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Abstract. For many clinical applications, non-rigid registration of med-
ical images demands cost-effective high performance solutions in order
to be usable. We present a parallel design and implementation of a well-
known algorithm based on mutual information and a B-Spline transfor-
mation model for the Cell Broadband EngineTM(Cell/B.E.) platform. It
exploits the different levels of parallelism offered by this heterogeneous
multi-core processor and scales almost linearly on a system containing
two chips or a total of 16 accelerator cores. A speedup of more than 40x
was reached compared to a sequential implementation and registration
time for a 512x512x100 voxel image was 60 seconds.

1 Introduction

Image registration is the process of finding a dense transformation between two
images, for example to fuse images acquired with different devices or at a dif-
ferent time or to compensate anatomical differences between images of different
subjects. It has numerous applications in medical computing and different algo-
rithms exist. To be able to deal with soft tissue, non-rigid registration is needed,
which is a computationally highly demanding task, therefore it has been very
slowly moving into routine applications in real clinical environments. The effort
has been intensified in recent years to develop viable approaches for ever faster
registration implementations on various types of hardware platforms and con-
figurations. While research continues to explore strategies for more efficient and
rapidly converging methods, increasing attention has been given to paralleliza-
tion of algorithms for emerging high performance architectures, such as cluster
and grid computing, as well as advanced graphical processing units (GPU) and
high power multi-core computers. In [1] a supercomputer-based parallel imple-
mentation of multimodal registration is reported for image guided neurosurgery
using distributed and grid computing. Another supercomputer-based approach
is presented in [2]. One of the practical issues with these architectures is avail-
ability and cost, since even for mid-size clinics financial limitations can be a
major problem.
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Fig. 1. (a) The Cell/B.E. processor is a multi-core processor with one PPE and eight
SPEs. (b) An SPE consists of a synergistic processing unit (SPU), a 256 KB local store
(LS) and a memory flow controller (MFC).

The recent emergence of low cost, high power multi-core processor systems
has opened up an alternative venue for developing cost-effective high-performance
medical imaging techniques based on parallel processing. In this paper, we re-
port on an implementation of a mutual-information-based non-rigid registration
algorithm on the Cell/B.E. platform to investigate the performance gain poten-
tial. We explored how to partition the registration problem into parallel tasks
that can be mapped onto the heterogeneous Cell/B.E. platform with its general
purpose processor and attached accelerator cores. We implemented a sequen-
tial version of a well-known non-rigid registration algorithm based on free-form
deformations using B-Spline interpolation. We then parallelized the same regis-
tration method for the Cell/B.E. platform. Experiments with different datasets
were carried out. Running on a two processor system, the performance analysis
shows a speedup of more than 40x compared to the sequential version.

2 Cell/B.E. architecture

Recently, the processor industry is moving towards chip multiprocessors due to
diminishing performance returns of single processor designs on chip area and
power. The first-generation Cell/B.E. processor is a heterogeneous chip mul-
tiprocessor combining a Power processor element (PPE) with eight synergistic
processor elements (SPEs) [3] (figure 1a). The SPEs are accelerator cores special-
ized on single precision floating point calculations that account for the majority
of the compute performance. An SPE consists of two units, the SPU (synergistic
processing unit) and the MFC (memory flow controller) (figure 1b). An SPE op-
erates on its 256 KB LS (local store), which contains instructions and data. The
MFC transfers data blocks between the local store and system memory. These
transfers are initiated by DMA (direct memory access) commands, meaning that
the programmer has to explicitly move data into the local store to make it avail-
able to the SPU and then explicitly transfer results back to main memory. The
SPU is based on a 128bit SIMD architecture (single instruction multiple data),
allowing for example to execute four single precision float operations in parallel



as one vector operation. The SPEs and the PPE are communicate through the
EIB (element interconnect bus).

