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Abstract. Non-rigid registration is a tool commonly used in medical
image analysis. However techniques are usually time consuming. In this
paper we present a fast registration framework which is a modification of
the well-known Free-Form Deformation (FFD) algorithm. Our algorithm
uses the analytical Normalized Mutual Information gradient which leads
to a highly parallel framework. Its implementation is therefore suitable
for execution via Grapics Processing Units. We apply the new method
to estimate the brain atrophy on Alzheimer’s disease subjects and show
that accuracy is similar to the classical FFD, however the computation
time is dramatically decreased.

1 Introduction

In longitudinal studies of atrophy the Boundary Shift Integral [1] (BSI) technique
is widely used in imaging studies [2]. However this method is labour-intensive
as it requires segmentation of both the brain baseline and repeat scans. Im-
portantly segmentations are only semi-automatic and thus require significant
operator time. The clinical trial sizes are increasing and consequently the time
spent segmenting the brain scans. Using the Jacobian Integration [3] (JI) the
segmentation time can be reduced by half as only one brain segmentation is nec-
essary. The JI requires a non-rigid registration pre-step to compute the Jacobian
determinant map. The most common non-rigid frameworks used in clinical trials
are the fluid [4] and the Free-Form Deformation [5] (FFD) algorithms. FFD has
been shown to perform well in Alzheimer’s disease patient atrophy estimation
[6]. Although FFD appears to be more accurate than the BSI [3], it is very time
consuming.

Some groups have implemented supercomputer- [7] or FPGA-based [8] so-
lutions to accommodate time constraints. However these kinds of hardware are
either high-cost or require specialised skills. Graphics Processing Unit- (GPU-)
based computation is a more accessible high performance alternative which has
been shown to be effective for computationally expensive applications [9]. How-
ever since GPUs are highly parallel devices this effectiveness depends on the level



of parallelism in the algorithm. We present a modified FFD framework which
is more suitable for parallel execution. This is principally achieved by driving
the transformation with the analytical Normalised Mutual Information gradient
which allows reinterpolation of the whole image at each step.

In the next section we present the Fast Free-Form Deformation (F3D) al-
gorithm and its implementation on rapid GPU hardware. Then we apply the
framework to real Alzheimer’s disease subjects and controls to estimate their
brain atrophy. We compare our results with those obtained with the classical
FFD algorithm.

2 Method

Our framework is related to the non-rigid registration scheme proposed by
Rueckert et al. [5]. A cubic B-Splines interpolation is used to transform a source
image to match a target image. This transformation is driven by the Normalised
Mutual Information (NMI) and its normalised gradient.

2.1 Cubic B-Splines interpolation

The cubic B-Splines framework is well documented elsewhere [5], and the details
are omitted for brevity. However we note that a particularly favourable property
of the framework is that any deformation produced with a grid of density n can
be exactly produced on a grid of density 2n − 1. This property has been used
in a pyramidal approach in our implementation. However cubic B-Splines suffer
from being extremely computationally expensive. For this reason in the classical
approach only one control point is optimised at a time which means the whole
image does not have to be fully interpolated at each step. However the computa-
tion of each voxel’s position and their new intensities are fully independent and
thus their computation is suitable for parallel implementation. For this reason
at each step we optimise all control points and interpolate the whole image.

2.2 Optimisation using the NMI gradient

To optimise the control point position we use Normalised Mutual Information
[10, 11] (NMI) which is a voxel intensity-based information theoretic metric based
on the Shannon entropy formula: H = p (e) . log (p (e)) where p (e) is the proba-
bility of an event e.

By optimizing the Mutual Information(1) (MI) or the NMI(2) we aim to
maximise the information one image has about another image. MI and NMI are
defined as:

MI = H (A) + H (B) − H (A, B) (1)

NMI = (H (A) + H (B)) /H (A, B) (2)

In (1) and (2) H (A) and H (B) are the marginal entropies respectively of the
image A and B and H (A, B) denotes their joint entropy. The probability com-
putation is based on a joint histogram which indicates the probability of each



combination of intensity in the A and B images. These metrics are suitable for
muti-modal registration as they are not only based on the voxel intensity but
on the quantity of information given by the intensity. The metric is maximised
when A and B are aligned.

