
JIVE: Dynamic Analysis for Java
Overview, Architecture, and Implementation

Demian Lessa

Computer Science and Engineering
State University of New York, Buffalo

Dec. 01, 2010



Outline Overview Architecture Implementation Conclusion

Outline

1 Overview

2 Architecture

3 Implementation

4 Conclusion

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 2 / 23



Outline Overview Architecture Implementation Conclusion

Next...

1 Overview

2 Architecture

3 Implementation

4 Conclusion

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 3 / 23



Outline Overview Architecture Implementation Conclusion

What can you tell about a program?

Questions we often need to answer about programs and their execution:

How is the system designed?

How do system components communicate?

How does control flow during execution?

How does the state of an object change during execution?

Did an object ever have a particular state? At what times?

What caused an object to have a particular state?

How do threads and objects/methods interact?

What caused a method to execute?

Was a particular method ever called? At what times?

What parameters were passed to a method call?

What value was returned by a method call?

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 4 / 23



Outline Overview Architecture Implementation Conclusion

How do you answer such questions?

Pick the right technique(s) for the job.
Static analysis looks at the code but does not execute it.

all execution paths, undecidability issues, AST/DFG/CFG/..., etc;
comprehension– architecture extraction, querying, etc;
debugging– static checkers to match source code patterns.

Model checking verifies if a model of the program violates its specs.
all execution paths, symbolic execution, state space explosion, etc;
debugging– execution trace of a spec violation.

Dynamic analysis executes the code and looks at execution data.
single execution path, probe effect, scalability, execution traces, etc;
comprehension– interaction extraction, querying, etc;
debugging– reverse execution, querying, etc.

Hybrid approaches combine aspects of the above techniques.
symbolic execution for test generation;
static analysis for selective tracing;
...

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 5 / 23



Outline Overview Architecture Implementation Conclusion

How do you answer such questions?

Pick the right technique(s) for the job.
Static analysis looks at the code but does not execute it.

all execution paths, undecidability issues, AST/DFG/CFG/..., etc;
comprehension– architecture extraction, querying, etc;
debugging– static checkers to match source code patterns.

Model checking verifies if a model of the program violates its specs.
all execution paths, symbolic execution, state space explosion, etc;
debugging– execution trace of a spec violation.

Dynamic analysis executes the code and looks at execution data.
single execution path, probe effect, scalability, execution traces, etc;
comprehension– interaction extraction, querying, etc;
debugging– reverse execution, querying, etc.

Hybrid approaches combine aspects of the above techniques.
symbolic execution for test generation;
static analysis for selective tracing;
...

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 5 / 23



Outline Overview Architecture Implementation Conclusion

How do you answer such questions?

Pick the right technique(s) for the job.
Static analysis looks at the code but does not execute it.

all execution paths, undecidability issues, AST/DFG/CFG/..., etc;
comprehension– architecture extraction, querying, etc;
debugging– static checkers to match source code patterns.

Model checking verifies if a model of the program violates its specs.
all execution paths, symbolic execution, state space explosion, etc;
debugging– execution trace of a spec violation.

Dynamic analysis executes the code and looks at execution data.
single execution path, probe effect, scalability, execution traces, etc;
comprehension– interaction extraction, querying, etc;
debugging– reverse execution, querying, etc.

Hybrid approaches combine aspects of the above techniques.
symbolic execution for test generation;
static analysis for selective tracing;
...

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 5 / 23



Outline Overview Architecture Implementation Conclusion

How do you answer such questions?

Pick the right technique(s) for the job.
Static analysis looks at the code but does not execute it.

all execution paths, undecidability issues, AST/DFG/CFG/..., etc;
comprehension– architecture extraction, querying, etc;
debugging– static checkers to match source code patterns.

Model checking verifies if a model of the program violates its specs.
all execution paths, symbolic execution, state space explosion, etc;
debugging– execution trace of a spec violation.

Dynamic analysis executes the code and looks at execution data.
single execution path, probe effect, scalability, execution traces, etc;
comprehension– interaction extraction, querying, etc;
debugging– reverse execution, querying, etc.

Hybrid approaches combine aspects of the above techniques.
symbolic execution for test generation;
static analysis for selective tracing;
...

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 5 / 23



Outline Overview Architecture Implementation Conclusion

Where does JIVE stand?

JIVE is a dynamic analysis tool for Java programs featuring:

Traditional, break-step-inspect interactive debugging.

Forward and reverse stepping/jumping.
Revert to previous states in order to diagnose errors.

Dynamic visualizations of state and execution.
UML-based object diagrams (ODs) for state snapshots.
UML-based sequence diagrams (SDs) for execution.
ODs clarify many aspects of OO semantics.
SDs clarify concurrent program behavior and object interactions.

