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Abstract. Tracking growth of lethal ice is critical to success of percu-
taneous ablations using supercooled probes introduced into cancerous
lesions. Physicians lack planning tools which provide accurate estima-
tion of the ice formation. Simulation is computationally demanding, but
must rapid for clinical utility. We develop the computational framework
for the simulation, acceleration strategies for multi-core Intel x86 and
IBM Cell architectures, and preliminary validation of the simulation.
Our data shows streaming SIMD implementation has better performance
and scalability, with good agreement between simulation and manually
identified ice ball boundaries.

1 Introduction

Minimally-invasive methods of lesion ablation, utilizing image guidance, have
become increasing popular in recent years. One key procedure is destruction of
neoplastic lesions through freezing, or cryoablation. It is often used for tumors
in patients where surgical extirpation is not a viable option [1].

Skeletal metastases are often painful. The current standard of care is radia-
tion therapy. However, relief from pain lags treatment and 20 to 30% of patients
do not experience relief at all. Palliative cryoablation has emerged as an imme-
diate source of relief [2]. To the best of our knowledge, no clinically oriented
simulation systems exist for musculo-skeletal (MSK) cryoablation procedures.
The procedure is illustrated in Fig. 1; bone and cryoprobe isosurfaces are ren-
dered with the 0◦C isotherm.

Suitable lesions are accurately localized through radiological imaging tech-
niques. One or more thin probes (cryoprobes) are introduced into the body
via a small skin puncture, and positioned within the lesions under real-time
imaging guidance [3]. Recent advances in cryoprobe technology have provided
unprecedented flexibility to the physician; insulated probes allow percutaneous
approaches and elimination of cryogens allow fine control over the heat flux. Once
probe positions are confirmed, expansion of argon gas near the probe tip (the
Joule-Thompson effect) progressively freezes the adjacent tissue, forming an “ice
ball”. The temperature for ensuring cell death is “lethal ice” at −20 to −40◦C.
Ice formation, changes in cellular volume and loss of blood supply induce cell
death in lethal ice. Current clinical practice is a 10 minute freeze, 10 minute
thaw and 10 minute re-freeze.
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(a) Left illiac bone (b) Right superic pubic ramus

Fig. 1. MSK cryoablation procedures. Cryoprobes may be used in parallel (a)
or in a “spoke” pattern (b). Four cryoprobes are used in both examples.

Imaging plays a key role in the planning, intra-procedural monitoring and
subsequent follow-up of cryoablation cases. Planning consists of lesion visualiza-
tion and careful selection of probe trajectory to maximize tumor destruction and
minimize injury to normal tissue. Parallel (Fig. 1(a)) and crossing (Fig. 1(b))
probe configurations are common. The interventional radiologist integrates many
factors when formulating his plan, i.e., location of the lesion relative to criti-
cal structures, heat conducting properties of surrounding structures, amount of
blood perfusion that might carry heat away from the region, and lesion shape.
During the procedure, ice ball growth is monitored through serial imaging stud-
ies, allowing the operator to modify growth rate by titration of gas flow.

Physicians performing MSK cryoablation estimate the number and position
of cryoprobes from general manufacturer specifications and prior experience.
This suggests the need for tools to assist in planning cryoablation procedures,
which in turn is expected to improve clinical outcomes. To be useful, a simula-
tion system must rapidly provide accurate temperature maps based on physical
properties of cryoprobes and tissue-specific thermal characteristics. This point
can not be overstated: if the system does not provide adequate response, no
matter how accurate, it can not be clinical useful. Once a plan is submitted for
simulation, physicians expect immediate visualization of the temperature maps.
Seconds of run time for each simulated minute are expected. In this work, we
have endeavored to develop and validate a highly accelerated solver first on the
Intel x86 architecture and then on IBM’s Cell Broadband Engine architecture.

