
Scene graph-based construction of
 CUDA kernel pipelines for XIP

Veronica Gidén1, Thomas Moeller1, Patric Ljung1 and Gianluca Paladini1

1Department of Imaging and Visualization
Siemens Corporate Research, Inc.

755 College Road East, Princeton, NJ 08540
{veronica.giden.ext, thomas.moeller, patric.ljung, gianluca.paladini}@siemens.com

Abstract. We propose a framework which allows an application developer to
construct and execute pipelines of existing CUDA kernel programs without
programming the somewhat complex kernel configuration and setup. The
framework is a new addition to the eXtensible Imaging Platform (XIP) of the
National Cancer Institute. Pipeline construction is carried out through graphical
construction of scene graphs in the XIP Builder tool. Complex pipeline struc-
tures as well as kernels of arbitrary structure and function are supported. The
framework has been used to execute existing CUDA kernels from NVIDIA’s
CUDA SDK as well as a more complex image segmentation algorithm.

Keywords: General-purpose computation on GPUs (GPGPU), graphics proc-
essing units (GPUs), Compute Unified Device Architecture (CUDA).

1 Introduction

During recent years, the role of the graphics processing unit (GPU) has evolved
from only handling graphics to functioning as a powerful co-processor to the central
processing unit (CPU). This evolution is due to the GPU’s rapid increase of perform-
ance in comparison to the CPU’s, as well as its specialization towards compute-
intensive, parallel execution. Medical imaging is one of many fields where these
kinds of computations are used for other purposes than pure graphics processing. In
this field, handling of large medical data sets is common, requiring high performance
computations in order to assure speed and quality, thereby making the GPU a valu-
able asset. Previously, programming of GPUs was commonly carried out using high-
level shading languages and it was necessary to map the algorithm to the graphics
pipeline. Thus, utilizing the GPU for general-purpose programming was non-intuitive
and cumbersome. Furthermore, there were several limitations on programmability
which prevented usage of the GPU’s full capacity. NVIDIA’s Compute Unified De-
vice Architecture (CUDA) [1], aims to solve these problems by introducing a new
hardware and software architecture for the GPU, particularly suitable for general-
purpose programming. Here, GPU programs are created using a C like syntax and a
fast GPU cache can be explicitly accessed. However, executing an existing CUDA
program on the GPU is non-trivial and requires extensive setup and configuration. In
this paper a framework which facilitates this procedure is proposed. The framework

can be used for CUDA application development and performs configuration and exe-
cution of pipelines of existing CUDA GPU programs without requiring any pro-
gramming by the developer.

2 Background and related work

The purpose of the proposed framework is to simplify CUDA application develop-
ment. The CUDA architecture is described briefly in section 2.1. The framework is
implemented as a new addition to the eXtensible Imaging Platform (XIP) [2] of the
National Cancer Institute [3], an overview of XIP is given in section 2.2.

2.1 CUDA

One of the main purposes of CUDA is to facilitate GPU programming by making the
underlying architecture available to the developer through an API not related to
graphics and thereby expose the GPU as a pure co-processor to the CPU. Contrarily to
previous GPU architectures, the CUDA architecture allows scattered writes, that is,
writing to arbitrary locations in DRAM. Furthermore, the architecture gives the de-
veloper access to a parallel data cache with short access time, the so-called shared
memory. This decreases the need for costly GPU DRAM accesses, thereby potentially
avoiding an otherwise significant bottleneck.

The CUDA execution model is based upon GPU programs known as kernels,
which are executed over multiple threads in parallel. Threads are arranged into struc-
tures known as blocks, which in turn are arranged into grids. Threads within the same
block can communicate with each other using the shared memory space and can fur-
thermore also be synchronized.

Kernels are programmed using a C like syntax without references to the graphics
pipeline. However, in order to execute a kernel, a quite complex CUDA setup and
kernel configuration has to be carried out. There are two APIs available in CUDA for
this configuration; the Driver API and the Runtime API. The former is more flexible
but quite complex to use, whereas the latter generally requires less programming ef-
fort from the user but provides less control. However, only the Driver API completely
separates GPU kernel code from code to be executed on the CPU and allows separate
compilation of these. Using this API, kernel code is compiled into so-called cubin ob-
jects which can be loaded from disk and used to execute the contained program on the
GPU.