Queries over execution traces.
Investigate (temporal) program properties.
Debug programs by identifying suspicious conditions.
Integrate query answers with dynamic visualizations.

Selective trace filtering.
Focus on relevant parts of the source.

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 6 / 23



Outline Overview Architecture Implementation Conclusion

Where does JIVE stand?

JIVE is a dynamic analysis tool for Java programs featuring:

Traditional, break-step-inspect interactive debugging.
Forward and reverse stepping/jumping.

Revert to previous states in order to diagnose errors.

Dynamic visualizations of state and execution.
UML-based object diagrams (ODs) for state snapshots.
UML-based sequence diagrams (SDs) for execution.
ODs clarify many aspects of OO semantics.
SDs clarify concurrent program behavior and object interactions.

Queries over execution traces.
Investigate (temporal) program properties.
Debug programs by identifying suspicious conditions.
Integrate query answers with dynamic visualizations.

Selective trace filtering.
Focus on relevant parts of the source.

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 6 / 23



Outline Overview Architecture Implementation Conclusion

Where does JIVE stand?

JIVE is a dynamic analysis tool for Java programs featuring:

Traditional, break-step-inspect interactive debugging.
Forward and reverse stepping/jumping.

Revert to previous states in order to diagnose errors.

Dynamic visualizations of state and execution.
UML-based object diagrams (ODs) for state snapshots.
UML-based sequence diagrams (SDs) for execution.
ODs clarify many aspects of OO semantics.
SDs clarify concurrent program behavior and object interactions.

Queries over execution traces.
Investigate (temporal) program properties.
Debug programs by identifying suspicious conditions.
Integrate query answers with dynamic visualizations.

Selective trace filtering.
Focus on relevant parts of the source.

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 6 / 23



Outline Overview Architecture Implementation Conclusion

Where does JIVE stand?

JIVE is a dynamic analysis tool for Java programs featuring:

Traditional, break-step-inspect interactive debugging.
Forward and reverse stepping/jumping.

Revert to previous states in order to diagnose errors.

Dynamic visualizations of state and execution.
UML-based object diagrams (ODs) for state snapshots.
UML-based sequence diagrams (SDs) for execution.
ODs clarify many aspects of OO semantics.
SDs clarify concurrent program behavior and object interactions.

Queries over execution traces.
Investigate (temporal) program properties.
Debug programs by identifying suspicious conditions.
Integrate query answers with dynamic visualizations.

Selective trace filtering.
Focus on relevant parts of the source.

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 6 / 23



Outline Overview Architecture Implementation Conclusion

Where does JIVE stand?

JIVE is a dynamic analysis tool for Java programs featuring:

Traditional, break-step-inspect interactive debugging.
Forward and reverse stepping/jumping.

Revert to previous states in order to diagnose errors.

Dynamic visualizations of state and execution.
UML-based object diagrams (ODs) for state snapshots.
UML-based sequence diagrams (SDs) for execution.
ODs clarify many aspects of OO semantics.
SDs clarify concurrent program behavior and object interactions.

Queries over execution traces.
Investigate (temporal) program properties.
Debug programs by identifying suspicious conditions.
Integrate query answers with dynamic visualizations.

Selective trace filtering.
Focus on relevant parts of the source.

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 6 / 23



Outline Overview Architecture Implementation Conclusion

JIVE in Practice

Things you probably know...

JIVE is integrated with Eclipse as a collection of plugins.

Requires programs to execute in debug mode.

To run JIVE, it must be enabled in your program’s debug profile.
The JIVE perspective provides several views.

Contour Model.
Object Diagram.
Sequence Model.
Sequence Diagram.
Event Log.

Requires Java 1.6+ and Eclipse 3.5+; supports *ix, Mac, and Win.

It has a home: http://www.cse.buffalo.edu/jive.

It is open source: http://code.google.com/p/jive.

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 7 / 23

http://www.cse.buffalo.edu/jive
http://code.google.com/p/jive


Outline Overview Architecture Implementation Conclusion

JIVE’s User Interface

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 8 / 23



Outline Overview Architecture Implementation Conclusion

Next...

1 Overview

2 Architecture

3 Implementation

4 Conclusion

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 9 / 23



Outline Overview Architecture Implementation Conclusion

Data Collection

JIVE collects data continually from a running program.
How do we collect data?

Modified JVM? JVM API? Debug API? AOP? Instrumentation?

What does the collected data look like?
Depends! But expect variable reads/writes, method calls/returns, etc.

How do we model data within JIVE (JIVE data model)?
Relations? Objects? Graphs? Should these be temporal?
Decouple data collection– simply map it to the JIVE data model.

How do we store data (JIVE data store) with minimum contention?
Memory? Disk? RDBMS? Other DBMS– OODBMS, NoSQL?
Decouple data store– use a common abstraction for storage and access.

