
Jive Research Overview
Towards Scalable Visualizations

April 07 :: Spring 2010

Demian Lessa <dlessa@buffalo.edu>



Jive Research Overview :: Towards Scalable Visualizations

/

1 Motivation

2 Diagram Folding

3 Diagram Filtering

4 Lifeline Projection

5 Combining Techniques

6 Conclusion and Future Work

April 07 Spring 2010



Jive Research Overview :: Towards Scalable Visualizations

/

1 Motivation

2 Diagram Folding

3 Diagram Filtering

4 Lifeline Projection

5 Combining Techniques

6 Conclusion and Future Work

April 07 Spring 2010



Jive Research Overview :: Towards Scalable Visualizations

/

1 Motivation

2 Diagram Folding

3 Diagram Filtering

4 Lifeline Projection

5 Combining Techniques

6 Conclusion and Future Work

April 07 Spring 2010



Jive Research Overview :: Towards Scalable Visualizations

/

1 Motivation

2 Diagram Folding

3 Diagram Filtering

4 Lifeline Projection

5 Combining Techniques

6 Conclusion and Future Work

April 07 Spring 2010



Jive Research Overview :: Towards Scalable Visualizations

/

1 Motivation

2 Diagram Folding

3 Diagram Filtering

4 Lifeline Projection

5 Combining Techniques

6 Conclusion and Future Work

April 07 Spring 2010



Jive Research Overview :: Towards Scalable Visualizations

/

1 Motivation

2 Diagram Folding

3 Diagram Filtering

4 Lifeline Projection

5 Combining Techniques

6 Conclusion and Future Work

April 07 Spring 2010



Jive Research Overview :: Towards Scalable Visualizations

Motivation /

1 Motivation

2 Diagram Folding

3 Diagram Filtering

4 Lifeline Projection

5 Combining Techniques

6 Conclusion and Future Work

April 07 Spring 2010



Jive Research Overview :: Towards Scalable Visualizations

Motivation /

A Closer Look at Sequence Diagrams

Sequence diagrams capture all calls and returns in a program execution.

By their very nature, OO programs tend to:
Disperse functionality across multiple classes and methods.
Compose objects to create more complex interactions.
Instantiate large number of objects to accomplish a program’s tasks.
Have long execution histories- even programs of modest size!

As a result, sequence diagrams tend to:
Grow horizontally (more objects means more lifelines).
Grow vertically (complex iterations means more method activations).

Bottom line: sequence diagrams quickly become unmanageable.

April 07 Spring 2010



Jive Research Overview :: Towards Scalable Visualizations

Motivation /

A Closer Look at Sequence Diagrams

Sequence diagrams capture all calls and returns in a program execution.
By their very nature, OO programs tend to:

Disperse functionality across multiple classes and methods.
Compose objects to create more complex interactions.
Instantiate large number of objects to accomplish a program’s tasks.
Have long execution histories- even programs of modest size!

As a result, sequence diagrams tend to:
Grow horizontally (more objects means more lifelines).
Grow vertically (complex iterations means more method activations).

Bottom line: sequence diagrams quickly become unmanageable.

April 07 Spring 2010



Jive Research Overview :: Towards Scalable Visualizations

Motivation /

A Closer Look at Sequence Diagrams

Sequence diagrams capture all calls and returns in a program execution.
By their very nature, OO programs tend to:

Disperse functionality across multiple classes and methods.
Compose objects to create more complex interactions.
Instantiate large number of objects to accomplish a program’s tasks.
Have long execution histories- even programs of modest size!

As a result, sequence diagrams tend to:
Grow horizontally (more objects means more lifelines).
Grow vertically (complex iterations means more method activations).

Bottom line: sequence diagrams quickly become unmanageable.

April 07 Spring 2010



Jive Research Overview :: Towards Scalable Visualizations

Motivation /

A Closer Look at Sequence Diagrams

Sequence diagrams capture all calls and returns in a program execution.
By their very nature, OO programs tend to:

Disperse functionality across multiple classes and methods.
Compose objects to create more complex interactions.
Instantiate large number of objects to accomplish a program’s tasks.
Have long execution histories- even programs of modest size!

As a result, sequence diagrams tend to:
Grow horizontally (more objects means more lifelines).
Grow vertically (complex iterations means more method activations).

Bottom line: sequence diagrams quickly become unmanageable.