To align our two images we displace the B-Splines control points to maximise
the metric value. To do so we use the gradient of the NMI at each control point.
In the classical FFD implementation the control points are displaced in each di-
rection, and the local changes are taken into account to update the result image
and the joint histogram. From this update, the new metric value is calculated
from which the metric gradient in one direction is obtained. Summation of gra-
dient in each direction yields a single resultant gradient at each control point.
Once the gradient is known a steepest gradient descent is performed by updating
the result image with the local changes. This technique is used for each control
point and to guarantee a good registration the whole loop is performed several
times. However this scheme is not suitable for our method as we aim to optimise
all the node positions and interpolate the result image at once. Consequently,
we use the analytical gradient for each voxel proposed by Crum et al. [12].

To the best of our knowledge there is no implementation of the FFD us-
ing such a gradient formulation. It is possible to compute anatically the NMI
gradient for each voxel by considering an infinitesimal displacement at a voxel
resolution. In the Target image we consider one voxel Target(x,y,x) with in-
tensity m. In the Source image the corresponding voxel Source(x,y,z) has an
intensity of s. For the gradient calculation along the x axis for example we need
Source(x − 1,y,z) and Source(x + 1,y,z) which intensities are respectively equal
to r and t. From the Joint-Entropy gradient, Ex = − 1

N
log [pmr/pmt] and the MI

gradient ,Fx = 1

N
log

[

pmr

pr

/ pmt

pt

]

, the NMI gradient(3) can be calculated from:

Gx =
1

H (A, B)
2

[H (A, B) × Fx − MI × Ex] (3)

where N is the number of voxels in our images and pmr, pmt, pr and pt are
extracted from the joint histogram. pmt is the probability of having the intensity
m in image Target and the intensity t in the Source image and pr is the proba-
bility of having intensity r in the Target image. A similar procedure is used in
the other directions. For further information refer to [12].

Once the NMI gradient is known for each voxel we use a Gaussian convolution
to smooth the gradient information. A normalisation step described in the next
part is then used to convert the gradient information to displacements. The
smoothing allows voxels close to a control point to have more impact than voxels
further away. Moreover it allows generation of a smooth displacement, wherein
the larger the standard deviation value of the Gaussian window, the smoother
the deformation field, as shown on Fig. 1. For this figure we generate a sphere
and a cube and then smooth them. We perform the registration between these
two images with different standard deviation and apply the deformation field to
a regular grid to visualise the deformation. All the registrations were performed
with the same parameters: 3 levels of spacing (20, 10 and 5 mm), 16 histogram
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Fig. 1. Influence of the kernel size on the registration smoothness. Images a, b, c and
d are the result images from the registration of the source image into the target image
using the F3D with a Gaussian kernel radius of 1, 2, 3 and 4 respectively. Images e, f , g

and h are the resulting deformation fields and are displayed with the same organisation.

intensity bins and iteration until convergence of the metric value. The size of
the Gaussian window is defined by its width ω which include 99% of the integral
of the Gaussian function. ω takes values which are integer multiples m of δ
(ω = 2mδ). In this paper we refer to m as the kernel radius. In Fig. 1 values of
m = 1, 2, 3, 4 were used.

2.3 Normalisation of the NMI gradient

Usually with the FFD algorithm the number of iterations performed for each level
is manually defined, since the large computation time prohibits many iterations.
In our framework, we iterate until the NMI value does not show any improvement
of the registration. As described previously, our framework is driven by the
forces derived from the local gradient. These values are numerically low (on the
order of 10−6), and lead to an excessive number of iterations before convergence.
Therefore we nomalise the gradient values using a user-defined step size (half the
δ in our implementation). If the NMI value descreases when moving the control
point we consider the displacement to be too large and the step size is divided
by 2. The gradient field is then normalised using the new step size value. This
approach is used until the displacement change falls below a set threshold of 10−2

mm. This simple technique improves our convergence speed while generating
displacement of reasonnable order for human brain MRIs resolution (in the order
of 1 mm).

2.4 Implementation on parallel hardware

The F3D implementation was achieved using CUDA [13] which is an Application
Programming Interface developed by NVidia to simplify interface between CPU



(host) and GPU (device). Our framework comprises four steps, organised as in
Fig. 2.

