

Evaluation of Temporal Queries
with Applications in Program Debugging

Presenter: Demian Lessa

Debugging with Temporal Queries

Query Evaluation: Compilation Approach

Query Evaluation: Recursive Temporal Queries

1

2

3

Evaluation of Temporal Queries
with Applications in Program Debugging

Debugging with Temporal Queries
Example: Binary Search Tree

public class BST {

 private final int value;
 private BST left = null;
 private BST right = null;

 public BST(final int n) {
 value = n;
 }

 public void insert(final int n) {
 if (value == n) {
 return;
 }
 if (value < n) {
 if (right == null) {
 right = new BST(n);
 }
 else {
 right.insert(n);
 }
 }
 else if (left == null) {
 left = new BST(n);
 }
 else {
 left.insert(n);
 }
 }
}

● Sample debug questions
 was there ever a path between...?
 when was there a path between...?
 was there ever an invariant violatation?

Debugging with Temporal Queries
Example: Binary Search Tree

● JIVE's Object Diagram
 run-time view of object heap
 one diagram for each time in execution
 supports visual debugging
 supports back-in-time stepping
 not scalable for large execution traces
 solution: query-based debugging!

Debugging with Temporal Queries
Example: Binary Search Tree

● Query-based debugging
 schema: BST(id, key, lid, rid)
 consider the given program state
 recursive Datalog queries (non-temporal)

Q1: Is there a path 100 → K, K < 60?

Q1() :- Path(A,D),
 BST(A,100,_,_),
 BST(D,K,_,_), K < 60

% base cases: direct edges
Path(A,D) :- BST(A,_,D,_)
Path(A,D) :- BST(A,_,_,D)
% recursive cases
Path(A,D) :- Path(A,N), BST(N,_,D,_)
Path(A,D) :- Path(A,N), BST(N,_,_,D)

Debugging with Temporal Queries
Example: Binary Search Tree

● BST Invariant: given a node N
 left subtree keys are smaller than key(N)
 right subtree keys are larger than key(N)
 left and right subtrees are BSTs

Q2: Is the BST invariant violated?

Q2() :- Left(A,D), BST(A,KA,_,_),
 BST(D,KD,_,_), KA < KD
Q2() :- Right(A,D), BST(A,KA,_,_),
 BST(D,KD,_,_), KA > KD

% D is a node in A's left subtree
Left(A,D) :- BST(A,_,D,_)
Left(A,D) :- Left(A,N), Path(N,D)

% D is a node in A's right subtree
Right(A,D) :- BST(A,_,_,D)
Right(A,D) :- Right(A,N), Path(N,D)

Debugging with Temporal Queries
Example: Binary Search Tree

● Query-based debugging
 Q1 and Q2 only work for a fixed state
 solution-- temporal approach

● Challenges
 how do we incorporate time?
 data model-- points, intervals, or...?
 representation of temporal data
 query language syntax and semantics?
 query language expressiveness?

– set and bag operations?
– grouping and aggregation?
– recursion?

Debugging with Temporal Queries
Example: Binary Search Tree

● Point-based temporal model
 BST(id, key, lid, rid, time)
 time is discrete and linearly ordered
 conceptually simple
 query formulation intuitive
 materializing BST is impractical

Q1: When was there a path 100 → K, K < 60?

Q1(T) :- Path(A,D,T),
 BST(A,100,_,_,T),
 BST(D,K,_,_,T), K < 60

% base cases: direct edges
Path(A,D,T) :- BST(A,_,D,_,T)
Path(A,D,T) :- BST(A,_,_,D,T)
% recursive cases-- temporal equijoins!
Path(A,D,T) :- Path(A,N,T), BST(N,_,D,_,T)
Path(A,D,T) :- Path(A,N,T), BST(N,_,_,D,T)

Debugging with Temporal Queries
Example: Binary Search Tree

Q1: When was there a path 100 → K, K < 60?

% does not preserve set semantics! why?
Q1(TS,TE) :- Path(A,D,TSP,TEP),
 BST(A,100,_,_,TSA,TEA),
 BST(D, K,_ _,TSD,TED), K < 60,
% do intervals overlap? (not transitive!)
 TSP < TEA, TSA < TEP,
 TSP < TED, TSD < TEP,
 TSA < TED, TSD < TEA,
% interval construction
 TS = MAX(TSP,TSA,TSD),
 TE = MIN(TEP,TEA,TED)

● Interval-based temporal model
 BST(id, value, lid, rid, time_s, time_e)
 time is discrete and linearly ordered
 time_s < time_e
 space-efficient representation
 query formulation much harder

Debugging with Temporal Queries
Example: Binary Search Tree

● Interval-based temporal model
 BST(id, value, lid, rid, time_s, time_e)
 time is discrete and linearly ordered
 time_s < time_e
 space-efficient representation
 query formulation much harder

Q1: When was there a path 100 → K, K < 60?

