
Towards High Performance Cell Segmentation in
Multispectral Fine Needle Aspiration Cytology

of Thyroid Lesions

Edgar Gabriel, Vishwanath Venkatesan, and Shishir Shah

University of Houston
Department of Computer Science

Houston, TX 77204-3010
{gabriel,venkates,shah}@cs.uh.edu

Abstract. Thyroid nodule is a common cancer of the thyroid gland that
affects up to 20% of the world population and approximately 50% of 60-
year-old persons. Early detection and screening of the disease, especially
analysis by fine needle aspiration cytology (FNAC), has led to improved
diagnosis and management of the disease. Simultaneously, advances in
imaging technology has enabled the rapid digitization of large volumes of
FNAC specimen leading to increased interest in computer assisted diag-
nosis (CAD). This has led to development of a variety of algorithms for
automated analysis of FNAC images, but due to the large scale memory
and computing resource requirements, has had limited success in clinical
use. In this paper, we present our experiences with two parallel versions
of a code used for texture-based segmentation of thyroid FNAC images,
a critical first step in realizing a fully automated CAD solution. An MPI
version of the code is developed to exploit distributed memory compute
resources such as PC clusters. An OpenMP version is developed for the
currently emerging multi-core CPU architectures, which allow for paral-
lel execution on every desktop system. Experiments are performed with
image sizes ranging from 512×512 pixels with 31 channels to 8192×8192
pixels with 21 channels. Each parallelization is evaluated for performance
and scalability.

1 Introduction

Cancer continues to remain a major health problem in the United States, with
one of two men and one of three women developing cancer in their lifetime.
Among various cancers, thyroid nodule is a common cancer of the thyroid gland.
It has been estimated that up to 20% of the world population and approximately
50% of 60-year-old persons have palpable thyroid nodule or nodules [1]. The clin-
ical spectrum ranges from the incidental, asymptotic, small, solitary nodule, in
which the exclusion of cancer is a major concern, to the large, partly intratho-
racic nodule that causes pressure symptoms, for which treatment is warranted
regardless of cause. In spite of the growing incidences of thyroid lesions, the
rate of thyroidectomies is on the decline. Early detection of the disease has been



2

partly responsible for improved outcomes. Among screening and detection pro-
cedures, fine needle aspiration (FNA) is believed to be a safe, inexpensive, and
minimally invasive procedure to diagnose tumors [2]. For cytological evaluation
of FNA samples, smears are appropriately prepared and stained. Typically, the
stain changes the color of the cells and tissue so that examination of the smear
under standard microscopes with moderate magnification (20–40x) is sufficient
for clinical evaluation.

With the advances in imaging technology, there is considerable interest in au-
tomated analysis of FNA cell smears that could help to reduce the time required
for manual screening and increase the detection rate of abnormalities [3]. Several
commercial products such as ScanScope from Aperio Technologies, DX-40 from
DMetrix, Inc., and iScan from BioImagene, Inc. have been developed to auto-
mate the process of digitizing microscope slides. They provide high throughput
capabilities to digitize cell smears, resulting in a stitched image of scan areas of
the order of 1.5cm x 1.5cm in less than 5 minutes. This provides a single image
per smear that can be as large as 60,000 x 60,000 pixels under 40x magnification
(resolution of 0.25µm/pixel). More recently, multispectral microscopes capable
of acquiring spectral images under transmitted illumination have also been used
to digitize and analyze cell smears [4, 5]. Spectral imaging allows for the simul-
taneously measurement of spectral and spatial information of a sample such
that the measurement of the spectral response at any pixel of a two-dimensional
image is possible. A spectral image consists of a series of images and each im-
age is acquired under a narrow band wavelength of light. Studies have shown
that biological tissue exhibits unique spectra in transmission. By exploring the
spectral differences in tissue pathology, many chemical and physical characteris-
tics not revealed under traditional imaging systems can be realized and used to
improve the analysis efforts. Several efforts have already resulted in algorithms
for cell segmentation, morphometric and karyometric feature analysis, as well as
computer assisted diagnosis (CAD), with cell segmentation being the most chal-
lenging step for automated systems. However, to our knowledge, most of these
efforts have been relatively limited in size due to the large data size and the
computational bottlenecks. It is not uncommon to acquire anywhere from 5 to
31 spectral channels for each sample. Considering an average size of the smear
to be 1.0cm x 1.0cm, the image cube to be analyzed would be approximately
8GB to 50GB in size. This creates difficulties in analyzing the entire data set on
a standard desktop.