Fig. 2. Organization of our implementation

The first step performs result image interpolation via cubic B-Splines and
trilinear interpolation to define the new voxel position and intensity. As already
stated the computation of each voxel displacement and intensity interpolation
is independent and their parallel hardware implementation is therefore straight-
forward. However the calculations are demanding in terms of dynamic memory
resources, requiring allocation of around 22 registers per computational thread.
As GPU memory is limited, a higher register requirement per thread dictates
that fewer threads may be executed concurrently, resulting in sub-optimal use of
the device’s computational resources. The ratio of active threads to maximum
allowed (hardware dependent) is referred to as occupancy [13], and an efficient
implementation should maximise this. A single kernel requiring 22 registers leads
to an occupancy of 42%. For this reason this step has been split into two kernels,
the first dealing with the B-Splines interpolation only and the second with trilin-
ear interpolation. Register requirements then fall to 16 and 12 respectively, and
occupancies increase to 67% and 83%. Such a technique allows a computation
time improvement of 36.8% in our case.

The second step involves filling the whole joint histogram and computing the
different entropy values. A GPU implementation of this step did not show sig-
nificant computation time improvement compare with a classic implementation.
Furthermore this step occupies only around 2.2% of the entire computation time.



Moreover a GPU implementation necessitates use of single precision which for
this step proves detrimental to accuracy. For these reasons this step is executed
on CPU rather than on GPU. This choice does not affect the computation time
even with the data transfer between device and host.

In the third step the gradient value is computed for each voxel and then
smoothed. As for the first step, we distributed the computation across several
kernels. The first kernel computes the gradient value using the joint histogram,
the target image and the result image. Then the gradient is smoothed using
three different kernels where each of them deals with one axis. For these kernels
it appears that computing the Gaussian function values on the fly is faster than
precomputing and fetching them from memory.

The last step normalises and updates the control point positions. A first ker-
nel is used to extract the maximal gradient value from the whole field. The field is
split into several parts, from each the maximal value is extracted. Subsequently,
the largest value from the extracted maximals is kept. A last kernel is then used
to update the control point position based on the normalised gradient value.

Table 1 presents the computation profile for each kernel.

Step GPU kernel Registers Occupancy(%) Computational load(%)

1 B-Splines Interpolation 16 67 25.5
Trilinear Interpolation 12 83 10.8

2 none 2.2

3 Gradient computation 15 67 33.0
Smoothing, X-axis 16 67 6.7
Smoothing, Y-axis 15 67 7.0
Smoothing, Z-axis 16 67 9.0

4 Maximal value 5 100 5.8
Point displacement 21 50 < 0.01

Table 1. Computation profile for each kernel. Values were obtained with 181×217×181
voxels images and a 37× 44× 37 grid.

The GPU we use is an NVidia 8800GTX, which includes 128 processors and
768 MB of memory. The memory size is a limitation as it prohibits loading very
large image sets with a small δ size. However we manage to run tests on 2563

voxels images with a δ = 2.5 voxels along each axis. These specifications are
largely acceptable, for MRI brain images for example.

3 Results

3.1 Application to brain atrophy estimation

Boyes et al. presented a study [3] in which the Jacobian Integration (JI) using
a FFD algorithm was compared with a widely-used brain atrophy measure, the



Boundary Shift Integral [1] (BSI), for evaluating brain atrophy. In this paper
we perform similar tests in order to compare our results with the classical FFD
implementation. The JI consists in a first time in the affine then non-rigid reg-
istration of a repeat image in the space of its baseline. In a second time the
determinant of the jacobian map is computed from the deformation field or di-
rectly from the B-Splines grid. Then the determinant values included into the
baseline brain mask are averaged to obtain the JI value. JI < 1 indicates atrophy
whereas JI > 1 indicates expansion.

The comparison has been done using a cohort of 38 clinically Alzheimer’s dis-
ease (AD) subjects and 22 aged matched healthy controls. Each subject had two
baselines, scans on the same day and a repeat scan approximately one year later
(mean(SD) 364(14) days). The data acquisition was performed on a 1.5 T Signa
Unit (GE Medical Systems, Milwaukee) with a inversion recovery (IR)-prepared
spoiled GRASS sequence: TE 6.4 ms, TI 650 ms, TR 3000 ms, bandwidth 16
kHz, 256 × 256 × 128 matrix with a field of view of 240× 240 × 186 mm.

