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Abstract. The increasing availability of multi-core and multi-processor
architectures provides new opportunities for improving the performance
of many computer simulations. Markov Chain Monte Carlo (MCMC)
simulations are widely used for approximate counting problems, Bayesian
inference and as a means for estimating very high-dimensional integrals.
As such MCMC has found a wide variety of applications in biology and
biomedical analysis.
This paper presents a new method for reducing the runtime of Markov
Chain Monte Carlo simulations by using SMP machines to speculatively
perform iterations in parallel, reducing the runtime of MCMC programs
whilst producing statistically identical results to conventional sequential
implementations. We calculate the theoretical reduction in runtime that
may be achieved using our technique under perfect conditions, and test
and compare the method on a selection of multi-core and multi-processor
architectures. Experiments are presented that show reductions in runtime
of 35% using two cores and 55% using four cores.

1 Introduction

Markov Chain Monte Carlo (MCMC) is a computational intensive technique that
may be used to conduct Bayesian inference, allowing prior knowledge to guide the
analysis of image data. For instance, the expected size, distribution and density
and organisation of cells in an image. By incorporating expected properties of
the solution, the stability of the Markov Chain simulation is improved and the
chances of consistent false-positives is reduced. MCMC is also good at identifying
similar but distinct solutions (i.e. is an artifact in a blood sample one blood cell
or two overlapping cells) and giving relative probabilities or confidence values to
the solutions it provides.

MCMC, as a means to implement Bayesian inference, has been successfully
applied to many areas of computational biology [1], notably in the field of phylo-
genetic analysis where several well established implementations exist (MrBayes
[2] and others). Although the technique has yet to be applied to biomedical
imaging applications to the same extent, there are several examples of its use.
In addition to the cell nuclei identification method presented as the case study
in this paper, MCMC has been used to map muscle cells using Voronoi polygons
[3] and tracing retinal vascular trees [4, 5]. The work in [6] demonstrates the use



Fig. 1. Demonstration of the feature recognition program used for testing in this pa-
per. Left: The initial image. Right: The stained cell nuclei found after 10,000 MCMC
iterations (approx 4 seconds processing time).

of MCMC in solving segmentation problems for prostate and thalamus magnetic
resonance images.

Monte Carlo applications are generally considered embarrassingly parallel
[7], since samples can be obtained twice as fast by running the problem on two
independent machines. This also applies for Markov Chain Monte Carlo, pro-
vided a sufficient burn-in time has elapsed and a sufficient number of distributed
samples are taken. Unfortunately, for the high-dimensional problems found in
biomedical imaging, the burn-in time required for obtaining good samples can
be considerable. Although simple applications examining small images have run-
times of seconds, mapping complicated structures or identifying many features
in large images can take minutes or hours. As an example, the mapping of retinal
vascular trees in as detailed in [4, 5] took upwards of 4 hours to converge when
run on a 2.8GHz Pentium 4, and takes much longer to explore alternative modes
(additional potential interpretations for the input data). The practicality of such
solutions (in real-time clinical diagnostics for example) is therefore limited. High
throughput microscopy applications face a similar problem, although individual
images may be processed quickly, the large number of images to analyse make
reductions in runtime desirable.

If modes are not expected to be radically different, duplicating the simulation
will not substantially reduce the runtime, as the time required for convergence
will dominate over the time taken collecting samples. Statistical techniques al-
ready exist for improving the rate of convergence, indeed most current optimisa-
tion and/or parallelisation strategies take this approach. In this paper we focus
on complimenting such methods by reducing the runtimes of MCMC applica-
tions through implementational changes rather than by modifying the statistical
algorithm. The contributions of this paper are threefold:

– We propose a new method (termed ‘speculative moves’) of implementing
Markov Chain Monte Carlo algorithms to take advantage of multi-core and
multi-processor machines;

– We fully implement and test this method on a number of different machine
architectures and demonstrate the suitability of these architectures for this



new approach. We also demonstrate an example of this technique in process-
ing biomedical images: a program that finds stained cell nuclei, as seen in
figure 1;

– Finally, we provide a method for predicting the runtime of MCMC programs
using our speculative moves approach, therefore providing: (i) increased cer-
tainty in real-world MCMC applications, (ii) a means of comparing alter-
native supporting architectures in terms of value for money and/or perfor-
mance.