In this paper, we present our experiences with two parallel versions of a code
used for texture-based image segmentation. Our main interest here is not to de-
fine the best segmentation algorithm, but to define a set of processes that would
be realistically required in a typical CAD system. Specifically, we use Gabor fil-
ters for texture measurement and combine it with absorption computed from the
spectral image stack to generate a feature vector for each pixel. K-means clus-
tering is used to group pixels into different classes resulting in the segmentation
of thyroid cells. An MPI version of the code has been developed to exploit dis-
tributed memory compute resources such as PC clusters. An OpenMP version



3

has been developed for the currently emerging multi-core CPU architectures,
which allow for parallel execution on every desktop system. The rest of the pa-
per is organized as follows: section 2 provides a brief overview of multispectral
microscopy and the digitization of thyroid lesion cell smears. The texture-based
approach for segmentation of thyroid cells is presented in section 3. Section 4
presents the parallelization strategy. The experiments performed for large scale
analysis of entire scans of smear samples and according results are presented in
section 5. Finally, the paper is concluded in section 6.

2 Multispectral Microscopy

The core element of any spectral imaging system is the spectral dispersion com-
ponent that separates light into its spectral components, and is coupled to a
two-dimensional (2D) optical detector such as a CCD camera, or to an array
of photomultiplier tubes (PMT). In our system, we use a quarter-meter class,
Czerny-Turner type monochromator that provides a tunable light emission spec-
trum at 10nm resolution. We utilize a wavelength range from 400-700nm for this
study. The monochromator is connected to an Olympus BX51 upright optical
microscope such that the light output from the monochromator feeds in to the
transmitted light path of the microscope. This allows for the use of conventional
optical microscopy to acquire brightfield images at desired wavelengths (trans-
mitted light). An Olympus UPlanApo 40X NA 0.9 was used for imaging. The
Photometrics SenSysTMCCD camera having 768 x 512 pixels (9x9µm) at 8-bit
digitization is used which provides for high resolution low light image acquisition.
Figure 1 (left) shows the system that has been assembled. To image each sam-
ple, the illumination from the monochromator was adjusted by achieving Köhler
illumination for uniform excitation of the specimen. The condenser, aperture di-
aphragm, and the field stop were kept constant during measurements. Focusing
was performed at the central wavelength of 550nm to minimize the chromatic
aberration at all wavelengths. The system was calibrated as per the method pro-
posed in [6]. Using a stepper controlled microscope stage, multiple images were
acquired to cover the extent of the smear on the microscope slide. Resulting
images were stitched to generate a composite mosaic.

A multispectral image allows the possibility to locate, discriminate, measure,
and enumerate many entities within a specimen by detecting subtle differences
among their individual spectral signatures[7]. Clearly, different stained cells will
be spectrally distinct. However, spectral information in any cell can come from
such optical processes as reflection and scattering. As long as the phenomenol-
ogy is based on reproducible physical reality, classification of spectrally distinct
species can be of great utility. Figure 1 (right) shows a subset of the spectral im-
age (400nm, 500nm, 600nm, and 700nm) of a Papanicolaou stained cytological
specimen. As seen the light absorption across various cellular constituents vary
as a function of wavelength. This forms the spectral signature for each cellular
entity.

To understand the spectral characteristics of biological samples, gray level
image intensities may be used to determine the proportion of light transmitted



4

Fig. 1. Multispectral imaging system using a grating based spectral light source for
transmitted illumination (left), and Four channels of a spectral image of a stained
cytological smear (right).

by each cell across the exciting spectra. The transmission factor, T , is defined
as:

T = It/Ii (1)

where It is the intensity of the transmitted radiation at a point and Ii is the
intensity of the incident light. Using the calibrated system, the incident light
is fixed and known a priori. As such, one can then compute the absorption
parameter for each pixel using the Beer-Lambert law[8] as:

A = log(1/T ) (2)

For each pixel in the multispectral image, we measure the absorption parameter
for all wavelengths to generate a feature vector representing the signature for
that pixel.