CUDA has been used for a variety of applications, resulting in improvements such
as considerable speed increases and reduced programming effort. For example, it has
been used within medical imaging by Jeong et al. [4], specifically to perform optimal
path analysis in diffusion tensor magnetic resonance imaging data from the brain.
Scherl et al. [5] have used the technology for three-dimensional reconstruction of
volumetric data from computed tomography. Another application comes from the bio-
informatics field, where Manavski and Valle [6] have used CUDA to search for simi-
larities in protein and DNA databases. An application from the scientific computing

field has been demonstrated by Michalakes and Vachharajani [7], who have imple-
mented the Weather Research and Forecast model in CUDA.

2.2 XIP

XIP is an Open Inventor-based open source environment for rapid development of
medical imaging applications. Open Inventor [8] is an object-oriented API for three-
dimensional graphics, built upon the scene graph concept and written in C++. It func-
tions as an extra layer upon OpenGL [9], providing a library of modifiable and ex-
tendable scene graph objects which can be used to describe and control a three-
dimensional scene. A scene graph is a general data structure, arranged as a tree or a
graph and consisting of an ordered number of nodes which are connected to each
other. The ordering determines how the graph is traversed, which might e.g. occur
during rendering. The traversal state describes the current properties and can both be
used and influenced by scene graph nodes.

A graphical editor, XIP Builder, is provided in XIP. This editor allows creating
scene graphs representing medical imaging applications through a drag-and-drop vis-
ual programming interface.

This paper describes an addition to the XIP framework to be used in the scene
graph-based XIP Builder tool, allowing the application developer to construct and
execute pipelines of CUDA kernels without programming the quite complex kernel
configuration required by the CUDA Driver API, while at the same time benefiting
from the detailed control supplied by this API.

3 Scene graph-based CUDA application development framework

The created framework is an addition to the XIP framework, made available to ap-
plication developers in the XIP Builder editor tool. It is focused on one scene graph
entity in particular; the pipeline engine, which executes CUDA kernels and is further
described in section 3.1. The framework also contains data types for accessing data
stored in GPU memory, which are described in section 3.2. Moreover, scene graph
objects which perform efficient data transfer between the OpenGL texture and the
CUDA memory spaces are provided, and described in section 3.3. Finally, the CUDA
application development process using the framework is described in section 3.4.

3.1 The pipeline engine

The pipeline engine is the central unit of the created framework. It takes data residing
in CUDA memory space as inputs, executes one or several CUDA kernels in a pipe-
line, and produces outputs in the same memory space. Consequently, another pipeline
engine can use these outputs as its inputs and no intermediate transfer to CPU mem-
ory space is necessary. The engine supports a wide variety of pipeline structures, in-
cluding iteration. The idea of the pipeline engine is visualized in figure 1.

Fig. 1. The pipeline engine of the proposed framework executes one or several CUDA kernels
in a pipeline, using inputs in CUDA memory space and producing outputs in the same memory
space. The outputs can be connected as inputs to another pipeline engine.

Importantly, the pipeline engine completely handles all CUDA setup and kernel
configuration and only leaves out the programming of the kernel itself. Thus, the XIP
Builder developer does not need to edit the code of this object in order to execute a
different CUDA kernel or to change the kernel configuration. Instead, the necessary
configuration is specified through the fields of the pipeline object in XIP Builder, and
then performed by the engine using the CUDA Driver API. The descriptions in the
fields either consist of strings, using an intuitive, keyword-based syntax, or pure num-
bers. The fields that need to be filled out by the developer define the following prop-
erties:

• Which kernels that should be executed and in which order
• The input and output parameters of each kernel
• Texture properties for the used CUDA textures
• Properties of temporary CUDA linear memory buffers
• The outputs of the pipeline object
• The block and grid configuration used by each kernel
• The amount of shared memory used by each kernel
• The iteration condition for the pipeline
• Which cubin object that should be used to load kernels from

Here, buffers refer to chunks of CUDA linear memory which can be read from and
written to by kernels. Each buffer is identified by an integer in the range [0, number
of buffers[. A buffer can be initialized with input data supplied through the fields of
the engine. It can furthermore be set as an external output of the engine, thereby be-
coming available to other scene graph objects. When describing the inputs and out-
puts of each kernel, the developer specifies which buffers that each kernel writes to or
reads from. In this way, complex pipelines can be constructed. The idea is illustrated
in figure 2.