The Cell/B.E. processor can outperform other competing processors by around
an order of magnitude for a variety of workloads [4]. Mutual information based
rigid registration has been accelerated by a factor of 11x on a dual Cell/B.E.
system [5]. The performance benefits stem from various forms of parallelism
offered by the architecture [6], for example data-level parallelism in the SPU
with its SIMD instruction support, parallel DMA transfers and computation in
the SPE and thread-level parallelism because of the multi-core design. A com-
mon approach to programming for the Cell/B.E. processor is to have a main
thread running on the PPE orchestrating the threads on the SPEs, to which the
majority of the computational workload is offloaded.

3 Parallelization of the registration algorithm

3.1 MI based non-rigid registration algorithm

The registration algorithm we implemented models the transformation function
based on B-Splines, which is a well-known approach to non-rigid registration [7]
[8]. The idea is that a mesh of control-points is manipulated and the dense trans-
formation function T (x;µ) is obtained by B-Spline interpolation. The finite set
of parameters, µ, is the set of B-Spline coefficients located at the control points.
The degrees of freedom of the model can be adjusted through the control-point
spacing. To register a floating image Iflt to a fixed image Ifix, the parameters
µ are optimized iteratively with the goal to find the best matching. A gradient
descent optimizer with feedback step adjustment is used [9]. In order to support
the registration of images of different modalities, Mutual Information [10] [11]
is used as the similarity metric to be optimized. Its calculation is based on a
Parzen estimation of the joint histogram p (ifix, iflt) of the fixed and the trans-
formed floating image [7]. As proposed in [12], a zero-order spline Parzen window
for the fixed image and a cubic spline Parzen window for the floating image is
used. Together with a continuous cubic B-Spline representation of the floating
image, this allows to calculate the gradient of the metric S in closed form. The
contribution of the point at coordinates x in the fixed image to the derivative of
S with respect to the transformation parameter µi is:

∂S

∂µi
= − α

∂p(ifix, iflt)
∂iflt

∣∣∣∣
ifix=Ifix(x), iflt=Iflt(T (x;µ))

·
(

∂

∂ξ
Iflt(ξ)|ξ=T (x;µ)

)T

· ∂

∂µi
T (x;µ) ,

(1)

where α is a normalization scale factor. The high-order interpolation of the
floating image is justified in spite of its higher computational complexity because
of its advantages in terms of registration accuracy but also convergence speed
because of the better estimations of the image gradient [13].



Fig. 2. The algorithm iteratively opti-
mizes the transformation coefficients

Fig. 3. The PPE thread and the SPE
threads share several data arrays that
are in main memory

We use all the voxels of the fixed image to calculate the histogram and not
only a subset like in [12]. But we use a multi-resolution approach to increase
robustness and speed [7], meaning that we first register with reduced image and
transformation resolutions, and then successively increase them until the desired
resolution has been reached.

3.2 Serial implementation

We used a serial implementation of the algorithm to analyze the performance and
identify candidate functions for parallelization. The registration of the floating
to the fixed image is an iterative optimization of the transformation coefficients
after they were initialized (figure 2). Initialization can for example base on a
previously solved coarser level of the multi-resolution approach, centric align-
ment of the two images or manual alignment. We can divide an iteration into
several sub-steps. In a first step, we have to calculate the joint histogram of the
fixed and the transformed floating image. For every point in the fixed image, the
corresponding point in the floating image is found (based on the current trans-
formation function parameters), and the floating image is evaluated at these
coordinates. An entry for the point pair is added in the joint histogram. We do
not store the transformed floating image, although it might save processing time
later. It would be especially beneficial if we also would evaluate the gradient
of the transformed floating image already. We decided to not do so in order to
keep memory consumption low, which may be important when processing large
datasets.

Second, the histogram has to be normalized to obtain the joint pdf (prob-
ability density function) and the marginal pdfs, which allows to calculate the
mutual information of the two images. In the third step, the gradient is calcu-
lated, based on the sum of the contributions of all the point pairs. This gradient
is used in the fourth step by the gradient descent optimizer to calculate the new
set of transformation parameters. An iteration is only successful if the mutual
information of the two images has increased. If so, the step size of the optimizer



is increased for the next iteration. If not, we discard the new set of parameters
and decrease the step size.