3 Texture-based Cell Segmentation

Image segmentation is probably the most widely researched topic in image anal-
ysis and many attempts have been made to develop algorithms for segmentation
of biomedical images. This is a critical problem since it forms the first step in
identifying cells and tissue structures relevant for subsequent analysis. It is also
the most challenging task due to the variabilities present in the images to be
segmented. The most common approach for cytological image segmentation has
been thresholding with the purpose of separating cells from the background. In
some cases, learning algorithms coupled with clustering techniques have been
used where pixels are assigned to either ”cell” or ”non-cell” class [9, 10]. Other
mathematical formulations ranging from active contours, Fourier and Hough
transforms, neural networks, and others [11, 12] have also been developed. An
overview of segmentation techniques, specifically for cell segmentation can be
found in [13].

More recently, textural features have been exploited for cell segmentation, es-
pecially for cytological and histological samples [14, 15]. Texture in an image can
be obtained using a multitude of methods ranging from gray-level co-occurrence



5

matrices (GLCM), fractal measures, Law’s texture measures, gradient structure
tensors (GST), and Gabor filters [16–18]. In this work, we use a bank of Gabor
filters to extract a measure of texture at each pixel followed by clustering to
group pixels belonging to the same class. Specifically, we generate a bank of self-
similar filters through appropriate dilations and translations of the basis Gabor
function as defined by Manjunath et al. [19]. We use 3 scales and 4 orientations
resulting in a total of 12 filters in the bank. To efficiently compute a measure of
texture for each pixel in the multispectral image, we generate an average image
from the multispectral stack. For each pixel in the average image, the magni-
tude response of each filter, the mean, and standard deviation is computed and
stored as a feature vector. In addition, the absorption is measured according to
equation 2 for each pixel in each channel of the multispectral image. Hence, we
generate a 45-dimensional feature vector for each pixel belonging to a spectral
image with 31 channels. The extracted features are clustered using the standard
k-means algorithm [9] which results in effective grouping of pixels belonging to
the thyroid cells and partitioning of the image. Figure 2 (left) shows an exam-
ple of a thyroid cell smear image at 520nm (1 of 31 channels) and the result of
clustering (right) with the cluster of pixels detected as thyroid cells overlayed in
black.

Fig. 2. One channel of a multispectral cell smear image (left) and result of clustering
overlayed to highlight the cluster representing the cells of interest (right).

4 Parallelization Methods

In order to meet the challenge posed by the large images and the number of chan-
nels, we created two different parallel versions of the code: one version based on
the Message Passing Interface (MPI) [20], which is targeting clustered environ-
ments; a second version based on OpenMP [21], the de-facto standard for shared
memory programming, targeting the new generation of multi-core processors.
The sequential code used as the basis for both parallel versions is implemented
in C, using the FFTW library [22] for the Fast-Fourier Transform (FFT) oper-
ations. The parallel versions described here achieve the same results with the
same accuracy as their sequential counterparts.



6

4.1 MPI parallel version

As with most MPI applications, the parallelization strategy used in this version
of the code relies on data decomposition: each process holds one part of the
overall image, and all processes execute the same code on different data items.
FFTW version 2.1.5 supports MPI parallel FFT operations. However, the library
mandates a one-dimensional data decomposition, i.e. each process holds a certain
number of rows of the overall image. The size of the image passed to the FFTW
routines have to be padded by the number of rows/columns of the Gabor filters,
resulting in a slightly uneven distribution of rows for the unpadded image across
the processes. I/O operations are implemented using collective MPI I/O routines.

The most challenging part of the MPI version was the parallelization of the
k-means clustering routine. Assuming that the number of clusters are small com-
pared to the number of pixels, we replicated the information about the clusters
on all processes. Each process determines locally for each pixel in its domain
the cluster whose center is closest to each pixel, and assigns that pixels to the
appropriate cluster. The code also determines the number of pixels assigned to
each cluster and the weight of each cluster. Following these local calculations are
three global reduction operations, which determine the overall number of pixels
assigned to each cluster across all processes, the overall weight of each cluster,
and the global error, defined as the sum of the squared distance of each pixel
to the center of the closest cluster. Using these global values, each process can
independently determine the new center of each cluster for the next iteration of
the algorithm. This iterative procedure is terminated when the error between
two iterations is smaller than a predefined threshold.