Fig. 2. Within the pipeline engine, CUDA linear memory which can be read from and written
to by kernels is referred to as buffers. For example, in the pipeline above, Kernel0 writes to
buffer 0, which is read by Kernel1 and Kernel3. Kernel3 writes to buffer 4, which is set as an
external output of the engine.

As for inputs, the engine takes input data, existing in CUDA linear memory or as
CUDA arrays, wrapped in data structures compatible with the XIP Builder environ-
ment. Data of smaller size stored in CPU memory is also supported, e.g. integer and
float parameters.

The engine uses the information retrieved from its input fields to launch the kernels
contained in the loaded, pre-compiled cubin object. The kernel configuration is
checked with the system capabilities and the developer is warned if any hardware
properties are violated.

3.2 CUDA memory data storage

In the implemented framework, the opportunity to access data stored in CUDA mem-
ory space, either in CUDA linear memory or as CUDA arrays, is provided by two dif-
ferent wrappers constituting an interface towards XIP Builder. CUDA linear memory
can be read from and written to in kernels, whereas CUDA arrays can only be read
from. In addition, CUDA arrays require reading through texture fetches, and the array
needs to be connected to a CUDA texture reference. Only the texture reference itself
can not be stored in the XIP Builder scene since it is specific to a certain cubin object
and becomes invalid as soon as the cubin object is unloaded. Thus, a handle to the
CUDA array is stored in the wrapper object. Before kernel execution is performed
within a pipeline engine, these CUDA arrays are connected to texture references and
thus become readable in kernels. Combining CUDA textures and CUDA arrays pro-
vide a number of benefits, such as boundary handling and interpolation schemes, fur-
ther described in [1].

3.3 OpenGL interoperability

In order to allow efficient conversion between OpenGL textures and CUDA data four
scene graph nodes have been implemented. These nodes employ CUDA Driver API

functions for the internal interface between CUDA memory and OpenGL texture
memory, relying on OpenGL buffer objects, see [10].

The first two nodes take input data in CUDA memory space (CUDA linear mem-
ory or CUDA arrays) and produce an OpenGL texture for each data set. An OpenGL
pixel buffer object is registered with CUDA and mapped to a location in CUDA linear
memory space. Then, the data contained in CUDA memory space is copied to the
buffer location, and the data residing in the buffer object is used to create an OpenGL
texture. The outputs of the nodes are OpenGL texture IDs representing the created
textures. The final two nodes take one or several OpenGL texture IDs as inputs and
produce data in CUDA memory space. Here, OpenGL texture data is copied to an
OpenGL pixel buffer object which is mapped into CUDA memory space.

3.4 CUDA application development

As previously stated, one of the main aims of the proposed XIP Builder CUDA
framework is to enable easy execution of existing kernels, by performing automatic
CUDA setup and kernel configuration without requiring the developer to program
this. The application development process is thus divided into two parts; kernel pro-
gramming and scene graph construction.

CUDA kernel programming and compilation is carried out outside of the XIP
Builder editor. CUDA kernels are programmed using the CUDA API [1]. In order to
make the kernels loadable from scene objects in XIP Builder, the code is compiled
into cubin objects using the NVIDIA nvcc compiler [11].