‘Speculative moves’ may be used alongside most existing parallelisation and op-
timisation techniques whilst leaving the MCMC algorithm untouched, and so
may safely be used without fear of altering the results. Our method is designed
to operate on the increasingly available multiprocessor and multicore architec-
tures. As the technology improves (e.g. by increasing the number of processing
cores that are placed onto a single chip) the speculative moves method will yield
greater runtime reductions over a wider range of applications.

The remainder of this paper is organised as follows. In section 2 we explain
the MCMC method and the difficulties in parallelising it. Section 3 reviews the
current forms of parallel MCMC. Our method of speculative moves is outlined
in section 4, with the theoretical improvements possible calculated in section 5.
We introduce a real-world case study to which we applied speculative moves in
section 6 and review the results in section 7. Section 8 concludes the paper.

2 Markov Chain Monte Carlo

Markov Chain Monte Carlo is a computationally expensive nondeterministic it-
erative technique for sampling from a probability distribution that cannot easily
be sampled from directly. Instead, a Markov Chain is constructed that has a
stationary distribution equal to the desired distribution. We then sample from
the Markov Chain, and treat the results as samples from our desired distribu-
tion. For a detailed examination of the MCMC method the reader is referred
to [8]. Here we provide a summary of what the algorithm does in practise, ex-
cluding much of the theoretical background. At each iteration a transition is
proposed to move the Markov Chain from state x to some state y, normally by
making small alterations to x. The probability of applying this proposed move is
calculated by a transition kernel constructed in such a way that the stationary
distribution of the Markov Chain is the desired distribution. The construction
of a suitable kernel is often surprisingly easy, and is frequently done by applying
Bayesian inference [9]. Such kernels produce the probability for advancing the
chain to state y from x based on how well y fits with the prior knowledge (what
properties the target configuration is expected to have) and the likelihood of y
considering the actual data available. Transitions that appear to be favourable
compared to the current state of the chain have acceptance probabilities > 1 and
so are accepted unconditionally, whilst moves to apparently worse states will be
accepted with some reduced probability. Once the move/transition has been ei-
ther accepted (causing a state change) or rejected the next iteration begins. This



Create x′

Calculate
α′ = α(x, x′)

rng() < α′

Let x be the current state

Apply x→ x′

Yes
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Fig. 2. Conventional Markov Chain Monte Carlo Program Cycle - one MCMC iteration
is performed at each step of the cycle. rng() generates a uniform random number
between 0 and 1.

program cycle is shown in figure 2. MCMC can be run for as many iterations as
are required: the conventional use is to keep taking samples of the chain’s state
at regular intervals after an initial burn-in period to allow the chain to reach
equilibrium. Depending on the needs of the application these samples will either
be the subject of further processing or compared to identify the ‘best’ (most
frequently occurring characteristics amongst the samples). In some applications
(typically those dealing with high-dimensional states, such as for image process-
ing problems) a single sample of a chain that has reached equilibrium (converged)
may be enough. Determining when a chain has converged (and therefore may be
sampled) is an unsolved problem beyond the scope of this paper.

This paper concerns parallelising MCMC applications where the initial burn-
in time is the most time-consuming period. Obtaining many samples is embar-
rassingly parallel as multiple chains can be run on multiple computers, each
using a different initial model but keeping all other factors the same. Samples
from all the chains can be simply grouped [7], not only reducing the time to
obtain a fixed number of samples but also reducing the chances that all the
samples will occur in local rather than global optima, since the chains will be
starting from different positions in the state-space. However, running multiple
chains does not change the initial burn-in time (waiting for the chains to move
from their initial models to achieving equilibrium around optimal states), which
for biomedical imaging applications (being complex and high-dimensional) may
be considerable.