How do we access data cheaply and with minimum contention?
Directly? OO APIs (e.g., iterators, visitors)? Declarative query language?

Shouldn’t we also collect some static data?

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 10 / 23



Outline Overview Architecture Implementation Conclusion

Data Collection

JIVE collects data continually from a running program.
How do we collect data?

Modified JVM? JVM API? Debug API? AOP? Instrumentation?

What does the collected data look like?
Depends! But expect variable reads/writes, method calls/returns, etc.

How do we model data within JIVE (JIVE data model)?
Relations? Objects? Graphs? Should these be temporal?
Decouple data collection– simply map it to the JIVE data model.

How do we store data (JIVE data store) with minimum contention?
Memory? Disk? RDBMS? Other DBMS– OODBMS, NoSQL?
Decouple data store– use a common abstraction for storage and access.

How do we access data cheaply and with minimum contention?
Directly? OO APIs (e.g., iterators, visitors)? Declarative query language?

Shouldn’t we also collect some static data?

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 10 / 23



Outline Overview Architecture Implementation Conclusion

Data Collection

JIVE collects data continually from a running program.
How do we collect data?

Modified JVM? JVM API? Debug API? AOP? Instrumentation?

What does the collected data look like?
Depends! But expect variable reads/writes, method calls/returns, etc.

How do we model data within JIVE (JIVE data model)?
Relations? Objects? Graphs? Should these be temporal?
Decouple data collection– simply map it to the JIVE data model.

How do we store data (JIVE data store) with minimum contention?
Memory? Disk? RDBMS? Other DBMS– OODBMS, NoSQL?
Decouple data store– use a common abstraction for storage and access.

How do we access data cheaply and with minimum contention?
Directly? OO APIs (e.g., iterators, visitors)? Declarative query language?

Shouldn’t we also collect some static data?

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 10 / 23



Outline Overview Architecture Implementation Conclusion

Data Collection

JIVE collects data continually from a running program.
How do we collect data?

Modified JVM? JVM API? Debug API? AOP? Instrumentation?

What does the collected data look like?
Depends! But expect variable reads/writes, method calls/returns, etc.

How do we model data within JIVE (JIVE data model)?
Relations? Objects? Graphs? Should these be temporal?
Decouple data collection– simply map it to the JIVE data model.

How do we store data (JIVE data store) with minimum contention?
Memory? Disk? RDBMS? Other DBMS– OODBMS, NoSQL?
Decouple data store– use a common abstraction for storage and access.

How do we access data cheaply and with minimum contention?
Directly? OO APIs (e.g., iterators, visitors)? Declarative query language?

Shouldn’t we also collect some static data?

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 10 / 23



Outline Overview Architecture Implementation Conclusion

Data Collection

JIVE collects data continually from a running program.
How do we collect data?

Modified JVM? JVM API? Debug API? AOP? Instrumentation?

What does the collected data look like?
Depends! But expect variable reads/writes, method calls/returns, etc.

How do we model data within JIVE (JIVE data model)?
Relations? Objects? Graphs? Should these be temporal?
Decouple data collection– simply map it to the JIVE data model.

How do we store data (JIVE data store) with minimum contention?
Memory? Disk? RDBMS? Other DBMS– OODBMS, NoSQL?
Decouple data store– use a common abstraction for storage and access.

How do we access data cheaply and with minimum contention?
Directly? OO APIs (e.g., iterators, visitors)? Declarative query language?

Shouldn’t we also collect some static data?

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 10 / 23



Outline Overview Architecture Implementation Conclusion

Data Collection

JIVE collects data continually from a running program.
How do we collect data?

Modified JVM? JVM API? Debug API? AOP? Instrumentation?

What does the collected data look like?
Depends! But expect variable reads/writes, method calls/returns, etc.

How do we model data within JIVE (JIVE data model)?
Relations? Objects? Graphs? Should these be temporal?
Decouple data collection– simply map it to the JIVE data model.

How do we store data (JIVE data store) with minimum contention?
Memory? Disk? RDBMS? Other DBMS– OODBMS, NoSQL?
Decouple data store– use a common abstraction for storage and access.

How do we access data cheaply and with minimum contention?
Directly? OO APIs (e.g., iterators, visitors)? Declarative query language?

Shouldn’t we also collect some static data?

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 10 / 23



Outline Overview Architecture Implementation Conclusion

Data Processing

JIVE processes the collected data continually.

Update the trace model (i.e., raw trace data).

Update derived models (e.g., object and sequence models).

Notify interested parties (typically views) of model updates.

Views respond to model updates by rendering affected diagram parts.
Ideally, a subsystem should coordinate these tasks. That is,

Data arrivals should be isolated from data updates.
Data updates should be isolated from view renderings.
In general, subsystems should be decoupled from each other.