2 Methods

2.1 Solution to the Bioheat Equation

Based on the plan configured by the planning interface, the simulation system
solves the heat transfer equations. The planning system provides the location,
size, and heat flux of each cryoprobe. The simulation determines tissue properties
for each voxel in the CT image and boundary conditions for a partial differen-
tial equation (PDE) system. The simulation incorporates models of cryoprobe
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Table 1. Bioheat equation symbols and units

Symbol Description Units

C specific heat MJm−3K−1

T temperature K
k thermal conductivity Wm−1K−1

ẇb blood perfusion unitless
Cb specific heat of blood MJm−3K−1

Tb blood temperature K
q̇met metabolic heat generation K
β relaxation parameter unitless
W ẇbCb/C unitless
N(Tt) neighborhood of Tt
∆x2

i square distance from Tt to T it mm

Tissue specific temperature-dependent

C̃(T ) effective specific heat MJm−3K−1

k̃(T ) effective thermal conductivity Wm−1K−1

q̃met(T ) effective metabolic heat K
w̃b(T ) effective blood perfusion unitless

physical properties and intrinsic tissue properties include thermal conductivity,
specific heat, perfusion, etc. Our derivation follows the work of Rabin [4] and
Deng [5].

Our simulation model incorporates the important liquid-solid phase transi-
tion [5]. Tissue moves from “fresh” to “mush” to “frozen”, each state having
different thermal properties[6]. Symbols and unites used in this work are defined
in Table 1. The bioheat equation [7] is given in (1). The time rate of change in
temperature is governed by the divergence of the temperature gradient (Lapla-
cian for scalar fields), blood perfusion and metabolic heat generation. Using
finite differences (2) with a relaxation parameter β, (1) can be iteratively solved
as shown in (3). The solution domain is divided into isotropic 1mm3 elements,
resulting in a time step (∆t) of 0.3 sec. or 180 iterations per minute of simu-
lated freezing (see [5] for details). Associated with each tissue class are several
temperature dependent parameters(C̃(T ),k̃(T ),q̃met(T ), and w̃b(T ) in Table 1)
modeling phase change.

C
∂T

∂t
= ∇ · (k∇T ) + ẇbCb(Tb − T ) + q̇met (1)

Tt = βTt+∆t + (1− β)Tt (2)

Tt+∆t =
1

1−Wβ∆t

(
1−W (1− β)∆tTt +

(q̇met + ẇbCbTa)∆t
C

+
∑

T i
t∈N(Tt)

k∆t(T it − Tt)
C∆x2

i

) (3)
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2.2 Implementation

CT images are acquired approximately every 2 minutes during the procedure. For
each subject, the CT image corresponding to the end of the first freeze cycle were
identified. All CT volumes were resampled to 1mm3 isotropic resolution, forming
the Tt volume for t = 0. A volume of tissue classes (Ctissue) was initialized. Initial
conditions were constructed from manually identified cryoprobe voxels fitted to
a line and assigned the “tissue class” of probe; each voxel’s temperature was
fixed at −170◦C for the duration of the simulation. The remaining tissue was
initialized to 37◦C and assigned to the generic tissue class.

The basic algorithm for solving the heat transfer equation is shown in Algo-
rithm 1. For each slice, row pointers are initialized, including the neighborhood
rows N(Prow) around Prow. Tt+∆t is calculated by the Update(·) function. The
algorithm iterates until the simulation time Tsim is reached.

Algorithm 1 Basic simulation algorithm.
Initialize volumes Tt, Tt+∆t and Ctissue
while t < Tsim do

for slice = 1 to Nslices do
for row = 1 to Nrows do
Prow = Tt.getSlice(slice).getRow(row)
Load pointers N(Prow) = {Pabove, Pbelow, Prow+, Prow−}
for idx = 1 to Ncolumns do
{the Update(·) function implements (3)}
Tt+∆t[idx] = Update(constants[Ptissue[idx]], N(Prow[idx]))

end for
end for

end for
t = t+∆t

end while

2.3 Acceleration strategies

Symmetric multi-processors are ubiquitous. OpenMP has emerged as a simpli-
fied alternative to explicit management of threads [8,9]. The main strength of
OpenMP lies in the ability to convert serial loops to parallel through #pragma
compiler directives. The resulting code is readily understandable, and may be ex-
ecuted in serial for debugging/validation purposes. OpenMP naturally fits into
medical image processing by allowing loops over all the slices in a volume to
be executed on all the available SMP cores. Both commercial high-performance
compilers, e.g. the Intel compiler, and open source compilers, e.g. GCC imple-
ment the OpenMP standard. Our initial acceleration strategy augments Algo-
rithm 1 with OpenMP directives, processing slices in parallel on all available
CPUs (Algorithm 2). The code was compiled by the Intel compiler and GCC on
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an server (IBM HS21 Blade, CentOS 5). Table 2 shows compiler parameters and
versions.