April 07 Spring 2010



Jive Research Overview :: Towards Scalable Visualizations

Motivation /

Scalability of Sequence Diagrams

How do we tackle such problem?

Here are some ideas:
Support (semi-)automatic and manual folding of the diagram.
Filter out predefined sets of calls and returns.
Project the sequence diagram along specified lifelines.
Combine one or more of the above.

For all of the above, we must define appropriate criteria!

April 07 Spring 2010



Jive Research Overview :: Towards Scalable Visualizations

Motivation /

Scalability of Sequence Diagrams

How do we tackle such problem?
Here are some ideas:

Support (semi-)automatic and manual folding of the diagram.
Filter out predefined sets of calls and returns.
Project the sequence diagram along specified lifelines.
Combine one or more of the above.

For all of the above, we must define appropriate criteria!

April 07 Spring 2010



Jive Research Overview :: Towards Scalable Visualizations

Motivation /

Scalability of Sequence Diagrams

How do we tackle such problem?
Here are some ideas:

Support (semi-)automatic and manual folding of the diagram.
Filter out predefined sets of calls and returns.
Project the sequence diagram along specified lifelines.
Combine one or more of the above.

For all of the above, we must define appropriate criteria!

April 07 Spring 2010



Jive Research Overview :: Towards Scalable Visualizations

Diagram Folding /

1 Motivation

2 Diagram Folding

3 Diagram Filtering

4 Lifeline Projection

5 Combining Techniques

6 Conclusion and Future Work

April 07 Spring 2010



Jive Research Overview :: Towards Scalable Visualizations

Diagram Folding /

Diagram Folding: Agenda

Define an adequate data structure to abstract the sequence diagrams.
Our key data structure is the Call Tree.
We maintain one call tree per execution thread.

Identify useful folding criteria.
Along the sequence diagram depth (fold subtrees).
Along the sequence diagram breadth (fold adjacent siblings).

Define the necessary folding operations.

April 07 Spring 2010



Jive Research Overview :: Towards Scalable Visualizations

Diagram Folding /

Call Tree

Directed tree.

Nodes correspond to method activations and edges to method calls.
Every node n has an associated tuple τ(n) = ⟨m,e,c,r⟩, where:

m is the called method,
e is the method’s execution environment (e.g., an object or a class),
c ∈N is the method’s call time, and
r ∈N ∪ {ã} is the method’s return time.

Edge (n1,n2) encodes a method call from n1 (caller) to n2 (callee).

Total order ‘<’ on call tree nodes: n1 < n2⇔ τ(n1).c < τ(n2).c.

Observation: one call tree per thread!

April 07 Spring 2010



Jive Research Overview :: Towards Scalable Visualizations

Diagram Folding /

Figure: Call Tree Annotated with Call Times

April 07 Spring 2010



Jive Research Overview :: Towards Scalable Visualizations

Diagram Folding /

Figure: Possible Uninteresting Regions, Assuming Interest in Activations 35 and 76.

April 07 Spring 2010



Jive Research Overview :: Towards Scalable Visualizations

Diagram Folding / Depth-Wise

1 Motivation

2 Diagram Folding
Depth-Wise
Breadth-Wise

3 Diagram Filtering

4 Lifeline Projection

5 Combining Techniques

6 Conclusion and Future Work

April 07 Spring 2010



Jive Research Overview :: Towards Scalable Visualizations

Diagram Folding / Depth-Wise

Operations

Fold(t,f)
replaces the subtree rooted at f in t with a new leaf node `.

FoldBefore(t,n)
folds all nodes f of t such that f < n and f /∈ ancestors(n).

FoldAfter(t,n)
folds all nodes f of t such that f > n and f /∈ descendants(n).

FoldBetween(t,n1,n2)
folds all nodes f of t such that n1 > f > n2 and f /∈ descendants(n1)∪ ancestors(n2).

Note: call trees traversed breadth first.

April 07 Spring 2010



Jive Research Overview :: Towards Scalable Visualizations

Diagram Folding / Depth-Wise

Figure: Possible Uninteresting Regions, Assuming Interest in Activations 35 and 76 (dup).

April 07 Spring 2010



Jive Research Overview :: Towards Scalable Visualizations

Diagram Folding / Depth-Wise

Figure: Call Tree After Folding the Uninteresting Regions.