Scene graph construction, which is carried out in the XIP Builder editor, is cen-
tered on the pipeline engine which loads and executes pre-compiled CUDA kernels.
The first step during application development is commonly to transfer data to CUDA
memory space, since the kernels to be used most likely require some input data. This
is carried out by converting data from XIP Builder data formats through framework-
provided converters, or the nodes that convert OpenGL textures to CUDA data. Once
CUDA data is available in the scene, the XIP Builder developer places one or several
pipeline engines in the scene graph and connects the input data to the appropriate
fields. The next step is to fill out the remaining fields in order to define the contained
pipeline and set up the configuration for the pre-compiled CUDA kernels. This re-
quires that the developer knows what grid, block and shared memory sizes that are
appropriate for each kernel, as well as its inputs and outputs. However, it does not re-
quire any programming in CUDA or any other language. When the pipeline has been
defined, the developer connects the outputs of the pipeline engine to input fields of
other scene graph objects. If an output is connected to an input field of another pipe-
line engine, the data existing in CUDA memory space can be conveniently used as in-
put data in kernels without requiring any extra data transfers. If an output is connected
to other scene graph objects, the data can for example be used to create OpenGL tex-
tures which can be displayed on the screen, see figure 4.

4 Results

In order to evaluate the implemented CUDA XIP Builder framework, one simple and
one advanced example application have each been developed in two different ways
each. This includes an implementation using the pipeline engine from the new frame-
work, as well as an implementation where a specialized XIP scene graph object is
programmed using the CUDA Driver API. The purpose of the latter implementation is
solely to function as a reference. In this section, the development processes for these
applications, as well as the results in terms of scene graph structure and performance,
are presented and analyzed. All execution time results can be found in table 3.

4.1 Box filtering

The simple implemented application smoothes an image by executing the two ker-
nels from the boxFilter application from NVIDIA’s CUDA SDK [12].

When using the implemented CUDA XIP Builder framework to perform box filter-
ing, the input image data (existing in CUDA linear memory space) is set as an input to
a pipeline engine. The engine loads the kernels contained in a pre-compiled cubin ob-
ject. These are iterated over in order to perform repeated smoothing, and the number
of iterations is controlled through a field of the pipeline engine. The field specifica-
tion, excluding empty fields, is described in table 1. The main field is the CUDA kernel
headers description field, where the execution order of the kernels as well as their pa-
rameter setup is defined. Two buffers are used internally, both of which are the same
size and format as the image to be smoothed, see figure 3. One of the buffers contains
the smoothed image and is set as an engine output, ready to be displayed on the
screen. A snapshot of the application being developed and executed in XIP Builder
can be seen in figure 4.

For evaluation purposes, box filtering using the NVIDIA SDK kernels has also
been implemented by manually programming a specialized XIP Builder scene graph
engine using the CUDA Driver API. The resulting scene graph is identical to the one
in figure 4, with the exception of that the pipeline engine (the second scene graph ob-
ject from the left) is replaced with this specialized engine. However, the field configu-
ration is much simpler than when using the pipeline engine. Since kernel configura-
tion and execution are programmed manually, the only fields that need to be filled out
are the input data and parameter fields.

Fig. 3. When using the pipeline engine from the proposed framework to perform box filtering
using kernels from the NVIDIA CUDA SDK, two CUDA linear memory buffers are used in-
ternally.

Fig. 4. A snapshot of the boxFilter application from the NVIDIA CUDA SDK being executed
in XIP Builder. An image file is loaded from disk, transferred to CUDA memory space, proc-
essed by the boxFilter CUDA kernels and then used to create an OpenGL texture which is dis-
played on the screen.

Table 1. The field specification of a pipeline engine used to perform box filtering.

Field Content
CUDA kernel headers description ["d_boxfilter_x_tex (IN [1,tex[0]], OUT [0], INT

[0], INT [1], INT [2])", "d_boxfilter_y_global (IN
[0], OUT [1], INT [0], INT [1], INT [2])"]

External input CUDA linear memory
data

"DATA"

Integer parameters [512, 512, 10]
CUDA texture properties description "tex (address0 = CLAMP, filter = POINT,

useNormCoord = FALSE, address1 = CLAMP,
readAsInt = FALSE, components = 1, format =
FLOAT)"

Internal buffer properties description ["w = 512, h = 512, d = 1, format = FLOAT, type
= LUMINANCE", "srcType = EXT_INPUT,
srcIdx = 0, dstType = IMAGE, dstIdx = 0"]