Algorithm 2 OpenMP algorithm.
while t < Tsim do

for all Core in available CPUs do {Execute in parallel}
for all slice ∈ Coreslices[Core] do

for row = 1 to Nrows do
Prow = Tt.getSlice(slice).getRow(row)
Load pointers N(Prow) = {Pabove, Pbelow, Prow+, Prow−}
for idx = 1 to Ncolumns do
{the Update(·) function implements (3)}
Tt+∆t[idx] = Update(constants[Ptissue[idx]], N(Prow[idx]))

end for
end for

end for
end for
t = t+∆t

end while

Table 2. Compiler details

Name / Version Parameters

GNU GCC 4.1.2 20070626 -O3 -fopenmp
Intel Compiler for Linux version 10.1 20080112 -O3 -ipo -no-prec-div -xT -openmp
XL C/C++ for Multicore Acceleration V9.0 -O5 (SPU compilation only)

IBM’s Cell Broadband Engine [10] is a useful platform for acceleration of
medical image registration [11], and shows potential for broad applicability.
Though the Cell is akin to a general purpose CPU, i.e., Intel x86, understanding
of its strengths and weaknesses are critical to successful acceleration. Current
generations of the Cell have 16 synergistic processing units (SPU). Each SPU
has 256KiB of local storage and a single-instruction, multiple-data (SIMD) vec-
tor processor. Data must be explicitly moved from the main memory into the
local store. The Cell has excellent direct memory access (DMA) abilities; up
to 16 asynchronous DMA requests may be simultaneously pending per SPU.
While the small local storage may seem like a significant limitation, relative to
graphical processing units, it is spacious. The SPU local storage is, in essence,
an explicitly managed L1 cache.

Development to a streaming SIMD algorithm for Cell was our second accel-
eration phase (Algorithm 3). Data-starvation and CPU-starvation pitfalls have
been avoided by overlapping computation and asynchronous DMA requests. In
parallel, each SPU processes an independent regions of interest (ROI). SPUs are
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dual issue, executing fixed- and floating-point SIMD operations in parallel with
load/store/permute instructions. Double buffering is achieved through two input
buffers and two output buffers. Each SPU initiates filling the input buffers on
lines 5 and 6, possibly waiting for input (line 8) and free output buffers (line 9)
before processing. During processing (lines 10-16), input and output buffers are
asynchronously DMA’ed. After processing the current output buffer is sent (line
18) and a future chunk requested (line 17). The streaming algorithm is aug-
mented by the SIMDUpdate(·) function, implementing (3) with SIMD vector
operations (line 15).

Algorithm 3 Streaming SIMD algorithm for Cell.
1: initialize barrier
2: while t < Tsim do
3: for all SPU in available SPUs do {Execute in parallel}
4: ROI = SPUROIs[SPU ]
5: start(DMAretrieve, 0)
6: start(DMAretrieve, 1)
7: for chunkId = 0 to Nchunk do
8: Tt = wait(DMAretrieve, chunkId)
9: Tt+∆t = waitIfNotSent(DMAsend) {two buffers are available}

10: for idx = 1 to Nvoxels by 4 do
11: { The “vec” operator loads 4 floats into SIMD vector}
12: Vtissue = vec(T issuerow[idx . . . idx+ 4])
13: Vt = vec(Tt[idx . . . idx+ 4])
14: N(Vt) = {Vprev, Vnext, Vslice+, Vslice−, Vrow+, Vrow−}
15: Tt+∆t[idx . . . idx+ 4] = SIMDUpdate(constant, Vtissue, Vt, N(Vt));
16: end for
17: start(DMAretrieve, chunkId+ 2) {chunkId+ 1 is “in-flight”}
18: start(DMAsend, Tt+∆t)
19: end for
20: end for
21: wait(barrier) {Synchronize all SPUs}
22: t = t+∆t
23: end while