The code than performs a smoothing operation by comparing the cluster
assigned to a particular pixel with the clusters assigned to its neighboring pixels.
In the MPI version access to information owned by another process is realized
by introducing ’ghostcells’, i.e. introducing copies of information (in this case
which cluster does a pixel belong to) owned by another process. The size of the
ghostcells is determined by the number of neighboring cells analyzed.

4.2 OpenMP parallel version

The OpenMP parallel version of the code also follows a data decomposition ap-
proach. Each of the three main modules (convolution, clustering, smoothing)
has been parallelized individually and invoked in a sequential fashion in order
to avoid nested parallelism. FFTW version 1.2.5 also supports OpenMP type
thread level parallelism, which eased the parallelization of the filtering and con-
volution, as it only required an additional parameter (number of threads) to
be passed to the functions. However, the initial version of this code section did
not perform well. Profiling the application with the performance analysis tool
TAU [23] revealed, that OpenMP directives inserted for a loop performing the
padding of the image degraded the performance due to a large number of cache
misses between the different threads. Thus, the performance of this code section
could be improved significantly by not parallelizing it.



7

The k-means clustering revealed a series of other challenges. Since the code
is organized in a large while loop, the very first idea was to parallelize this
outer loop. However, OpenMP as of version 2.5 does not support parallelization
of loops with unknown number of iterations at compile time. Following a sim-
ilar approach as in the MPI version, OpenMP directives were then inserted to
parallelize the access to the individual pixels. Determining the number of pixels
assigned to a cluster and the weight of each cluster across all threads posed how-
ever some problems, since OpenMP does not support reductions over arrays in
C in the current specification. Different alternatives have been explored to over-
come this limitation including introducing critical regions around the clustering
arrays, atomic updates, and locking only a particular value of the clustering data.
The version leading to the best performance privatized the clustering arrays and
performed global updates by executing element-wise reduction operations.

5 Evaluation

In the following, we present the performance of the code described in the previous
section. The MPI measurements have been executed on the shark cluster at the
University of Houston. The cluster consists of 24 single processor, dual core
AMD Opteron nodes running at 2.2 GHz, each node equipped with 2GB of
main memory. Nodes are connected by a 4xInfiniBand and a Gigabit Ethernet
network. The compute nodes have access to an NFS mounted home file system as
well as to a PVFS2 file system. The OpenMP measurements have been executed
on zeola, a shared memory system consisting of eight dual core 2.6 GHz AMD
Opteron processors with 64GB of main memory. We used gcc v4.2 and Open
MPI v1.2.5Tests have been executed for image sizes ranging from 512 × 512
pixels with 31 spectral channels, to 1024× 1024, 2048× 2048, 4096× 4096 and
8192× 8192 pixels, all using 21 spectral channels. Since the image is stored in a
raw, uncompressed format, the largest image analyzed was close to 1.5 GB. Each
test presented in this paper has been repeated three times, and the minimum
time over the three runs has been used.

Both parallel versions of the code show all-in-all a good scalability. The left
part of figure 3 shows the execution time for each image on various number
of processes for the MPI parallel version. The number of processes used was re-
stricted by the main memory required for a given image and a minimum number
of rows per process. This version shows very good scaling on shark when using
the InfiniBand network, i.e. doubling the number of processes for a given image
reduces the execution time in most instances by a factor of 1.6-1.9. The main
exception from that behavior is observed for the largest image when utilizing 32
and 44 processes. The reason for this deviation is discussed in later sections.

The OpenMP version, shown in the right part of fig 3 scales similarly well.
For the smaller images, using more than four threads typically does not further
reduce the execution time of the code. For the largest image, the code achieved
however a speedup of 5.9 when using eight threads, and 9.7 for 16 threads.
Please note, that the OpenMP version of the code does not write the results of
the convolution operation for each filter into output files. The comparison of the



8

execution times of the MPI and the OpenMP versions can only be performed on
selected code sections.