If a step is unsuccessful, calculation of the gradient would not be necessary.
We calculated the gradient in every step in order to make the runtime less
dependent on the ratio of successful and unsuccessful steps. For the data in
section 4.2, calculation of the joint histogram and the gradient (steps 1 and 3)
together account for 99.9967% of the optimization runtime, making them best
candidates for parallelization.

3.3 Thread Level Parallelism

Based on the characteristics of the hardware platform and the performance anal-
ysis of the single threaded implementation, our approach to speed up the algo-
rithm was to offload the calculation of the joint histogram and the gradient to
the SPEs, while the rest of the algorithm, like histogram normalization and co-
efficient update by the gradient descent optimizer is still running sequentially
on the PPE. If we want to use n SPEs for the calculations, we can partition
the fixed image into n subsets and assign each one to an SPE. Each SPE only
calculates the contribution of its part to the joint histogram or the gradient re-
spectively and in the end the partial results are summed up. The SPE threads
are invoked before starting with the iterations and are waiting for commands
from the main thread running on the PPE. When the algorithm has to calculate
the joint histogram, it sends a message to each SPE and waits until it receives a
completion message from all SPEs, which they send out upon finishing. Similar
synchronizing communication is used for the calculation of the gradient. Having
one program capable of performing all the necessary computations running all
the time on the SPEs saves us the overhead of spawning the SPE threads for
every function call.

The PPE thread and the SPE threads share several data arrays that are in
main memory (figure 3), which may make it necessary to use synchronization
mechanisms if several threads possibly want to write to the same location and
also can lead to coherency problems in the explicitly administered cache in the
local store of the SPE. The fixed and floating image data is never modified
throughout the optimization process, therefore there is no danger incoherency
and no need for synchronization. The coefficients of the transformation function
are only modified by the PPE thread (during gradient descent optimization), so
we again need no synchronization here. To avoid coherency problems, we simply
invalidate all the cached coefficient data in the LS at the beginning of every
iteration.

During computation, all the SPEs have to write to the joint histogram or
the gradient. These arrays are relatively small compared to the image arrays. To
avoid synchronization overhead, we keep for each SPE a separate copy in main
memory on which it can work. After they finish, the PPE thread gathers the
partial results.



(a) Phase 1 (b) Phase 2

Fig. 4. Processing a fixed image block consists of two phases, allowing to overlap
calculations with data transfers.

3.4 Hiding memory latency

Because an SPE can only keep a limited amount of data in the LS, we have to
dynamically fetch the required data from main memory by DMA commands.
DMA is especially efficient if large, continuous blocks of data can be transferred
at once, therefore we partition the fixed and the floating image into cuboids
and each of them is mapped to a continuous memory region [14]. If we can
pre-fetch data to the LS before it is needed, we can keep the processing unit
busy and avoid stalls caused by the latency of main memory, which is much
higher than the latency of the LS. We achieve this by processing one block of
the fixed image at a time. We first fetch the reference image block and the
coefficients that are necessary to evaluate the transformation function in the
region of this block. Then, while we calculate for each point p in the fixed image
the coordinates p′ = T (p) it is mapped to in the floating image space, we start
fetching the floating image blocks that overlap with the transformed fixed image
block (figure 4a). By the time we have evaluated the transformation, the floating
image data is available. We can then interpolate the image at the coordinates p′

and add an entry to the joint histogram for the detected intensity pair. While
we do these calculations, the next fixed image block can already be pre-fetched
together with the coefficients relevant for the evaluation of the field for the points
in the block (figure 4b).

3.5 SPE local store organization

We use a software managed cache to organize the floating image data in the
local store. The cache has 27 (3x3x3) slots with a direct image block to cache
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Fig. 5. The caching schemes are shown for 2 dimensions for ease of visualization. (a)
Every block of the floating image has a fixed mapping to a cache slot in the LS. (b)
Blocks are only fetched if the distance between their center and the mapped center of
the reference block c′ is below the threshold dthr

block mapping (figure 5a). The cache index for a block B̄ix,iy,iz is calculated as

(ix MOD 3) + (iy MOD 3) × 3 + (iz MOD 3) × 9. (2)

To decide which blocks of the floating image to fetch, we calculate the map-
ping of the point in the center of the fixed image block c′ = T (c). The block
containing c′ and its 26 neighbors are loaded to the LS, which should cover the
entire mapped fixed image block assuming that the voxel size in both images is
the same and T does not stretch extremely into any particular direction. If we
process neighboring fixed image blocks sequentially, chances are high that a large
part of the required floating image blocks were already fetched while processing
the preceding neighbor and we do not have to re-fetch them.

