largest difference obtained with SART. 

The tendency of SART to produce reconstructions noisier than the original and that 
of SIRT to produce reconstructions smoother than the original is also demonstrated in 
Figure 5, where we show the renditions of a line profile across another area of the 
Barbara image (only for the original image and reconstructions with SART and 
SIRT). 

Finally, Figure 6 shows the results obtained with a medical dataset, reconstructed 
with the same framework. The projection data were obtained by a high-quality X-ray 
simulation from a CT dataset, labeled ‘Original’ in Figure 6. Similar outcomes are 
observed: a subset size of 10 achieved the best wall-clock time performance. Here we 
used the R-factor as the error metric, where the difference between the simulated and 
the scanner projections (the data) is divided by the sum of all pixels values from the 
scanner projections. We observe that OS SIRT with 10 subsets of 18 projections each 
reaches a preset R-factor=0.007 26% faster than SIRT and 86% faster than SART. 

4 Conclusions 

We have shown that iterative reconstruction methods used in medical imaging, such 
as EM or SIRT, have special properties when it comes to their acceleration on GPUs. 
While splitting the data used within each iterative update into a larger number of 
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smaller subsets has long been known to offer greater convergence and computation 
speed on the CPU, it is vastly slower on the GPU. This was a direct consequence of 
the thread fill rate in the projection and backprojection phase. Larger subsets spawn a 
greater number of threads, which keeps the pipelines busier and also reduces the 
latencies incurred by a greater number of passes and context switches. Seeking to 
identify the optimal subset size and number, we then generalized the popular 
Simultaneous Iterative Reconstruction Technique (SIRT) to OS SIRT. This 
generalization allows researchers to optimize the wall clock time required for a GPU-
accelerated reconstruction, enabling high-quality reconstructions to be obtained faster, 
taking full account of the particularities associated with the GPU architecture and 
programming model. This OS SIRT can optimize the reconstruction performance by 
choosing the optimal number of subsets into which the projections are distributed (in 
random order). Here, it is likely that this optimal number of subsets will vary 
depending on the domain application and the general reconstruction scenario. Thus, in 
order to identify the optimal subset number for a new application setting, to be used 
later for repeated reconstructions within this application setting, one may simply run a 
series of experiments with different numbers of subsets and use the setting with the 
shortest wall clock time required for the desired reconstruction quality. In fact, such 
strategies are typical for GPU-accelerated general-purpose computing applications 
(GPGPU). For example, the GPU bench was designed to run a vast benchmark suite 
[17] to determine the capabilities of the tested hardware. Our findings with SIRT 
readily extend to EM since the two methods have, as far as the computations are 
concerned, similar operations and overhead. In future work, we plan to devise a more 
sophisticated λ schedule, which we believe will positively affect the reconstruction 
performance. It will most probably shift the optimal subset size to some degree, but it 
will not negate the general finding of this paper, which is that larger subsets are to be 
favored.  

Although we have used CG shaders to obtain the results presented in this paper, 
similar symptoms also occur in CUDA where synchronization operations have to be 
formally called to finish executions of all threads within a thread block to resume the 
pipeline. In general, the underlying hardware, its architecture, and the overall thread 
management remain the same – just the API is different, enabling a tighter control 
over the threads. In future work, we plan to study the reported effects to a more 
detailed extent in CUDA, to determine if a shift in the performance-optimal subset 
configuration occurs. In fact, this is likely to happen for every new generation of the 
hardware. The main goal of this paper was not to recommend a specific optimal 
number of subsets, but to raise awareness to these interesting platform-related 
phenomena.    
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Fig. 1. Reconstructions obtained with various subset sizes for a fixed CC=0.95 and 180 
projections in an angular range of 180˚. We observe that OS SIRT with 10 subsets of 18 
projections each reaches this fixed CC value 12% faster than SIRT and 50% faster than SART. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Reconstructions obtained with various subset sizes for a fixed CC=0.93 and 140 
projections in an angular range of 140˚. We observe that OS SIRT with 5 subsets of 28 
projections each reaches this set CC value 2% faster than SIRT and 84% faster than SART. 

 

   
Original SIRT OS SIRT 10 

# iterations 87 47 
time (s) 5.89 5.17 
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32 15 6 
11.28 9.9 10.28 

   
Original SIRT OS-SIRT 5 

# iterations 75 56 
time (s) 2.46 2.43 

   
OS-SIRT 20 OS-SIRT 70 SART 

30 15 12 
8.96 4.53 15.84 
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Fig. 4. CC values for regular OS SIRT and randomized OS SIRT. 
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Fig. 3. (top) CC vs. number of iterations; (bottom): CC vs. wall clock time. We observe that 
while SART achieves the best results with the smallest number of iterations, OS SIRT achieves 
it in the smallest amount of time, within a GPU-accelerated framework. 

 
 
 
 
 
 
 
 
 
 
 
 
 

. 

 

0.7

0.75

0.8

0.85

0.9

0.95

1

0 1 2 3 4 5 6 7 8

Reconstruction timings (second)

C
ro

ss
 C

or
re

la
tio

n-
C

oe
ff

ic
ie

nt

SIRT
OS-10
OS-20
OS-60
SART

0.7

0.75

0.8

0.85

0.9

0.95

1

1 10 19 28 37 46 55 64 73 82 91 100

Iteration

C
ro

ss
 C

or
re

la
tio

n-
C

oe
ffi

ci
en

t

SIRT
OS-10
OS-20
OS-60
SART



12 

180

182

184

186

188

190

192

194

196

198

200

1

Original
SIRT
SART

Fig. 5. Line profiles of the image background for SART, SIRT, and the original Barbara image. 
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Original SIRT OS-SIRT 3 

# iterations / time (s) 100 / 18.86 85 / 17.69 

   
OS-SIRT 10 OS-SIRT 60 SART 

54 / 13.99 16 / 79.9 6 / 102.79 

Fig. 6. Reconstructed baby head using high-quality simulated projection data of the volume 
labeled ‘Original’. Results were obtained with various subset sizes for a fixed R-factor = 0.007 
and 180 projections in an angular range of 180˚. OS SIRT with 10 subsets of 18 projections 
each reaches this set R-factor value 26% faster than SIRT and 86% faster than SART. 
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