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 11 / 23



Outline Overview Architecture Implementation Conclusion

Data Processing

JIVE processes the collected data continually.

Update the trace model (i.e., raw trace data).

Update derived models (e.g., object and sequence models).

Notify interested parties (typically views) of model updates.

Views respond to model updates by rendering affected diagram parts.
Ideally, a subsystem should coordinate these tasks. That is,

Data arrivals should be isolated from data updates.
Data updates should be isolated from view renderings.
In general, subsystems should be decoupled from each other.

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 11 / 23



Outline Overview Architecture Implementation Conclusion

Data Processing

JIVE processes the collected data continually.

Update the trace model (i.e., raw trace data).

Update derived models (e.g., object and sequence models).

Notify interested parties (typically views) of model updates.

Views respond to model updates by rendering affected diagram parts.
Ideally, a subsystem should coordinate these tasks. That is,

Data arrivals should be isolated from data updates.
Data updates should be isolated from view renderings.
In general, subsystems should be decoupled from each other.

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 11 / 23



Outline Overview Architecture Implementation Conclusion

Data Processing

JIVE processes the collected data continually.

Update the trace model (i.e., raw trace data).

Update derived models (e.g., object and sequence models).

Notify interested parties (typically views) of model updates.

Views respond to model updates by rendering affected diagram parts.

Ideally, a subsystem should coordinate these tasks. That is,
Data arrivals should be isolated from data updates.
Data updates should be isolated from view renderings.
In general, subsystems should be decoupled from each other.

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 11 / 23



Outline Overview Architecture Implementation Conclusion

Data Processing

JIVE processes the collected data continually.

Update the trace model (i.e., raw trace data).

Update derived models (e.g., object and sequence models).

Notify interested parties (typically views) of model updates.

Views respond to model updates by rendering affected diagram parts.
Ideally, a subsystem should coordinate these tasks. That is,

Data arrivals should be isolated from data updates.
Data updates should be isolated from view renderings.
In general, subsystems should be decoupled from each other.

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 11 / 23



Outline Overview Architecture Implementation Conclusion

Visualizations

JIVE renders views continually in response to model updates.

Views are renderings of their respective models.

Some views require simple processing (e.g., Event Log).
For each model element, display a log entry line.

Others require more complex processing (e.g., OD and SD).
Select a strategy to traverse some data strucure (i.e., model).
Use configurations, interactive state, and traversal context to decide:

what to render at each step;
whether to traverse substructures;
whether to continue the traversal after each step completes.

Views should be rendered independently and concurrently.

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 12 / 23



Outline Overview Architecture Implementation Conclusion

Visualizations

JIVE renders views continually in response to model updates.

Views are renderings of their respective models.
Some views require simple processing (e.g., Event Log).

For each model element, display a log entry line.

Others require more complex processing (e.g., OD and SD).
Select a strategy to traverse some data strucure (i.e., model).
Use configurations, interactive state, and traversal context to decide:

what to render at each step;
whether to traverse substructures;
whether to continue the traversal after each step completes.

Views should be rendered independently and concurrently.

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 12 / 23



Outline Overview Architecture Implementation Conclusion

Visualizations

JIVE renders views continually in response to model updates.

Views are renderings of their respective models.
Some views require simple processing (e.g., Event Log).

For each model element, display a log entry line.

Others require more complex processing (e.g., OD and SD).
Select a strategy to traverse some data strucure (i.e., model).
Use configurations, interactive state, and traversal context to decide:

what to render at each step;
whether to traverse substructures;
whether to continue the traversal after each step completes.

Views should be rendered independently and concurrently.

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 12 / 23



Outline Overview Architecture Implementation Conclusion

Visualizations

JIVE renders views continually in response to model updates.

Views are renderings of their respective models.
Some views require simple processing (e.g., Event Log).

For each model element, display a log entry line.

Others require more complex processing (e.g., OD and SD).
Select a strategy to traverse some data strucure (i.e., model).
Use configurations, interactive state, and traversal context to decide:

what to render at each step;
whether to traverse substructures;
whether to continue the traversal after each step completes.

Views should be rendered independently and concurrently.

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 12 / 23



Outline Overview Architecture Implementation Conclusion

Visualizations

JIVE renders views continually in response to model updates.

Views are renderings of their respective models.
Some views require simple processing (e.g., Event Log).

For each model element, display a log entry line.

Others require more complex processing (e.g., OD and SD).
Select a strategy to traverse some data strucure (i.e., model).
Use configurations, interactive state, and traversal context to decide:

what to render at each step;
whether to traverse substructures;
whether to continue the traversal after each step completes.

Views should be rendered independently and concurrently.

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 12 / 23



Outline Overview Architecture Implementation Conclusion

Omniscient Debugging

JIVE supports omniscient debugging.