With this approach it is probable that we fetch blocks that are not needed and
that we unnecessarily stress the memory bandwidth. We introduce therefore the
parameter dthr and only fetch blocks B̄ix,iy,iz

whose center point c̄ix,iy,iz meets
the condition

∣∣∣∣c̄ix,iy,iz − c′
∣∣∣∣ < dthr (figure 5b).

In the case that for a p′ we do not have the corresponding image data in the
LS, we skip it. Instead of fetching the missing image data, we send an exception
message to the PPE thread that it has to process the point-pair p−p′. In order
not to have to send a message for every cache miss, we can accumulate up to 64
and send them together.

3.6 SIMD implementation

A large part of the computation time stems from the evaluation of the trans-
formation function p′ = T (p) and the interpolation of the floating image at
the mapped coordinates Iflt (p′). Both base on cubic B-Spline interpolation:
β3 (x) =

∏N
k=1 β3 (xk), with x = (x1, ..., xN ) and N = 3 for the 3 dimensional

case. I.e.β3 (x) is a tensor product of cubic B-Splines.
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Fig. 6. (a) In the 1D case of cubic spline interpolation, only 4 splines have to be
evaluated to compute the interpolated value at a given position. The splines that can
be ignored to calculate the value marked with a circle are dashed. (b) In the 3D case,
interpolation works on 4x4x4 blocks of data, 4 elements can be processed at a time in
the SIMD unit.

T (x) = x +
∑
j

cjβ3

(x
h
− j

)
(3)

where j are the parameter indices and h is the mesh spacing.

Iflt (x) =
∑
i

biβ3 (x− i) (4)

Because of the limited support of the cubic B-Splines, the evaluation in the
1D case is a weighted sum (weight β3 (x)) of 4 coefficients (figure 6a). In the 3D
case we therefore have to work on a 4x4x4 neighborhood of x to evaluate T (x)
or Iflt (x).

The neighborhood size matches well with the 4-way SIMD unit of the SPU.
A requirement to efficiently use the SIMD unit is that the vectors that are
processed are stored continuously in memory. If the elements have to be loaded
first individually to assemble the vectors, the performance benefit is lost. When
storing 3D data to memory, adjacent elements along one coordinate direction
can be chosen to be neighbors in memory, like the highlighted 4 elements in
(figure 6b), so we can meet this requirement.

Performance is also decreased if the start of the vector data is not aligned
to a 16 byte address boundary in memory, because the loading has to be split
into two steps. We need to load vectors starting at any data element, therefore
we can not directly meet this requirement. We introduce the constraint that the
spline mesh spacing is a multiple of the image block size. Like this, the same
coefficients are needed to evaluate the transformation function for all the points
within an image block. They are loaded and aligned before processing of the
block starts.
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Fig. 7. Absolute algorithm runtime and speedup

4 Experimental results

For the performance measurements, two different systems were used. The parallel
version was running on an IBM R© BladeCenter R© QS20 featuring 1 GB of RAM
and two processors running at 3.2 GHz configured as a two-way, symmetric
multiprocessor (SMP) [15]. A thread running on a PPE can communicate with
all the 16 SPEs. The Cell/B.E. SDK 3.0 and the GCC compiler were used to
implement and compile the algorithm. In all the experiments, there was one
main thread running on one of the PPEs and up to 16 threads on the SPEs. The
sequential version was running on one core of an Intel R© XeonTM3.2GHz with 4
GB of RAM. The code was compiled with the GCC compiler with the flags set
to use sse2, but the code was not tuned for the SIMD unit. On both systems,
we measured only the runtime of the iterative optimization (box in figure 2),
assuming that all the data was already loaded to main memory the way the
algorithm expects it.