April 07 Spring 2010



Jive Research Overview :: Towards Scalable Visualizations

Diagram Folding / Depth-Wise

Operations

In the last example, nodes 5 and 11 could be further folded into a single node.

One may argue that this is not necessary.

Yes, for this example there is no obvious benefit.

What if the folded call tree had 1000 nodes occurring before node 35?

The FoldXXX procedures presented earlier do not solve this problem.

We need breadth-wise folding!

April 07 Spring 2010



Jive Research Overview :: Towards Scalable Visualizations

Diagram Folding / Breadth-Wise

1 Motivation

2 Diagram Folding
Depth-Wise
Breadth-Wise

3 Diagram Filtering

4 Lifeline Projection

5 Combining Techniques

6 Conclusion and Future Work

April 07 Spring 2010



Jive Research Overview :: Towards Scalable Visualizations

Diagram Folding / Breadth-Wise

Operations (cont.)

Regular expressions to the rescue!

Given any reasonably sized sequence of calls made from the same caller, we
assume that there are recurring patterns in the call sequence.

Recurring patterns are usually due to loops, but may occur due to explicit calling
patterns in the body of the caller.

April 07 Spring 2010



Jive Research Overview :: Towards Scalable Visualizations

Diagram Folding / Breadth-Wise

Figure: Diagram Folding- Report.java

1 public class Report {
2
3 public String format(String line) { ... }
4
5 public void print(BufferedReader in, PrintStream out) {
6
7 // let N represent the number of lines in the reader
8 while (String line = in.readLine() != null) {
9 out.printLn(format(line));

10 }
11 }
12 }

Operations (cont.)

The sequence of calls in print may be folded to a single node in the call tree.

The node is labeled with the regex: (readLine;format;printLn)N.

Such regex compactly represents the call sequence with no loss of information!

April 07 Spring 2010



Jive Research Overview :: Towards Scalable Visualizations

Diagram Folding / Breadth-Wise

Figure: Diagram Folding- Report.java

1 public class Report {
2
3 public String format(String line) { ... }
4
5 public void print(BufferedReader in, PrintStream out) {
6
7 // let N represent the number of lines in the reader
8 while (String line = in.readLine() != null) {
9 out.printLn(format(line));

10 }
11 }
12 }

Operations (cont.)

The sequence of calls in print may be folded to a single node in the call tree.

The node is labeled with the regex: (readLine;format;printLn)N.

Such regex compactly represents the call sequence with no loss of information!

April 07 Spring 2010



Jive Research Overview :: Towards Scalable Visualizations

Diagram Folding / Breadth-Wise

Operations (cont.)

RegexFoldBefore(p,n)
computes an ordered list C of all child nodes of p such that c ∈C⇔ c < n;
replaces all children of p occurring in C with a single leaf node ` labeled with a
regular expression computed from the ordered list of method calls obtained from C.

RegexFoldAfter(p,n) and RegexFoldBetween(p,n1,n2) are defined
analogously, with the proper changes to the inclusion criterion of nodes in C.

Note: algorithm for the conversion of the sequence of method calls into a regular
expression is not obvious.

April 07 Spring 2010



Jive Research Overview :: Towards Scalable Visualizations

Diagram Folding / Breadth-Wise

Operations (cont.)

Let Regex(S) be the algorithm that takes a string S as input and returns a
regular expression R such that S ∈ R (i.e., S is a string in the language R).
R is not any regular expression:

wildcards and disjunctions are not allowed;
only primitive string repeats are allowed: (ab)2 is fine but (aa)2 is not;
R is the most compact regex satisfying the above criteria (need not be unique).

Algorithm:
Part I computes all primitive repeats of S in O(∣S∣ ⋅log∣S∣) time and O(∣S∣) space;
Part II uses Dijkstra’s algorithm to compute an optimal regex for S in O(∣S∣ ⋅log∣S∣)
time and space;
A simple post-processing step normalizes singletons of R in O(∣S∣) time and space.

April 07 Spring 2010



Jive Research Overview :: Towards Scalable Visualizations

Diagram Folding / Breadth-Wise

Figure: Call Tree After Regex Folding the Uninteresting Regions.