An in-depth analysis of the application reveals, that the most time consuming
parts are the k-means clustering followed by the convolution for both parallel
versions. Only the 8192 × 8192 image reverses the order of costs for these two
operations. Figures 4 and 5 analyze the scaling behavior for both, the MPI and
the OpenMP version of these two code sections. Both algorithms scale well for
large problem sizes. Most notably, the deviation from the very good scaling
behavior of the MPI code for the 32 and 44 processor test cases mentioned
above is clearly not due to the performance of these two routines. Comparing
the execution time of the MPI and the OpenMP version for the same image and
number of processes/threads reveals, that the MPI version usually outperforms
the OpenMP version by approx. 30% for these two operations. This difference
stems mainly from the overhead introduced by the runtime environment when
managing an OpenMP application, which is also observable when comparing the
performance of a sequential application vs. the OpenMP version using a single
thread. Although this effect might be stronger for the gcc compiler used in these
tests, this is effect is well understood and documented in the compiler research
community [24].

16

32

64

128

256

512

1024

ti
m

e
 [

se
c]

Overall Execution Time

1

2

4

8

16

1 2 4 8 16 32 44

512_31 1024_21 2048_21 4096_21 8192_21

Number of processes

E
x
e

cu
ti

o
n

ti
m

e
 [

se
c]

128

256

512

1024

2048

4096

8192

16384

ti
m

e
 [

se
c]

Overall Execution Time

1

2

4

8

16

32

64

128

1 2 4 8 16

512_31 1024_21 2048_21 4096_21 8192_21

Number of Threads

E
x
e

cu
ti

o
n

ti
m

e
 [

se
c]

Fig. 3. Performance analysis of the MPI version of the overall code (left) and the
OpenMP version (right).

5.1 Influence of I/O and the network interconnect

In order to understand the performance behavior of the MPI code for the largest
image and processor size, we further dissect the execution time of the code. Be-
yond the convolution and the k-means clustering, the next most time consuming
code sections are the routines dealing with reading input files and writing output
files. The MPI version of the code has the option to write the texture data into



9

32

64

128

256

512

ti
m

e
 [

se
c]

Clustering

1

2

4

8

16

1 2 4 8 16 32 44

512_31 1024_21 2048_21 4096_21 8192_21

Number of processes

E
x
e

cu
ti

o
n

ti
m

e
 [

se
c]

32

64

128

256

512

1024

2048

4096

ti
m

e
 [

se
c]

Clustering

0.5

1

2

4

8

16

32

1 2 4 8 16

512_31 1024_21 2048_21 4096_21 8192_21

Number of Threads

E
x
e

cu
ti

o
n

ti
m

e
 [

se
c]

Fig. 4. Performance of the MPI (left) and OpenMP (right) version of the k-means
clustering.

16

32

64

128

256

512

ti
m

e
 [

se
c]

Convolution

0.5

1

2

4

8

16

1 2 4 8 16 32 44

512_31 1024_21 2048_21 4096_21 8192_21

Number of processes

E
x
e

cu
ti

o
n

ti
m

e
 [

se
c]

32

64

128

256

512

1024

2048

4096

8192

16384

ti
m

e
 [

se
c]

Convolution

0.25

0.5

1

2

4

8

16

32

1 2 4 8 16

512_31 1024_21 2048_21 4096_21 8192_21

Number of Threads

E
x
e

cu
ti

o
n

Fig. 5. Performance of the MPI version (left) and OpenMP (right) version of the
convolution.

output files. This is mostly to facilitate future processing steps in realizing a
complete CAD solution.

As described in section 4, I/O operations are performed using collective MPI
I/O routines. For the 8192 × 8192 image, the size of the texture information
stored in different files sums up to 6GB. Table 1 shows, that in most instances
of the 2048×2048, the MPI I/O version of the code outperforms a version of the
MPI parallel code, which uses regular POSIX style I/O operations. However,
as shown in the left part of fig 6, the time spent in I/O operations increases
dramatically for all 32 and 44 processes test cases. The reason probably is, that
other test cases have only a single MPI process running per node, while the
32 and 44 processes test cases run two MPI processes on each node, one per
CPU core. The implementation of the collective I/O routines within Open MPI
seem to generate for these instances a significant overhead, and, as shown in



10

the lower part of Table 1, a POSIX I/O based parallel version outperforms in
this case the MPI I/O version. The last column in the table also documents the
performance penalty one would pay by using a standard NFS file system instead
of the parallel PVFS2 file system. For the largest image, the time spent in I/O
operations doubles to 115 seconds, with some runs taking up to 350 seconds
spent in writing 6 GB of data. Thus, if the code would be executed using an
NFS file system, I/O could be in fact the most time consuming portion of the
code for large images.