2.4 Data and Validation

Ice ball borders are clearly visualized on CT acquired at the end of the first freeze
stage [12,13]. Contours were traced by an experienced radiologist, providing the
“ground truth” ice ball extent (see Fig. 4). The algorithms were validated by
comparing the 0◦C isotherm from simulation to the ice ball border. Four mea-
sures were used [14]. The Dice Similarity Coefficient (DSC) is a measure volume
overlap (ranging from 0 to 1). Mean absolute distance (MAD) is the mean of
the absolute distances from each point in one isotherm to the nearest boundary
point in the “ground truth”. Mean signed distance (MSD) calculates the mean of
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the signed distances. The Hausdorff distance finds the largest distance between
the two contours. Thick slices necessitate calculating each measure in 2D on each
slice.

3 Results

Table 3. Procedure details

ID Probes Tsim Lesion Location Resolution(mm3) Isotropic Size(MiB)

1 4 8 left lower anterior chest wall 0.54x0.54x5 14.2
2 1 14 right pubic ramus 0.54x0.54x2 8.6
3 4 10 left iliac bone 0.74x0.74x3 32.2
4 4 14 right superior pubic ramus 0.66x.066x5 24.2
5 3 14 right acetabular roof 0.58x0.58x5 23.2
6 3 12 left sacrum 0.86x0.86x5 27.7

This retrospective study was compliant with the Health Insurance Portability
and Accountability Act and had institutional review board approval: informed
consent was waived. From the population of patients undergoing percutaneous
cryoablation treatment for palliation of painful metastases [2,15] at our institu-
tion, six patients were selected at random (Table 3).

Figure 2(a) summarizes the relative performance of the algorithm. The three
programs were executed once to preload data, then executed five times and
the execution times averaged. The x86 server is a 2.66GHz eight core x86 ma-
chine (HS21 Blade, IBM, Armonk, New York) running CentOS 5. The Cell server
is a 3.2GHz 16 SPU machine running Fedora 7 (QS21 Blade, IBM, Armonk, New
York). Normalized execution time is expressed in seconds per minute of simu-
lated time, a measure intuitively useful for the physician. The Cell consistently
outperforms the x86 server.

Figure 2(b) shows architecture scalability relative to data size. The x86 server
scales as 0.4 seconds per MiB, while the Cell server scales as 0.1 second per
MiB, indicating the Cell processor more gracefully scales to large data volumes.

Figure 3 compares the SMP-related speedup of the Intel and Cell programs.
The x86 program was run on 1, 2, 4, and 8 CPUs with execution time of five
runs averaged. Speedup under GCC was comparable but omitted for brevity.
The Cell program was executed with 1, 2, 4, 8 and 16 SPUs and five runs were
averaged. SMP speedup curves relative to the single CPU/SPU were calculated.
While the x86 exhibits nearly linear speedup with increasing numbers of cores,
the Cell is approximately linear to 8 SPUs, but sub-linear at 16 SPUs.

The similarity measures outlined in §2.4 were computed for each run of the
algorithm. The measures were identical for all runs of the two x86 programs.
The Cell runs were likewise identical. The results are given in Table 4. The
results for Subject 2 were not included in the means as the ice ball extents could
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Fig. 2. Comparison of execution time, data size and scalability. Run times over
five executions of each algorithm were averaged and compared on subject by
subject basis (a). Scalability was measured as the slope of normalized run time
vs. volume size (b). All timings are expressed in seconds of run time per minute
of simulation time, a measure intuitive to physicians.

not be fully visualized (note the low DSC measurements). A DSC score of 0.8
or more is considered good agreement. This was achieved in 3 of 6 cases for
the x86, and nearly 4 of 6 for Cell. Differences in similarity scores arise from
implementation (OpenMP vs. streaming SIMD) and hardware floating point
implementations.

Qualitative validation of the simulation results are shown in Fig. 4. After
8 minutes of freezing, ice ball extents are clearly visualized in CT (Fig. 4(a)).
The 0◦C isotherm was manually traced (Fig. 4(b)). Simulation results (Fig. 4(c))
demonstrate good visual agreement with manual delineation (Fig. 4(d)).