It knows about all program states.

It supports interactive navigation to arbitrary points in execution.

This requires support for the notion of temporal context (TC).

Normally, TC is in sync with the program counter (PC).

Temporal navigation breaks this sync and initiates replay mode.

Replay mode continues until TC and PC are in sync again.

Notably, views are rendered to reflect TC not PC.

Hence, views are naturally synchronized during replay mode.

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 13 / 23



Outline Overview Architecture Implementation Conclusion

Omniscient Debugging

JIVE supports omniscient debugging.

It knows about all program states.

It supports interactive navigation to arbitrary points in execution.

This requires support for the notion of temporal context (TC).

Normally, TC is in sync with the program counter (PC).

Temporal navigation breaks this sync and initiates replay mode.

Replay mode continues until TC and PC are in sync again.

Notably, views are rendered to reflect TC not PC.

Hence, views are naturally synchronized during replay mode.

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 13 / 23



Outline Overview Architecture Implementation Conclusion

Omniscient Debugging

JIVE supports omniscient debugging.

It knows about all program states.

It supports interactive navigation to arbitrary points in execution.

This requires support for the notion of temporal context (TC).

Normally, TC is in sync with the program counter (PC).

Temporal navigation breaks this sync and initiates replay mode.

Replay mode continues until TC and PC are in sync again.

Notably, views are rendered to reflect TC not PC.

Hence, views are naturally synchronized during replay mode.

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 13 / 23



Outline Overview Architecture Implementation Conclusion

Omniscient Debugging

JIVE supports omniscient debugging.

It knows about all program states.

It supports interactive navigation to arbitrary points in execution.

This requires support for the notion of temporal context (TC).

Normally, TC is in sync with the program counter (PC).

Temporal navigation breaks this sync and initiates replay mode.

Replay mode continues until TC and PC are in sync again.

Notably, views are rendered to reflect TC not PC.

Hence, views are naturally synchronized during replay mode.

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 13 / 23



Outline Overview Architecture Implementation Conclusion

Omniscient Debugging

JIVE supports omniscient debugging.

It knows about all program states.

It supports interactive navigation to arbitrary points in execution.

This requires support for the notion of temporal context (TC).

Normally, TC is in sync with the program counter (PC).

Temporal navigation breaks this sync and initiates replay mode.

Replay mode continues until TC and PC are in sync again.

Notably, views are rendered to reflect TC not PC.

Hence, views are naturally synchronized during replay mode.

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 13 / 23



Outline Overview Architecture Implementation Conclusion

Omniscient Debugging

JIVE supports omniscient debugging.

It knows about all program states.

It supports interactive navigation to arbitrary points in execution.

This requires support for the notion of temporal context (TC).

Normally, TC is in sync with the program counter (PC).

Temporal navigation breaks this sync and initiates replay mode.

Replay mode continues until TC and PC are in sync again.

Notably, views are rendered to reflect TC not PC.

Hence, views are naturally synchronized during replay mode.

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 13 / 23



Outline Overview Architecture Implementation Conclusion

Omniscient Debugging

JIVE supports omniscient debugging.

It knows about all program states.

It supports interactive navigation to arbitrary points in execution.

This requires support for the notion of temporal context (TC).

Normally, TC is in sync with the program counter (PC).

Temporal navigation breaks this sync and initiates replay mode.

Replay mode continues until TC and PC are in sync again.

Notably, views are rendered to reflect TC not PC.

Hence, views are naturally synchronized during replay mode.

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 13 / 23



Outline Overview Architecture Implementation Conclusion

Omniscient Debugging

JIVE supports omniscient debugging.

It knows about all program states.

It supports interactive navigation to arbitrary points in execution.

This requires support for the notion of temporal context (TC).

Normally, TC is in sync with the program counter (PC).

Temporal navigation breaks this sync and initiates replay mode.

Replay mode continues until TC and PC are in sync again.

Notably, views are rendered to reflect TC not PC.

Hence, views are naturally synchronized during replay mode.

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 13 / 23



Outline Overview Architecture Implementation Conclusion

Queries

JIVE supports template-based searches and declarative SPJ queries.

JIVE maintains data against which queries are formulated.

Template-based searches are predefined, form-based queries.
Select a template, provide parameters, and execute.

SPJ queries are still at a proof-of-concept stage.
Write a declarative query using a SQL-like language and execute.

Query answer reporting is uniform.
Eclipse’s seach results window provides tabular and hierarchical views.
The SD highlights query answers and focuses on their activations.
Focusing means maximally hiding all unrelated parts of the SD.
Double-clicking query answers navigates to the corresponding TC.

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 14 / 23



Outline Overview Architecture Implementation Conclusion

Queries

JIVE supports template-based searches and declarative SPJ queries.