Kernel block sizes [16 1 1, 16 1 1]
Kernel grid sizes [32 1, 32 1]
Condition for iteration "5"
Cubin object path " cuSDKBoxFilter.cubin"

4.2 Segmentation using the Random Walker algorithm

The advanced example application performs image segmentation using the random
walker algorithm presented by Grady [13]. This algorithm is used to perform image
segmentation based on an existing seed image, where one or several pixels are labeled
as belonging to one or several different objects in the image. Segmentation is
achieved by placing a random walker at each pixel in the image, noting the label of
the seed pixle to which it is most probable that it arrives to first, and then finally as-
signing this label to the start pixel. In practice, this is carried out by iteratively solving

a large system of linear equations [13]. Apart from the iterative segmentation stage,
the random walker algorithm also consists of an initialization stage.

When using the implemented CUDA XIP Builder framework, two pipeline engines
are needed in order to perform random walker segmentation. The reason is that the
pipeline engine only allows iteration over all its kernels, and it is not desirable to iter-
ate over the initialization stage. Thus, the initialization stage is performed by one
pipeline engine which takes CUDA linear memory data, representing the image to be
segmented as well as a seed image, as inputs. Initialization is performed through exe-
cution of twelve kernels. The resulting output data sets are used as inputs to another
pipeline engine which carries out the iterative stage. The pipeline engine performing
the iterative stage iterates over eleven kernels until a certain condition, specified
through a string in an engine input field, is fulfilled. The engine output is a CUDA
linear memory data set describing the segmented image. The field specifications of
the two pipeline engines are much more complex than for the box filter application.
As an example of the increased complexity, the CUDA kernel headers description
field of the pipeline engine performing iteration can be seen in table 2.

Table 2. The CUDA kernel headers description of a pipeline engine used to perform the itera-
tive part of segmentation through the random walker algorithm.

CUDA kernel headers description
["updateQcoalesced(EXTIN[2], EXTIN[5], EXTIN[1], INT[0], INT[1], INT[2],
EXTIN[8])", "updateAlphaInit(EXTIN[8], EXTIN[5], INT[3], INT[0], EXTIN[9])", "redu-
ceAddFloat(EXTIN[9], EXTIN[13], INT[4], INT[4], INT[4])", "updateAlphaFinal-
ize(EXTIN[13], EXTIN[10], EXTIN[11], EXTIN[13])", "updateX(EXTIN[7], EXTIN[5],
EXTIN[13], EXTIN[7], INT[3])", "updateRcoalesced(EXTIN[2], EXTIN[7], EXTIN[3],
EXTIN[1], INT[0], INT[1], INT[2], EXTIN[4])", "updates(EXTIN[4], EXTIN[2],
EXTIN[1], INT[0], INT[1], INT[2], FLOAT[2], EXTIN[6])", "updateRhoInitPrecondi-
tioned(EXTIN[4], EXTIN[6], INT[3], INT[0], EXTIN[9])", "reduceAddFloat(EXTIN[9],
EXTIN[11], INT[4], INT[4], INT[4])", "updateBeta(EXTIN[10], EXTIN[11],
EXTIN[14])", "updateD(EXTIN[6], EXTIN[5], EXTIN[14], EXTIN[5], INT[3])"]

The internal buffer structures, defined through appropriate string fields, are also

considerably more complex than for the simple example. The resulting XIP Builder
scene graph is almost identical to the one in figure 4, except for that there are two
pipeline engines instead of one.

When the random walker application is implemented by programming a special-
ized XIP engine executing the appropriate kernels, the whole algorithm can be con-
tained in one scene graph object, making the scene graph identical to the one in figure
4. The field specification is simpler than when using the pipeline engine, since the
only input fields needed are the input data and parameter fields.