Three different tests were performed. For each the non-rigid registration pa-
rameters were: 2.5 mm δ along each axis at the final stage, 64 histogram intensity
bins, 5δ radius for the Gaussian kernel radius and no smoothing of the input im-
ages. The first test performed involved the calculation of the JI between the
two baselines from the same patient. As the two scans were performed the same
day it is assumed that the brain volume is the same in each. Consequently we
expect a JI value of 1. The mean errors are presented in Table 2(a) where the
results from BSI and JI-FFD are directly extracted from [3]. The second test
was similar except that one baseline was shrunk by decreasing the voxel size by
a factor of 0.01 in each direction. This operation simulates an atrophy by a fac-
tor of 0.9703 (0.993). The error is calculated from e = |JI−0.9703|. In this case
only a rigid registration is performed before the non-rigid instead of an affine
registration. See table 2(b) for results. The third experiment involves calculation

Same day scans (a) One baseline scaled (b) Mean atrophy (c)

mean %error [SD] mean %error [SD] mean %atrophy [SD]
Controls AD subjects

BSI 0.28 [0.38] 0.78 [0.48] 0.68 [0.57] 2.09 [1.14]
JI FFD 0.25 [0.27] 0.23 [0.28] 0.43 [0.52] 2.05 [0.98]
JI-F3D 0.29 [0.23] 0.26 [0.20] 0.39 [0.45] 2.15 [0.93]

Table 2. Average errors and mean atrophy rates for the BSI and the JI using FFD
and F3D

of the JI between the repeat image and the two corresponding baselines. The
obtained values were normalised by the number of days between the repeat and
the baselines scans. The mean atrophy rates and standard deviation are pre-
sented in table 2(c). The Fig. 3 shows the result for each baseline-repeat pair for
the AD patients and the controls. Then the JI measures of atrophy are used to



separate the AD subjects and the controls. The two series of baseline were anal-
ysed separately using linear regression models relating the particular variable to
probable AD-control status with Huber/White/sandwich estimate of variance
(robust standard errors) [14, 15] to assess subject group discrimination. Multiple
linear regression was used to determine whether the FFD rates of atrophy were
independently associated with probable AD-control status while adjusting for
BSI rates.
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Fig. 3. Control and AD rates of atrophy for both set of baseline (B1,B2) using BSI
and JI with FFD and F3D.

Using atrophy rates derived from each series at baseline to repeat, all three
methods were predictors of AD subjects from controls (p < 0.001). Mutually-
adjusted linear regression models showed that after adjusting for FFD, BSI atro-
phy rates were not independently associated with AD-controls status (p > 0.05).
However, adjusting for BSI, FFD was independently associated with AD-controls
status (p < 0.001) inferring that FFD is a superior group discriminator. The
equivalent comparisons of BSI and F3D showed that BSI atrophy rates were in-
dependently associated with AD-control status (p < 0.02). When assessing F3D
adjusting for BSI, the F3D was independently associated for both baseline series
(p < 0.001). This suggests that F3D and BSI both independently add to the
discrimination of the two groups.

3.2 Computation time benefit

In their study Boyes et al. performed the registration on full brain image. As a
consequence we followed the same protocol to avoid any bias. Based on recent
discussion with Daniel Rueckert the computation time for such analysis and



image sizes is between 3 and 5 hours on standard high-end PC. When the source
image is skull stripped the computation time falls to approximately 30 minutes.

The mean computation time of the F3D is 2.35 minutes to generate the result
presented here. However when performing registration with the source images
skull stripped the computation time of the F3D falls to 0.64 minute.

4 Discussion and Conclusion

The first two test based both on ground true show that the JI-F3D performs as
well as the JI-FFD. Indeed they both do not show significant differences with the
ground true, or between results. The third test demonstrates that JI-F3D, as JI-
FFD, provides a strong discrimination between the normal controls and the AD
subjects. However, JI-FDD and JI-F3D do not produce the exact same output.
This difference might come from the stopping criteria; a user-defined number of
step for FFD, compared to a convergence of the metric value for F3D.

We presented a modified FFD framework suitable for a multi-thread im-
plementation. This framework has been implemented for PGU execution using
CUDA. We validated the F3D and demonstrate that it is able to discriminate
between AD subjects and controls based on their brain atrophy rate. The same
discrimination has been previously obtained using BSI or the JI with the FFD.
However using the F3D the time required decreases dramatically.

The F3D framework may be useful in inter-subject applications such as atlas
creation which is highly time consuming. This will be the focus of our future
work.
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