3 Related Work

The conventional approach to reducing the runtime of MCMC applications is
to improve the rate of convergence so that fewer iterations are required. The
main parallel technique is called Metropolis-Coupled MCMC (termed (MC)3)



[10, 11], where multiple MCMC chains are performed simultaneously. One chain
is considered ‘cold’, and its parameters are set as normal. The other chains are
considered ‘hot’, and will be more likely to accept proposed moves. These hot
chains will explore the state-space faster than the cold chain as they are more
likely to make apparently unfavourable transitions, however for the same reason
they are less likely to remain at near-optimal solutions. Whilst samples are only
ever taken from the cold chain, the states of the chains are periodically swapped,
subject to a modified Metropolis-Hastings test. This allows the cold chain to
make the occasional large jump across the state-space whilst still converging on
good solutions.

(MC)3 differs from our work in that communication between chains is infre-
quent, thus the chains can be executed across networked computers. The aims
are also very different - (MC)3 increases the mixing of the chain, improving
the chances of discovering alternative solutions and helping avoid the simulation
becoming stuck in local optima. Essentially it reduces the number of iterations
required for the simulation to converge, whereas our method reduces the time
required to perform a number of iterations. The two approaches will comple-
ment each other, particularly since (MC)3 permits its chains to be spread over
multiple computers connected by comparatively low speed interconnects.

4 Speculative Moves: A New Parallelising Approach

Create δ1(x)

Calculate
α1 = α(x, δ1(x))

rng() < α1

Let y = δ1(x)

Create δ2(x)

Calculate
α2 = α(x, δ2(x))

rng() < α2

Let y = δ2(x)

Create δ3(x)

Calculate
α3 = α(x, δ3(x))

rng() < α3

Let y = δ3(x)

Apply x→ y

Let x be the current state

Thread A
Thread B

Thread C
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Fig. 3. Speculative Move Enabled Program Cycle. In this case three potential moves
are considered at each step of the program cycle. This translates to one, two or three
MCMC iterations being performed, depending on whether the first and second potential
moves are accepted or rejected.



Although by definition a Markov chain consists of a strictly sequential series
of state changes, each MCMC iteration will not necessary result in a state change.
In each iteration (see figure 2) a state transition (move) is proposed but applied
subject to the Metropolis-Hastings test. Moves that fail this test do not modify
the chain’s state so (with hindsight) need not have been evaluated. Consider a
move ‘A’. It is not possible to determine whether ‘A’ will be accepted without
evaluating its effect on the current state’s posterior probability, but we can as-
sume it will be rejected and consider a backup move ‘B’ in a separate thread of
execution whilst waiting for ‘A’ to be evaluated (see figure 3). If ‘A’ is accepted,
the backup move ‘B’ - whether accepted or rejected - must be discarded as it
was based upon a now supplanted chain state. If ‘A’ is rejected, control will pass
to ‘B’, saving much of the real-time spent considering ‘A’ had ‘A’ and ‘B’ been
evaluated sequentially. Of course, we may have as many concurrent threads as
desired, so control may pass to move ‘C’ if ‘B’ is rejected, then ‘D’, ‘E’, and
so on. Clearly for there to be any reduction in runtime, each thread must be
executed on a separate processor or processor core.

To be useful the speculative move must not compete with the initial move
for processor cycles. In addition, the communication overhead for synchronising
on the chain’s current state, starting the speculative moves and obtaining the
result must be small compared to the processing time of each move. An SMP
architecture is most likely to meet these criteria, although a small cluster might
be used if the average time to consider a move is long enough. As many specula-
tive moves may be considered as there are processors/processing cores available,
although there will be diminishing returns as the probability of accepting the
mth speculative move is (pr)m−1(1− pr) where pr is the probability of rejecting
any one move proposal.

Since speculative moves compress the time it takes to perform a number
of iterations, the method will complement existing parallelisation that involves
multiple chains to improve mixing or the rate of convergence (such as (MC)3 or
simply starting multiple chains with different initial models), provided sufficient
processors are available. As the other parallelisation methods tend to be less
tightly coupled, it is feasible for physically distinct computers to work on different
chains, whilst each chain makes use of multiple cores/processors on its host
computer for speculative moves.