4.3 Analysis of results

The results described in the previous section show that the proposed framework sup-
ports development of both simple and complex applications. It provides a great ad-

vantage compared to when specialized XIP Builder engines are programmed for each
application; i.e. that no CUDA Driver API programming is necessary in order to exe-
cute precompiled CUDA kernels. Also, since the entire pipeline is controlled through
input fields, updating the pipeline structure does not require any recompilation. In-
stead, this is achieved by directly changing the input field values in XIP Builder.
However, for more complex examples such as the random walker algorithm, filling
out the engine fields describing the pipeline becomes quite cumbersome. Further-
more, complex pipelines are more likely to require a larger number of pipeline en-
gines, resulting in increased scene graph complexity. Moreover, as can be seen in ta-
ble 3, the pipeline engine introduces overhead resulting in decreased performance.
This is a result of its general structure, which e.g. includes interpretation of input
string fields (parsing), checking of CUDA requirements and buffer handling, see table
4. Also, some delay is introduced during kernel execution since parameters are ac-
cessed through lists that need to be traversed. The performance decrease tends to be
more severe for complex applications with a larger number of parameters, kernels and
internal buffers, which all influence the time consumption of these operations. Also,
manually programmed specialized engines provide better optimization possibilities,
since the kernel execution and configuration as well as memory allocation can be
adapted to each specific application.

Table 3. Example execution times for applications developed using the pipeline engine from
the proposed framework or through programming of a specialized XIP Builder engine. All tests
were performed using the following setup: Pentium 4 (2.80GHz and 2.79 GHz) with 2.00 GB
RAM and an NVIDIA Geforce 8800 GTS graphics card.

Application Execution time using
pipeline engines (ms)

Execution time using
specialized engines (ms)

Box Filtering (100 iterations) of a
512x512 floating point data set.

107.4954780 104.7613884

Random Walker Segmentation of a
128x128x128 floating point data set.

9 532.2740510 6 842.9303450

Table 4. Example time consumption results for specific parts of the implementation of the
boxFilter example from the NVIDIA CUDA. The filtering was performed 100 times over a
512x512 floating point data set with the same setup as in table 3.

Operation Time using pipeline
engines (ms)

Time using specialized
engines (ms)

Clean up 0.51129200 0.76651833
Retrieve and check input data 0.00887561 0.00963296
Check CUDA requirements 1.50713500 0
Parse input field strings 0.60431100 0
Handle cubin object and handles 0.01559400 0.00970700
Init buffers 0.44454400 0
Allocate CUDA memory 0 0.90882400
Kernel setup 0.00918971 0.00655589
Launch kernels 104.06700000 103.04100000
Set outputs 0.32753600 0.01915070

5 Limitations

Although the implemented framework allows execution of a wide variety of CUDA
kernels in complex pipeline structures, it has limitations that restrict its usage.

A notable limitation concerns the required CUDA knowledge of the XIP Builder
developer. Although kernel programming and pipeline construction are separated, the
developer is in practice required to know the structure of the kernel function header in
order to provide correct input data. Moreover, the amount of shared memory to allo-
cate has to be known, as well as what block and grid configuration that is suitable to
use. Inappropriate specification of these properties may result in incorrect results or
failure of kernel execution. Although CUDA errors are reported to the developer the
error messages available in CUDA tend to be very general, and without an under-
standing of the underlying hardware they might therefore be of little use. Importantly,
there are no warnings concerning violations of the parallel programming model since
these do not necessarily result in CUDA errors. To summarize, it is vital that the XIP
Builder developer has some knowledge and understanding of CUDA, the parallel
programming model of GPUs and of the kernels that are used.

Furthermore, although complex pipelines can be specified through the pipeline en-
gine’s fields, there are indeed scenarios that are not supported. First, in order to use
this engine, all calculations in the pipeline are required to be carried out through
CUDA kernels. If CPU calculations are needed, specialized scene graph objects need
to be created. Second, scenarios where data does not fit in GPU memory are not sup-
ported. Third, the functionality of the pipeline engine is restricted to pipeline struc-
tures that can be described by the syntax used for its input fields. For example, it does
not support all functionality provided by the CUDA Driver API. This includes the re-
cently provided support for three-dimensional CUDA textures as well as usage of
streams [14].