JIVE maintains data against which queries are formulated.
Template-based searches are predefined, form-based queries.

Select a template, provide parameters, and execute.

SPJ queries are still at a proof-of-concept stage.
Write a declarative query using a SQL-like language and execute.

Query answer reporting is uniform.
Eclipse’s seach results window provides tabular and hierarchical views.
The SD highlights query answers and focuses on their activations.
Focusing means maximally hiding all unrelated parts of the SD.
Double-clicking query answers navigates to the corresponding TC.

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 14 / 23



Outline Overview Architecture Implementation Conclusion

Queries

JIVE supports template-based searches and declarative SPJ queries.

JIVE maintains data against which queries are formulated.
Template-based searches are predefined, form-based queries.

Select a template, provide parameters, and execute.

SPJ queries are still at a proof-of-concept stage.
Write a declarative query using a SQL-like language and execute.

Query answer reporting is uniform.
Eclipse’s seach results window provides tabular and hierarchical views.
The SD highlights query answers and focuses on their activations.
Focusing means maximally hiding all unrelated parts of the SD.
Double-clicking query answers navigates to the corresponding TC.

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 14 / 23



Outline Overview Architecture Implementation Conclusion

Queries

JIVE supports template-based searches and declarative SPJ queries.

JIVE maintains data against which queries are formulated.
Template-based searches are predefined, form-based queries.

Select a template, provide parameters, and execute.

SPJ queries are still at a proof-of-concept stage.
Write a declarative query using a SQL-like language and execute.

Query answer reporting is uniform.
Eclipse’s seach results window provides tabular and hierarchical views.
The SD highlights query answers and focuses on their activations.
Focusing means maximally hiding all unrelated parts of the SD.
Double-clicking query answers navigates to the corresponding TC.

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 14 / 23



Outline Overview Architecture Implementation Conclusion

JIVE’s MVC Architecture (Simplified)

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 15 / 23



Outline Overview Architecture Implementation Conclusion

JIVE Focused Search Results

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 16 / 23



Outline Overview Architecture Implementation Conclusion

Next...

1 Overview

2 Architecture

3 Implementation

4 Conclusion

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 17 / 23



Outline Overview Architecture Implementation Conclusion

Project Structure

JIVE is implemented as a collection of Eclipse plugins.
edu.buffalo.cse.jive.feature (meta)

plugin definitions, dependencies, requirements, etc;

edu.buffalo.cse.jive.launching (hooks)
replaces debug launchers; provides an extended debugger;

edu.buffalo.cse.jive.core (debugger)
extended debugger for JDI event handling; model updates;

edu.bsu.cs.jive (types)
JIVE data model; JIVE data store; utilities;

edu.buffalo.cse.jive.core.adapter (expose)
exposes Eclipse’s Java Debug Target (JDT) for extension;

edu.buffalo.cse.jive.ui (applications)
views; searches, queries, and query answers;

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 18 / 23



Outline Overview Architecture Implementation Conclusion

edu.buffalo.cse.jive.core

Creates JIVE data models and registers them as JIVE event listeners.

Requests JDI events such as:
thread start/end, class prepare, method enter/exit, field change, step.

Receives and handles JDI event notifications:
updates internal data structures;
creates JIVE events;
notifies observers (i.e., models) on a separate thread;
models update themselves based on JIVE events.

Most debug tasks performed by Eclipse’s debugger.

Heavily based on the observer pattern.

Statistics: 26 files, 5KLoC.

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 19 / 23



Outline Overview Architecture Implementation Conclusion

edu.buffalo.cse.jive.core

Creates JIVE data models and registers them as JIVE event listeners.
Requests JDI events such as:

thread start/end, class prepare, method enter/exit, field change, step.

Receives and handles JDI event notifications:
updates internal data structures;
creates JIVE events;
notifies observers (i.e., models) on a separate thread;
models update themselves based on JIVE events.

Most debug tasks performed by Eclipse’s debugger.

Heavily based on the observer pattern.

Statistics: 26 files, 5KLoC.

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 19 / 23



Outline Overview Architecture Implementation Conclusion

edu.buffalo.cse.jive.core

Creates JIVE data models and registers them as JIVE event listeners.
Requests JDI events such as:

thread start/end, class prepare, method enter/exit, field change, step.

Receives and handles JDI event notifications:
updates internal data structures;
creates JIVE events;
notifies observers (i.e., models) on a separate thread;
models update themselves based on JIVE events.

Most debug tasks performed by Eclipse’s debugger.

Heavily based on the observer pattern.

Statistics: 26 files, 5KLoC.

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 19 / 23



Outline Overview Architecture Implementation Conclusion

edu.buffalo.cse.jive.core

Creates JIVE data models and registers them as JIVE event listeners.
Requests JDI events such as:

thread start/end, class prepare, method enter/exit, field change, step.