5 Theoretical Gains

When using the speculative move mechanism with n moves considered simul-
taneously, the program cycle consists of repeated ‘steps’ each performing the
equivalent of between 1 and n iterations. The moves are considered in sequence,
once one move has been accepted all subsequent moves considered in that step
must be ignored.

Given that the average probability of a single arbitrary move being rejected
is pr, the probability of the ith move in a step being accepted whilst all preceding
moves are rejected is pi−1

r (1− pr). Such a step counts for i iterations. Including
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the case where all moves in a step are rejected (occurring with probability pn
r ).

The number of iterations (I) performed by Sn steps (where n is the number of
moves considered in each step) can be expressed as

I = Sn

[
n∑

i=1

ipi−1
r (1− pr) + npn

r

]

I = Sn

[
n−1∑
i=1

pi
r + 1

]

I = Sn
1− pn

r

1− pr

Rearranging for Sn

Sn = I
1− pr

1− pn
r

(1)

which is plotted in figure 4 for varying pr. Assuming the time taken to apply an
accepted move and the overhead imposed by multithreading are both negligible
compared to the time required for move calculations, the time per step ≈ time
per iteration. Therefore figure 4 also shows the limits of how the runtime could
potentially be reduced. For example, if 25% of moves in an MCMC simulation
are accepted (pr = 0.75), 100 sequential iterations are equivalent to ≈ 57 steps
for a two-threaded speculative move implementation or ≈ 37 steps on a four-
threaded implementation. Four thread speculative moves could therefore at best
reduce the runtime of a MCMC application accepting 25% of its moves by about
63%, while the two threaded version could achieve up to a 43% reduction.



Fig. 5. Demonstration of the feature recognition program. Top left: The initial image.
Top right: The filtered image used by the MCMC simulation. Bottom left: The initial
randomly generated configuration overlaid on the image. Bottom right: The configura-
tion after 10,000 iterations (approx 4 seconds processing time).

In practise speedups of this order will not be achieved. Threads will not
receive constant utilisation (as they are synchronised twice for each iteration) so
may not be consistently scheduled on separate processors by the OS. For rapidly
executing iterations the overhead in locking/unlocking mutexes and waiting for
other threads may even cause a net increase in runtimes. In addition, proposing
and considering the moves may cause conflicts over shared resources, particularly
if the image data cannot fit entirely into cache. Figure 4 can only be used to
estimate the maximum possible speedup, actual improvements will fall short of
this by an amount determined by the hardware and characteristics of the MCMC
simulation to which speculative moves are applied.

6 Case Study: Finding White Blood Cell Nuclei

An application of MCMC to medical imaging is the identification of artifacts
in an image. For instance, the finding of stained cell nuclei. For simplicity we
abstract this into the finding of circles of high colour intensity. In this case study
the input image is filtered to emphasise the colour of interest. This filtered image
can then be used to produce a model for the original image - a list of artifacts
i.e. circles defined by their coordinates and radii. A random configuration is
generated and used as the initial state of the Markov Chain. At each iteration a
type of alteration is chosen at random. The possible alterations are the addition
of an artifact, the deletion of an artifact, merging two artifacts together, splitting
an artifact into two, and altering the position or properties (i.e. radius) of an
existing artifact. A move proposal (possible state transition) is then generated
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Fig. 6. Runtime for cell-nuclei segmentation program on Q6600 (quad core machine).
Image A (left) is an image from which figure 1 was taken, processed with a pr of 0.9.
Figure 5 is a subset of Image B (right) and was processed with a pr of 0.7.

that implements an alteration of that type, randomly choosing the artifact(s)
to alter and the magnitude of that alteration. The probability of accepting this
move is generated by a Metropolis-Hastings transition kernel constructed using
Bayesian inference.

Two terms, the prior and likelihood, are calculated to evaluate the configu-
ration that would be created by this move proposal. The prior term evaluates
how well the proposed configuration matches the expected artifact properties, in
this case the distribution and size of the nuclei and the degree to which overlap
is tolerated. The likelihood of the proposed configuration is obtained by com-
paring the proposed artifacts against the filtered image. Together the prior and
likelihood terms make up the posterior probability of the proposed configura-
tion, which is compared with the posterior probability of the existing state using
a reversible-jump Metropolis-Hastings transition kernel [12]. Put simply, whilst
the prior and likelihood probabilities cannot be expressed exactly, the ratio be-
tween the posterior probabilities of the current and proposed configurations can
be calculated and used to give a probability for accepting the state change.