April 07 Spring 2010



Jive Research Overview :: Towards Scalable Visualizations

Diagram Filtering /

1 Motivation

2 Diagram Folding

3 Diagram Filtering

4 Lifeline Projection

5 Combining Techniques

6 Conclusion and Future Work

April 07 Spring 2010



Jive Research Overview :: Towards Scalable Visualizations

Diagram Filtering /

Filtering

Filtering is the process by which debug events are omitted from Jive’s model.

As a consequence, call trees no longer contain complete call/return information.

We introduce out-of-model calls and returns to cope with missing information.

Calls and returns originating and terminating out-of-model are ignored.
Out-of-model calls to in-model methods are handled as follows:

Let n1 be the largest outstanding in-model node and n2 the new in-model node.
If n1 has an outstanding out-of-model child o, add n2 as a child of o;
Else, create a new out-of-model node o, add o as a child of n1, and n2 as a child of o.

All other calls and returns are handled as if no filtering was in place.

Inferring out-of-model calls and returns is done using call trees and call stacks.

All algorithms introduced thus far may be adapted to handle out-of-model nodes.

Sequence diagrams must be extended to handle out-of-model calls and returns.

April 07 Spring 2010



Jive Research Overview :: Towards Scalable Visualizations

Diagram Filtering /

Figure: Extended Sequence Diagram Arrows. Columns indicate whether calls and returns
originate/terminate in-model or out-of-model. The ‘in/out+/in’ column indicates a call or return
originating in-model and terminating out-of-model, followed by any number of out-of-model
activations, terminating in-model after a call or return from out-of-model.

April 07 Spring 2010



Jive Research Overview :: Towards Scalable Visualizations

Diagram Filtering /

Figure: Extended Sequence Diagram for Hanoi Towers. The towers implement toString(),
which are called from the out-of-model PrintWriter.format(String, Object, ...).

April 07 Spring 2010



Jive Research Overview :: Towards Scalable Visualizations

Diagram Filtering /

Filtering (cont.)

Jive supports all filtering supported by JPDA:
class and package filtering based on regular expressions.

Jive also implements a number of local filters:
method and class filtering based on visibility;
method filtering based on regular expressions;
synthetic method filtering.

Jive provides default filters for standard Java and Sun packages.

April 07 Spring 2010



Jive Research Overview :: Towards Scalable Visualizations

Lifeline Projection /

1 Motivation

2 Diagram Folding

3 Diagram Filtering

4 Lifeline Projection

5 Combining Techniques

6 Conclusion and Future Work

April 07 Spring 2010



Jive Research Overview :: Towards Scalable Visualizations

Lifeline Projection /

Lifeline Interactions

Users may be interested in only a subset of lifelines in the sequence diagram.

Users may project any number of selected lifelines into a new sequence diagram.

The new diagram only contains method activations occurring in these lifelines.

Calls and returns from other lifelines are represented as out-of-model.

Lifelines may be reordered during projection to minimize edge crossings.

April 07 Spring 2010



Jive Research Overview :: Towards Scalable Visualizations

Combining Techniques /

1 Motivation

2 Diagram Folding

3 Diagram Filtering

4 Lifeline Projection

5 Combining Techniques

6 Conclusion and Future Work

April 07 Spring 2010



Jive Research Overview :: Towards Scalable Visualizations

Combining Techniques /

Visualizing Query Results

Query results are typically represented as points in the sequence diagram.

The FoldXXX and RegexFoldXXX procedures reduce the diagram’s depth and
breadth.

Projecting the lifelines containing result points further reduces the diagram along
the relevant objects’ lifelines.

Composing these operations automatically yields the smallest relevant sequence
diagram for a given query result set.

Note: these operations may also be combined manually, by the user, and applied
to other use cases.

April 07 Spring 2010



Jive Research Overview :: Towards Scalable Visualizations

Conclusion and Future Work /

1 Motivation

2 Diagram Folding

3 Diagram Filtering

4 Lifeline Projection

5 Combining Techniques

6 Conclusion and Future Work

April 07 Spring 2010



Jive Research Overview :: Towards Scalable Visualizations

Conclusion and Future Work /

Status Report

Currently, Jive supports manual folding of a single node.

It also fully supports out-of-model calls.

However, just JPDA filters are currently supported.

We are in the process of implementing all other algorithms and operations
described in here.

April 07 Spring 2010


	Motivation
	Diagram Folding
	Depth-Wise
	Breadth-Wise

	Diagram Filtering
	Lifeline Projection
	Combining Techniques
	Conclusion and Future Work