Receives and handles JDI event notifications:
updates internal data structures;
creates JIVE events;
notifies observers (i.e., models) on a separate thread;
models update themselves based on JIVE events.

Most debug tasks performed by Eclipse’s debugger.

Heavily based on the observer pattern.

Statistics: 26 files, 5KLoC.

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 19 / 23



Outline Overview Architecture Implementation Conclusion

edu.buffalo.cse.jive.core

Creates JIVE data models and registers them as JIVE event listeners.
Requests JDI events such as:

thread start/end, class prepare, method enter/exit, field change, step.

Receives and handles JDI event notifications:
updates internal data structures;
creates JIVE events;
notifies observers (i.e., models) on a separate thread;
models update themselves based on JIVE events.

Most debug tasks performed by Eclipse’s debugger.

Heavily based on the observer pattern.

Statistics: 26 files, 5KLoC.

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 19 / 23



Outline Overview Architecture Implementation Conclusion

edu.buffalo.cse.jive.core

Creates JIVE data models and registers them as JIVE event listeners.
Requests JDI events such as:

thread start/end, class prepare, method enter/exit, field change, step.

Receives and handles JDI event notifications:
updates internal data structures;
creates JIVE events;
notifies observers (i.e., models) on a separate thread;
models update themselves based on JIVE events.

Most debug tasks performed by Eclipse’s debugger.

Heavily based on the observer pattern.

Statistics: 26 files, 5KLoC.

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 19 / 23



Outline Overview Architecture Implementation Conclusion

edu.bsu.cs.jive

Defines JIVE events, data models and their elements.

Implements data models using in-memory storage.
Encapsulates most concrete implementations using creational patterns.
Typically, a factory provides methods for creating model elements.
Many model elements accept some form of visitor object.

Object Model (a.k.a. Contour Model) is the most complex.
Contours are transactional.
That is, every model change is encapsulated in a transaction.
Transactions can be committed/rolled back– the heart of replay mode.
Uses the state pattern in its implementation.

Extensive use of the observer pattern.

Statistics (totals): 115 files, 15KLoC.

Statistics (contour): 42 files, 11KLoC.

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 20 / 23



Outline Overview Architecture Implementation Conclusion

edu.bsu.cs.jive

Defines JIVE events, data models and their elements.
Implements data models using in-memory storage.

Encapsulates most concrete implementations using creational patterns.
Typically, a factory provides methods for creating model elements.
Many model elements accept some form of visitor object.

Object Model (a.k.a. Contour Model) is the most complex.
Contours are transactional.
That is, every model change is encapsulated in a transaction.
Transactions can be committed/rolled back– the heart of replay mode.
Uses the state pattern in its implementation.

Extensive use of the observer pattern.

Statistics (totals): 115 files, 15KLoC.

Statistics (contour): 42 files, 11KLoC.

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 20 / 23



Outline Overview Architecture Implementation Conclusion

edu.bsu.cs.jive

Defines JIVE events, data models and their elements.
Implements data models using in-memory storage.

Encapsulates most concrete implementations using creational patterns.
Typically, a factory provides methods for creating model elements.
Many model elements accept some form of visitor object.

Object Model (a.k.a. Contour Model) is the most complex.
Contours are transactional.
That is, every model change is encapsulated in a transaction.
Transactions can be committed/rolled back– the heart of replay mode.
Uses the state pattern in its implementation.

Extensive use of the observer pattern.

Statistics (totals): 115 files, 15KLoC.

Statistics (contour): 42 files, 11KLoC.

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 20 / 23



Outline Overview Architecture Implementation Conclusion

edu.bsu.cs.jive

Defines JIVE events, data models and their elements.
Implements data models using in-memory storage.

Encapsulates most concrete implementations using creational patterns.
Typically, a factory provides methods for creating model elements.
Many model elements accept some form of visitor object.

Object Model (a.k.a. Contour Model) is the most complex.
Contours are transactional.
That is, every model change is encapsulated in a transaction.
Transactions can be committed/rolled back– the heart of replay mode.
Uses the state pattern in its implementation.

Extensive use of the observer pattern.

Statistics (totals): 115 files, 15KLoC.

Statistics (contour): 42 files, 11KLoC.

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 20 / 23



Outline Overview Architecture Implementation Conclusion

edu.bsu.cs.jive

Defines JIVE events, data models and their elements.
Implements data models using in-memory storage.

Encapsulates most concrete implementations using creational patterns.
Typically, a factory provides methods for creating model elements.
Many model elements accept some form of visitor object.

Object Model (a.k.a. Contour Model) is the most complex.
Contours are transactional.
That is, every model change is encapsulated in a transaction.
Transactions can be committed/rolled back– the heart of replay mode.
Uses the state pattern in its implementation.