7 Results

The images shown in figures 1 and 5 can be processed in a few seconds. To allow
for more accurate results, figure 6 shows processing times for images four times
as large (∼1200x1000) as those shown in this paper. Note that the difference in
the single threaded processing times between images A and B is due to the larger
number of cells in image A. Compared to image B, image A has a proportionality
larger reduction in runtime for the multithreaded versions due to the higher
move rejection rate used to process that image. For a more general examination
of runtime improvements using the speculative move system we used a second,



similar application that allowed more direct control over the processing time per
iteration and iteration rejection probabilities. Results using this application on
two computer architectures (a dual core Pentium-D and a quad core Q6600) are
shown in figure 7. The results predicted by equation 1 have been overlaid. Recall
that these predictions do not account for multithreading overhead so cannot
be completely achieved. Nonetheless there is a good correlation between the
predicted and observed results. The discrepancy on the Q6600 using only two
threads is a consequence of the its architecture and thread scheduler, its four
processing cores are arranged across two chips between which communication is
slower than when communicating between cores on the same chip.

When considering whether to implement speculative moves in a MCMC ap-
plication one must contemplate whether the benefits of speculative moves ‘breaks
even’ with the cost involved in implementing the multithreaded scheme. The
breakeven points, when the benefits of speculative moves equals the time spent
in multithreading overheads, for a number of different computer architectures,
are presented in tables 1 and 2. As a point of reference, the cell nuclei pro-

Table 1. Breakeven point when pr = 0.75

Iteration Time (µs) Iteration Rate (s−1)

Xeon Dual-Processor 70 14 285
Pentium-D (dual core) 55 18 181
Q6600 (using 2 cores) 75 13 333
Q6600 (using 4 cores) 25 40 000

Table 2. Breakeven point when pr = 0.60

Iteration Time (µs) Iteration Rate (s−1)

Xeon Dual-Processor 80 12 500
Pentium-D (dual core) 70 14 285
Q6600 (using 2 cores) 130 7 692
Q6600 (using 4 cores) 30 33 333

gram searching for ∼200 circles in a 1200x1000 image (four times the size of
the image in figure 5) performed around 3000 iterations per second (300µs per
iteration), whilst the vascular tree finding program from [4, 5] was generally per-
forming 20−200 iterations per second (5−50ms an iteration). Based on this we
can expect a non-trivial image processing MCMC application to be well above
the iterations per second value needed to break even, and can therefore expect
significant real-time savings by using speculative moves for real applications.

8 Conclusion

Using our new ‘speculative moves’ approach takes advantage of multithreaded
machines without altering any properties (other than runtime) of the Markov



Chain. Our method can safely be used in conjunction with other parallelisation
strategies, most notably Metropolis-Coupled Markov Chain Monte Carlo where
each parallel chain can be processed on a separate machine, each being sped up
using speculative moves. Speculative moves can be applied to any MCMC ap-
plication performing fewer than some tens of thousands of iterations per second
(dependant on machine architecture), which will cover most (if not all) non-
trivial medical imaging MCMC applications. When the average move rejection
rate is high (i.e. > 50%) substantial savings in runtime can be expected. On
typical MCMC applications, developers aim for rejection rates of around 75%,
in which case runtimes could be reduced by up to 40% using a dual core machine,
or up to 60% on a quad core machine.

Multiprocessor machines will provide speed ups, but CPUs with multiple
processing cores on the same die will obtain results closer to the maximum theo-
retical limit. As multicore technology continues to improve the speculative move
method will become more potent, applicable to an even wider range of appli-
cations and achieving greater performance improvements. By taking advantage
of developments in modern and future processor designs speculative moves will
help make the use of MCMC-based solutions more productive and increasingly
applicable to a wide range of biomedical applications.
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Fig. 7. Runtime plotted against move rejection probability (pr) on the Pentium-D
(top) and the Q6600 (bottom).


