The State Diagram and Property Checker Plugin

Installation Steps:

- 1. Install JIVE following instructions given at https://cse.buffalo.edu/jive/download.html
 Tutorials on its usage are given at: https://cse.buffalo.edu/jive/tutorials.html
- 2. Install PlantUML as an Eclipse plugin from: http://hallvard.github.io/plantuml
- 3. Install *GraphViz* on your computer from: http://www.graphviz.org/download. Scroll down to "Executable Packages" where you can find links for Linux, Mac, and Windows.

Note: *GraphViz* should be installed as a regular application on your computer, *not* as an Eclipse plugin.

4. Install the State Diagram and Property Checker plugin by first downloading:

```
FSM Properties Dec 2019.zip
```

Unzip the file to obtain the directory FSM_Properties_Dec_2019.

5. Install it as an Eclipse plugin as follows:

Help→Install New Software→Add→Local→

software→Add→Local→

local→

software→Add→Local→

software→Add→Local→Software→Add→Local→

6. Uncheck "Group Items by Category". Follow the prompts and install.

Sample multi-threaded Java programs are given in the EXAMPLES directory.

For the State Diagram and Property Checker views:

1. You can bring up the Property Checker (or State Diagram) view by doing

Window \rightarrow Show View \rightarrow Other \rightarrow JIVE \rightarrow Property Checker (or State Diagram)

2. To use the Property Checker (and State Diagram), you must first export a .csv file from the Execution Trace view after running a Java program to completion. This view is at

Window → Show View → Execution Trace

3. In the Property Checker (or State Diagram) view, first browse and select the exported .csv file, then add one or more fields from the drop-down menu, and draw the state diagram.

For the Property Checker view:

E [p1 == "E" && p3 == "E"]

To check properties, enter abbreviations for the selected fields in the Abbreviations text-box and enter properties in the Properties text-box, and press Validate. We present two examples of properties below.

```
(i) Readers-Writers Example (discussed in paper):
Fields to be Added: Database:1.r, Database:1.w, Database:1.ww
Abbreviations: Database:1.r = r, Database:1.w = w, Database:1.ww = ww
// Basic policy – mutual exclusion of readers and writers, with concurrency for readers
G[(r > 0 -> w = 0) \&\&
  (w > 0 -> r = 0) \&\&
  (w = 0 | | w = 1)
 1
// Writers Priority – the # of running readers monotonically decreases when there is a waiting
writer
G[(r > 0 \&\& ww > 0 -> r' <= r)]
Multiple properties can be entered, separated by semi-colons.
(ii) Dining Philosophers Example (also discussed in paper)
Fields to be Added: Philo:1.state, Philo:2.state, Philo:3.state, Philo:4.state, Philo:5.state
Abbreviations: Philo:1.state=p1, Philo:2.state=p2, Philo:3.state=p3,
Philo:4.state=p4,Philo:5.state=p5
// Basic Safety Property – adjacent philosophers are not eating
G[(p1 == "E" -> p2 != "E") &&
    (p2 == "E" -> p3 != "E") &&
    (p3 == "E" -> p4 != "E") &&
    (p4 == "E" -> p5 != "E") &&
    (p5 == "E" -> p1 != "E")
  1
// Example of an E property – existence of a state with some property. For example:
```

If an E property succeeds, the nodes and edges along the shortest path to the state satisfying the condition will be green-highlighted.

For the State Diagram view:

To perform model abstraction, enter the abstraction codes in the Abstraction text-box. For example, for the dining philosopher's problem, to see the set of abstracted states showing only whether a philosopher is eating or not, enter in the Abstraction text-box.

For example, in the Elevator example, assuming the 'direction' and 'current_floor' fields have been added through the drop-down menu, in order to see the subgraph of states showing in the upward movement of states, enter:

#up,<blank>

One can combine abstraction and subgraph reduction, by entering, for example

#up, >=2

to see states only the states corresponding to the upward movement of the elevator beween states partitioned into two groups: those numbered less than 2 (labeled <2) and those numbered greater than equal to two (labeled >= 2). There can be at most two such states.

End of Instructions