Extensive use of the observer pattern.

Statistics (totals): 115 files, 15KLoC.

Statistics (contour): 42 files, 11KLoC.

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 20 / 23



Outline Overview Architecture Implementation Conclusion

edu.bsu.cs.jive

Defines JIVE events, data models and their elements.
Implements data models using in-memory storage.

Encapsulates most concrete implementations using creational patterns.
Typically, a factory provides methods for creating model elements.
Many model elements accept some form of visitor object.

Object Model (a.k.a. Contour Model) is the most complex.
Contours are transactional.
That is, every model change is encapsulated in a transaction.
Transactions can be committed/rolled back– the heart of replay mode.
Uses the state pattern in its implementation.

Extensive use of the observer pattern.

Statistics (totals): 115 files, 15KLoC.

Statistics (contour): 42 files, 11KLoC.

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 20 / 23



Outline Overview Architecture Implementation Conclusion

edu.buffalo.cse.jive.ui

Uses Eclipse’s GEF framework and SWT.
Retrieve model elements to display their contents.
Compose UI elements using edit parts and figures.
You define actions for events (e.g., clicking on a menu item).

Template-based searches.
Pre-configured forms define required and/or optional fields.
Requested search is validated.
Model is searched– each search requires a visitor implementation.

SPJ queries.
Textual input with syntax validation.
A rudimentary query engine is in place.
It implements true joins, although in somewhat naïve fashion.

Extensive use of the observer pattern.

Statistics: 195 files, 35KLoC.

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 21 / 23



Outline Overview Architecture Implementation Conclusion

edu.buffalo.cse.jive.ui

Uses Eclipse’s GEF framework and SWT.
Retrieve model elements to display their contents.
Compose UI elements using edit parts and figures.
You define actions for events (e.g., clicking on a menu item).

Template-based searches.
Pre-configured forms define required and/or optional fields.
Requested search is validated.
Model is searched– each search requires a visitor implementation.

SPJ queries.
Textual input with syntax validation.
A rudimentary query engine is in place.
It implements true joins, although in somewhat naïve fashion.

Extensive use of the observer pattern.

Statistics: 195 files, 35KLoC.

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 21 / 23



Outline Overview Architecture Implementation Conclusion

edu.buffalo.cse.jive.ui

Uses Eclipse’s GEF framework and SWT.
Retrieve model elements to display their contents.
Compose UI elements using edit parts and figures.
You define actions for events (e.g., clicking on a menu item).

Template-based searches.
Pre-configured forms define required and/or optional fields.
Requested search is validated.
Model is searched– each search requires a visitor implementation.

SPJ queries.
Textual input with syntax validation.
A rudimentary query engine is in place.
It implements true joins, although in somewhat naïve fashion.

Extensive use of the observer pattern.

Statistics: 195 files, 35KLoC.

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 21 / 23



Outline Overview Architecture Implementation Conclusion

edu.buffalo.cse.jive.ui

Uses Eclipse’s GEF framework and SWT.
Retrieve model elements to display their contents.
Compose UI elements using edit parts and figures.
You define actions for events (e.g., clicking on a menu item).

Template-based searches.
Pre-configured forms define required and/or optional fields.
Requested search is validated.
Model is searched– each search requires a visitor implementation.

SPJ queries.
Textual input with syntax validation.
A rudimentary query engine is in place.
It implements true joins, although in somewhat naïve fashion.

Extensive use of the observer pattern.

Statistics: 195 files, 35KLoC.

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 21 / 23



Outline Overview Architecture Implementation Conclusion

edu.buffalo.cse.jive.ui

Uses Eclipse’s GEF framework and SWT.
Retrieve model elements to display their contents.
Compose UI elements using edit parts and figures.
You define actions for events (e.g., clicking on a menu item).

Template-based searches.
Pre-configured forms define required and/or optional fields.
Requested search is validated.
Model is searched– each search requires a visitor implementation.

SPJ queries.
Textual input with syntax validation.
A rudimentary query engine is in place.
It implements true joins, although in somewhat naïve fashion.

Extensive use of the observer pattern.

Statistics: 195 files, 35KLoC.

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 21 / 23



Outline Overview Architecture Implementation Conclusion

Next...

1 Overview

2 Architecture

3 Implementation

4 Conclusion

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 22 / 23



Outline Overview Architecture Implementation Conclusion

Conclusion

Summary.

Future of JIVE.

Are you interested?

Demian Lessa JIVE: Dynamic Analysis for Java :: Overview, Architecture, and Implementation 23 / 23


	Overview
	Problem
	Solution Approaches
	Jive's Approach

	Architecture
	Data Collection
	Data Processing
	Visualizations
	Omniscient Debugging
	Queries

	Implementation
	Project Structure

	Conclusion
	Conclusion