4.1 Runtime

In this experiment, we carried out 60 registrations of CT abdominal images with
different sizes and measured the mean of the registration time per voxel. A four
level multi-resolution pyramid was used with a B-Spline grid width of 16x16x16
voxels in the finest level. The gradient descent optimizer was set to carry out a
fixed number of 30 iterations at every level. The sequential version required 94.3
µs/voxel (about 41 minutes for an image size of 512x512x100 voxels) (figure 7a).
The Cell/B.E. version using 1 SPE completed in 34.2 µs/voxel (15 minutes for
the same image). This speedup of 2.75x (figure 7b) stems from the restructuring
of the code for SIMDization and parallelism of data transfers and calculation.
The threshold dthr was set to 2 block widths, which was high enough so that
no cache misses occured. Therefore the PPE thread was busy waiting while the
SPE thread was calculating and the two threads never worked in parallel.
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Fig. 8. Runtime (relative to the runtime for dthr = 2), floating image block fetches
per fixed image block and cache misses for different values of dthr (in units of floating
image block width)

When exploiting the thread level parallelism by using all the 16 SPEs, the
runtime was further lowered to 2.29 µs/voxel (1 minute for the image of size
512x512x100 voxels). The overall speedup compared to the sequential imple-
mentation was 41.1x.

4.2 Memory traffic

In this experiment we used all the 16 SPEs on the QS20 and looked at the effect
of dthr on the algorithm runtime. An MR image from the Brainweb Project with
a size of 181x217x181 was used. It was deformed by random transformations
and then registered back to the original image. We calculated the mean values
based on registrations with 50 different random transformations. The spline grid
spacing was 8 voxel units (8 mm).

The effect of a lower threshold is that less floating image blocks are fetched,
leading to less memory traffic. Figure 8 shows that for dthr = 2 (in units of
floating image block widths) almost 9 blocks have to be fetched per fixed image
block. This number decreases when lowering dthr and for dthr = 1.25 we only
have to fetch around 3 blocks. The algorithm runtime remains unaffected in this
range, indicating that the algorithm is not memory bound. Below 1.25 a further
decrease of dthr causes the runtime to rise rapidly and for dthr = 1 it is almost
six times larger than for dthr = 2. In figure 8b we see that for a threshold below
1.4 we start to have cache misses, meaning that not all the required floating
image data is in the LS of the SPEs and more and more calculation has to be
done in the PPE. For dthr < 1.25 the processing of the cache misses in the
PPE starts to take longer than the normal processing in the SPEs and becomes
the determining factor for the overall runtime. This is already the case for a
cache miss rate of less than 0.5% because the cache miss processing in the PPE
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Fig. 9. Scalability

is much less efficient than the processing in the SPEs and requires additional
communication.

4.3 Scalability

In this experiment we performed 10 registrations with the same images as in
section 4.1 with the same settings and measured the mean runtime depending
on the number of SPEs used (figure 9a, plotted is the relative runtime compared
to utilization of 1 SPE). In figure 9b we see that the algorithm scales almost
perfectly. The SPE efficiency for 16 SPEs ( t1

16·t16 , where tn is the runtime for n
SPEs) is 0.958.

5 Discussion

High computational cost is a main obstacle for the usability of non-rigid registra-
tion in a clinical environment. The work presented in this paper shows that this
task can be accelerated significantly on the Cell/B.E. processor. The algorithm
was restructured to exploit the different forms of parallelism the architecture of-
fers, which allowed to achieve good scalability. The execution time was lowered
to 2.29µs/voxel on a system with two processors. An implementation of mutual
information based non-rigid registration on a supercomputer using 64 CPUs
was reported to reach a speedup of up to 40x compared to 1 CPU, resulting in a
mean execution time of 18.05µs/voxel for that algorithm [2]. Even if one has to
be careful when comparing these numbers because the implemented algorithms
differ and runtime may depend on several parameters (like control-point spacing
or number of iterations), our results demonstrate that the Cell/B.E. architec-
ture can achieve comparable or better performance with much less processor
chips. It even outperforms a hardware implementation presented in [16], which
is reported to have a runtime of roughly 3.6µs/voxel.
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