40

50

60

70

80

ti
m

e
 [

se
c]

I/O

0

10

20

30

40

1 2 4 8 16 32 44

512_31 1024_21 2048_21 4096_21 8192_21

Number of processes

E
xe

cu
ti

o
n

ti
m

e
 [

se
c]

16

32

64

128

256

ti
m

e
 [

se
c]

InfiniBand vs. Gigabit Ethernet

1

2

4

8

16

1 2 4 8 16

convolusion IB clustering IB convolusion GE clustering GE

Number of processes

E
x
e

cu
ti

o
n

ti
m

e
 [

se
c]

Fig. 6. Analyzing the I/O behavior of the MPI version (left) and comparing the per-
formance of convolution and clustering over InfiniBand and Gigabit Ethernet (right).

Table 1. Comparing MPI I/O with POSIX I/O over PVFS2 and NFS.

Image No. of MPI I/O POSIX I/O POSIX I/O
processes on PVFS2 on PVFS2 on NFS

2048× 2048 2 8.1 11.2 -
2048× 2048 4 5.6 8.5 -
2048× 2048 8 4.7 5.9 -
2048× 2048 16 5.4 3.9 -

8192× 8192 16 21.9 49.0 115.9
8192× 8192 32 57.0 51.0 114.4
8192× 8192 44 66.7 50.4 115.9

Lastly, we evaluate the influence of the network interconnect on the two
most time consuming routines in the code, namely the convolution and the k-
means clustering. The right part of figure 6 compares the execution time of
these two routines for the 2048× 2048 image over 4xInfiniBand (latency: 3.5µs,
bandwidth: 1GB/s) and Gigabit Ethernet (latency: 55µs, bandwidth: 80MB/s).
The k-means clustering is nearly insensitive to the difference in the quality of
the networks due to the low communication overhead introduced by the global



11

reductions. However, the convolution, which consists of a large number of FFTs,
does not scale beyond four processes on the Gigabit Ethernet network, while
it still shows a performance improvement for 16 processes for the very same
test case when using InfiniBand. This can be explained with the communication
pattern of a parallel FFT, which involves a large number of (small) messages,
and therefore shows a sensitivity to the latency of a network.

6 Summary and Conclusions

This paper presented an MPI and an OpenMP parallel version of a code used
for texture-based image segmentation applied to multispectral fine needle aspi-
ration cytology of thyroid lesions. We evaluated the performance of both code
versions using a series of images of increasing sizes, with 31 and 21 spectral
channels. Both versions show good scalability all-in-all. A comparison of the
most time consuming parts of the code between the two parallel versions shows
a performance advantage for the MPI version. However, a detailed analysis of
the MPI application reveals, that performance and scalability for this applica-
tion strongly depends on state-of-the-art technology for the network and the file
system. Off-the-shelf network interconnects such as Gigabit Ethernet and the
popular NFS file system clearly do not show the technical capability to keep up
with the requirements of this highly resource intensive application.

We plan to further extend this analysis by integrating additional functionality
required for the overall goal, such as including classifiers or comparing texture
information of an image to a data base of known cases. Since the final goal is
to analyze images of up to 20GB sizes, we also plan to make further scalability
tests beyond the resources currently available, e.g. through a Teragrid Grant.
Our experiments provide useful insights into the ability to scale and parallelize
typical image analysis algorithms. While the results presented here cannot be
generalized for all segmentation algorithms, the use of convolution and k-means
clustering is common in variety of image processing tasks, and the respective
parallelization results of the two modules would generalize well characterized by
the available hardware.

Acknowledgments. We would like to thank Oscar Hernandez for his support
with the OpenMP version of the code.

References

1. Hegedus, L.: The thyroid nodule. New Eng J Med. 351 (2004) 1764–1771
2. Gharib, H., Goellner, J.R.: Fine-needle aspiration of the thyroid: an appraisal.