4 Discussion

Our first acceleration strategy, OpenMP, exhibited excellent performance. OpenMP
is a simple programming model, scaling well up to 8 CPUs. Somewhat surpris-
ingly, the commercial Intel compiler was outperformed by the open source GCC
compiler. The compiler flags were set based on documented recommendations
from the vendor, but extensive exploration of flag combinations is beyond the
scope of this work.

The second acceleration strategy, a streaming SIMD algorithm implemented
for Cell, surpassed the x86 in execution speed. The Cell implementation benefited
from a SIMD instruction set and the explicit management of local store (cache)
memory. Implementation was less straightforward than OpenMP. Our simulator
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Fig. 3. SMP speedup for Cell (a) and x86 (b) relative to the single SPU case.
x86 results are presented for the Intel compiler, GCC results are comparable.

system is a balance of computation and data movement directly benefiting from
Cell’s unique capabilities. Key to the Cell’s performance is double buffering
performing simultaneous DMA transfers and SIMD computations.

Our experiments showed better scalability in the Cell. With a slope of 0.1
seconds of execution per minute simulation per MiB, the Cell scales four times
better than the x86. Increased scalability allows solutions computed at finer res-
olutions, if demanded by the physician. Performance under different conditions
will be more uniform in the Cell.

Low values of MAD and MSD indicate good agreement of simulation results
with manual identification of ice ball borders. Large Hausdorff distances indicate
large local deviations in contours.

Study Limitations. Our study is far from comprehensive, and lacks several im-
portant experiments. Ice Ball shapes produced by the simulation must conform
to reality. The measures used in this study fail to account for differences in
shape, focusing on contour distances. If simulated ice balls have proper shape,
physicians will have increased confidence in the simulator results.

Our performance evaluation of x86 and Cell was biased. For developer expe-
diency, the x86 implementation did not use SIMD instructions. Cell architecture
demands SIMD implementation for reasonable performance. If SIMD instruc-
tions on the x86 were implemented, run times may improve. We suspect the x86
has saturated the main memory bus, thus SIMD instructions will not improve
the scalability, i.e. slope of Fig. 2(b). Development burden of managing the Cell’s
local store is offset by deterministic performance. While we have not endeavored
to do so, tweaking this algorithm for x86 cache performance is a daunting task.
Clearly, additional investigation is required.
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Table 4. Simulation contours compared to ground trutha.

Cell x86

Subject DSC MAD MSD Haus. DSC MAD MSD Haus.

1 0.84 2.80 1.68 14.8 0.81 3.20 2.40 15.5

2b 0.41 7.36 7.12 19.7 0.40 7.54 7.35 20.4

3 0.79 5.11 −3.30 18.6 0.83 4.38 −2.49 18.6

4 0.79 3.24 1.30 17.9 0.75 3.64 2.05 17.9

5 0.73 4.38 2.34 20.2 0.70 4.76 3.01 20.2

6 0.78 4.65 −0.04 25.0 0.81 4.21 0.61 25.0

Meanb 0.79 4.03 0.40 19.3 0.78 4.04 1.12 19.4

a All units are in mm
b Ice contours were not visualized for Subject 2; data were

omitted from the mean.

Comparative Works. Prostate cryoablation simulation has been previously stud-
ied [6,5,16,17,18,19] Fast simulation is required for optimization of cryoprobe
geometry [20]. Validation of simulation results has been limited to temperature
measurements at locations near the cryoprobe tip [21]. In vivo measurements
show the CT-visualized ice ball border corresponds with the 0◦C isotherm [13].
Our future plans include experiments to couple CT visualization with point-wise
temperature measurements for validation.

Conclusion. Simulation and validation of cryoablation procedures is imperative
for physician acceptance. Though common practice at our institution [3,22,1,15,2,23],
percutaneous MSK cryoablation is a nascent technology in the broader clinical
community. Availability of a validated planning system for MSK cryoablation
will speed procedure acceptance at institutions will small procedure volumes.
In such instances, physicians will not be able to build the experience necessary
to mentally plan cryoablation procedures. Instead, they will turn to simulation
systems as outlined in this work. Our results demonstrate the utility of the Cell
architecture for cryoablation simulation.
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