6 Conclusion

The presented CUDA XIP Builder framework completely separates CUDA kernel
coding from pipeline construction and automatically handles kernel configuration and
CUDA setup according to user specifications through string fields. It thereby supports
creation of CUDA pipelines through scene graph construction without requiring any
CUDA programming except for of the kernels to be executed. Furthermore, it pro-
vides data structures for accessing data stored in CUDA memory space in XIP
Builder, thereby avoiding costly transfers between host and device between scene
graph objects. Also, it supports conversion between OpenGL textures and CUDA data
without intermediate CPU memory storage.

As seen in section 4, the generality of the framework causes disadvantages which
are more evident for complex pipelines, the most serious one being the decrease in
performance. The created framework is thus more suitable for prototyping purposes
where the XIP Builder developer quickly wants to test a CUDA kernel pipeline rather
than to optimize it.

There are still possibilities for improvement of the created framework. Since the
string-based kernel configuration and setup tend to become impractical for complex
applications, it would certainly be beneficial to let the user control these through a
graphical drag-and-drop editor. A more user-friendly interface could also allow fur-
ther functionality extension of the pipeline engine, e.g. including new functionality
provided in CUDA 2.0 [14].

References

1. NVIDIA Corporation: NVIDIA CUDA Compute Unified Device Architecture Program-
ming Guide Version 1.1, http://developer.download.nvidia.com/compute/cuda/1_1/
NVIDIA_CUDA_Programming_Guide_1.1.pdf

2. Siemens Corporate Research: Xipwiki,
https://collab01a.scr.siemens.com/xipwiki/index.php/Main_Page

3. National Cancer Institute: Comprehensive Cancer Information, http://www.cancer.gov/
4. Jeong, W., Fletcher, P.T., Tao, R., Whitaker, R.: Interactive Visualization of Volumetric

White Matter Connectivity in DT-MRI Using a Parallel-Hardware Hamilton-Jacobi Solver.
In: IEEE Transactions on Visualization and Computer Graphics, vol. 13, no. 6, pp. 1480--
1487. IEEE Computer Society, Los Alamitos (2007)

5. Scherl, H., Keck, B., Kowarschik, M., Hornegger, J.: Fast GPU-Based CT Reconstruction
Using the Common Unified Device Architecture (CUDA). In: Nuclear Science Symposium
Conference Record, vol. 6, pp. 4464--4466 (2007).

6. Manavski, S.A., Valle, G.: CUDA Compatible GPU Cards as Efficient Hardware Accel-
erators for Smith-Waterman Sequence Alignment. In: BMC Bioinformatics, vol. 9, suppl. 2
(2008)

7. Michalakes, J., Vachharajani, M.: GPU Acceleration of Numerical Weather Prediction.
Technical report (2008). http://www.mmm.ucar.edu/wrf/WG2/michalakes_lspp.pdf

8. Wernecke, J.: The Inventor Mentor: Programming Object-Oriented 3D Graphics with Open
Inventor, Release 2. Addison-Wesley (1994)

9. Shreiner, D., Woo, M., Neider, J., Davis, T.: OpenGL Programming Guide: The Official
Guide to Learning OpenGL, Version 2. Addison-Wesley, Stoughton (2006)

10. Wright, S.R. Jr., Lipchack, B., Haemel, N: OpenGL SuperBible: Comprehensive Tutorial
and Reference. Addison-Wesley, Ann Arbour (2007)

11. NVIDIA Corporation: The CUDA Compiler Driver NVCC,
http://www.nvidia.com/object/io_1195170069217.html

12. NVIDIA Corporation: Download CUDA Code,
http://www.nvidia.com/object/cuda_get.html

13. Grady, L.: Random Walks for Image Segmentation. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol.28, no.11, pp.1768—1783 (2006)

14. NVIDIA Corporation: NVIDIA CUDA Compute Unified Device Architecture Program-
ming Guide Version 2.0, http://developer.download.nvidia.com/compute/cuda/
2.0-Beta2/docs/Programming_Guide_2.0beta2.pdf

https://collab01a.scr.siemens.com/xipwiki/index.php/Main_Page
http://www.mmm.ucar.edu/wrf/WG2/michalakes_lspp.pdf