Ann. Intern. Med. 118 (1993) 282–289
3. Association, T.A.T.: Thyroid fine needle aspiration (FNA) and cytology. In: Con-

sensus guidelines for thyroid testing in the new millennium. Volume 6. (2003) 1–80
4. Shah, S., Schwartz, M.R., Mody, D.R., Scheiber-Pacht, M., Amrikachi, M.: The

role of multispectral microscopy in differentiating benign and malignant thyroid



12

nodules: A pilot study of 24 cases. In: Proceedings of the Annual Meeting of the
United States and Canadian Academy of Pathology. (2008)

5. Feng, C., Shuzhen, C., Libo, Z.: New abnormal cervical cell detection method
of multi-spectral pap smears. Wuhan University Journal of Natural Sciences 12
(2007) 476–480

6. Shah, S., Thigpen, J., Merchant, F., Castleman, K.: Photometric calibration for
automated multispectral imaging of biological samples. In Metaxas, D., Whitaker,
R., Rittscher, J., Sebastian, T., eds.: Proceedings of 1st Workshop on Microscopic
Image Analysis with Applications in Biology (in conjunction with MICCAI, Copen-
hagen). (2006) 27–33

7. Farkas, D., Ballou, B., Fisher, F., Fishman, D.: Microscopic and mesoscopic spec-
tral bio-imaging. In: Proceedings of SPIE. Volume 2678. (1996) 200–209

8. Ornberg, R.L., Woerner, M., Edwards, D.A.: Analysis of stained objects in
histopathological sections by spectral imaging and differential absorption. J. His-
tochem. Cytochem. 47 (1999) 1307–1313

9. Hartigan, J.A., Wong, M.A.: A K-means clustering algorithm. Applied Statistics
28 (1979) 100–108

10. Faugeras, O.D., Pratt, W.K.: Decorrelation methods of texture feature extraction.
IEEE Trans. Pattern Analysis and Machine Intelligence 2 (1980) 323–332

11. Bamford, P., Lovell, B.: Unsupervised cell nucleus segmentation with active con-
tours. Signal Processing 71 (1998) 203–213

12. Kurugollu, F., Sankur, B.: Color cell image segmentation using pyramidal con-
straint satisfaction neural network. In: IAPR Workshop on Machine Vision Appli-
cations. (1998) 85–88

13. Ablameyko, S., Nedzved, A., Lagunovsky, D., Patsko, O., Kirillov, V.: Cell image
segmentation: review of approaches. In: Proc. ICPR. Volume 2. (2001) 26–34

14. Ferrer-Roca, O., Gomez, J.A.P., Estevez, M.: Chromatin texture from hematoxylin
stained thyroid lesions. Anal Cell Pathol. 17 (1998) 209–217

15. Yogesan, K., Jorgensen, T., Albregtsen, F., Tveter, K.J., Danielsen, H.E.: Entropy-
based texture analysis of chromatin structure in advanced prostate cancer. Cy-
tometry 24 (1996) 268–276

16. Laws, K.I.: Textured Image Segmentation. PhD thesis (1980)
17. Tourassi, G.D., Frederick, E.D., Vittitoe, N.F., Coleman, R.E.: Fractal texture

analysis of perfusion lung scans. Comput Boimed Res 33 (2000) 161–171
18. Shah, S., Aggarwal, J.K.: A Bayesian segmentation framework for textured visual

images. In: Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition. (1997) 1014–1020

19. Manjunath, B.S., Ma, W.: Texture features for browsing and retrieval of image
data. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI -
Special issue on Digital Libraries) 18 (1996) 837–42

20. Message Passing Interface Forum: MPI: A Message Passing Interface Standard.
(1995) http://www.mpi-forum.org/.

21. Board, O.A.R.: OpenMP Application Program Interface. (2005) Version 2.5.
22. Frigo, M., Johnson, S.G.: The Design and Implementation of FFTW3. Proceedings

of IEEE 93 (2005) 216–231
23. Malony, A.D., Shende, S., Bell, R., Li, K., Li, L., Trebon, N.: Advances in the tau

performance system. Performance analysis and grid computing (2004) 129–144
24. Huang, L., Eachempati, D., Hervey, M.W., Chapman, B.: Extending global opti-

mizations in the OpenUH compiler for OpenMP. In: Open64 Workshop at CGO
2008, In Conjunction with the International Symposium on Code Generation and
Optimization (CGO), Boston, MA, USA (2008)