% base cases: direct edges
Path(A,D,TS,TE) :- BST(A,_,D,_,TS,TE)
Path(A,D,TS,TE) :- BST(A,_,_,D,TS,TE)
% recursive cases-- temporal equijoins!
Path(A,D,TS,TE) :- Path(A,N,TSP,TEP),
 BST(N,_,D,_,TSN,TEN),
 TSP < TEN, TSN < TEP,
 TS = MAX(TSP, TSN), TE = MIN(TEP, TEN)
Path(A,D,TS,TE) :- Path(A,N,TSP,TEP),
 BST(N,_,_,D,TSN,TEN),
 TSP < TEN, TSN < TEP,
 TS = MAX(TSP, TSN), TE = MIN(TEP, TEN)

Debugging with Temporal Queries

Query Evaluation: Compilation Approach

Query Evaluation: Recursive Temporal Queries

1

2

3

Evaluation of Temporal Queries
with Applications in Program Debugging

Query Evaluation
Compilation Approach

● Temporal Model
 Abstract Temporal Database (ATDB)
 Concrete Temporal Database (CTDB)

● ATDB
 point-based, representation independent
 possibly infinite, but finitely representable
 only part of the temporal database exposed to users

● CTDB
 interval-based encoding of the ATDB
 used internally, transparent to users
 an actual SQL/99 RDBMS, so we can leverage existing technology

● Challenge
 how do we execute point-based queries against the CTDB?
 through a query compilation technique

Query Evaluation
Compilation Approach

● Semantic mapping, || ||
 maps CTDB elements to respecitve ATDB elements

● Compilation procedure
 input: point-based temporal query Q
 output: interval-based temporal query compile(Q)

● Query evaluation
 compile(Q) is evaluated against the CTDB
 concrete tuples are returned to user

Query Evaluation
Compilation Approach

Query Evaluation
Compilation Approach

● Guarantee: compilation preserves semantics w.r.t. ATDBs
 for every CTDB D, || compile(Q)(D) || = Q(|| D ||)
 non-trivial!

● Challenges
 mapping points to intervals: quantifier elimination, well studied
 however, not sufficient to guarantee preservation of semantics w.r.t. ATDBs

● What is the problem?
 under set semantics, concrete queries must return disjoint intervals
 otherwise, we will observe several undesirable consequences...
 set/bag operations:

– e.g., expected empty set but tuples are returned
 duplicate elimination:

– e.g., [5, 10) is a duplicate if [1, 100) is in the result!
 aggregation:

– e.g., inconsistent sums/counts
 recursion:

– e.g., blowu-up in space/time complexity of the bottom-up evaluation

Query Evaluation
Compilation Approach

● Time compatibility using the N operator: set difference example

Query Evaluation
Compilation Approach

● Time compatibility using the N operator: set union example

Query Evaluation
Compilation Approach

● Use of N in the compilation of non-recursive queries
 set/bag operations, grouping, aggregation, duplicate elimination, joins
 → SQL/TP

● However, recursive queries are not supported...

● N Operator (intuition)
 collects left (L) and right (R) interval endpoints of input relations
 splits output relation intervals according to minimal intervals obtained from L and R
 → must reference each input relation at least once to build L and R
 → must introduce negation to guarantee minimality

● What is the problem?
 syntactically, a recursive query is formulated as a union
 compiling a recursive query introduces the N operator
 the compiled recursive query is non-linear and has non-stratified negation!
 SQL/99 and later engines cannot evaluate such queries
 a more general solution to the bottom-up evaluation is required

Debugging with Temporal Queries

Query Evaluation: Compilation Approach

Query Evaluation: Recursive Temporal Queries

1

2

3

Evaluation of Temporal Queries
with Applications in Program Debugging

Query Evaluation
Recursive Temporal Queries

● Dilemma
 using N: semantics w.r.t. ATDBs is preserved but cannot evaluate queries
 not using N: can evaluate queries but semantics w.r.t. ATDBs is lost
 our approach:

– modified compilation to drop the use of N for recursive predicates
– modified bottom-up evaluation to guarantee preservation of semantics w.r.t. ATDBs

● Modified Compilation
 do not use N for recursive predicates
 modified bottom-up evaluation code is incorporated in the compiled query
 cannot be done in plain SQL-- produce a (database) function instead
 introduce optimizations, e.g., magic sets, index creation, etc

● Modified Bottom-Up Evaluation
 semantics w.r.t. ATDBs is preserved at every stage
 evaluation terminates in finitely many steps
 no redundant computation, i.e., new temporal facts are generated at every stage

Query Evaluation
Recursive Temporal Queries

● Traditional Bottom-Up Evaluation
 I, J = ∅
 repeat
 J = I
 I = TP(I)

 until I = J
 return I;

● Details
 fixpoint computation
 based on the immediate consequence operator, TP

 TP derives new ground facts from existing ground facts

 termination: DB has finitely many symbols, no new symbols are introduced

Query Evaluation
Recursive Temporal Queries

● Normalizing Bottom-Up Evaluation
 I, J = ∅
 repeat
 J = I
 I = TNP(I)

 until || I || = || J ||
 return I;

● Details
 fixpoint computation
 based on the normalizing immediate consequence operator, TNP

 TNP derives new temporal ground facts from existing temporal ground facts

– guarantees that set unions preserve semantics w.r.t. ATDBs

 TNP is not sufficient to guarantee termination or non-redundant computation

– in general, J ⊈ I due to representation differences at consecutive stages

– however, || J || ⊆ || I || holds at every stage, based on the correctness of TNP

 termination: based on the termination of constraint Datalog programs

Query Evaluation
Recursive Temporal Queries

● Abstract relation Refs(O, R, T) keeps track of the instants in which object O
references object R at run-time. Refs(O, R, Ts, Te) is its concrete counterpart.

● Now, consider the following temporal transitive closure query:

% X → Y at time T
TTC(X,Y,T) :- Refs(X,Y,T)
% X → Z at time T1 and Z → Y at a later time T
TTC(X,Y,T) :- TTC(X,Z,T1), Refs(Z,Y,T), T > T1

● The point-to-interval translation performed by the compiler yields:

% X → Y during [Ts,Te)
TTC(X,Y,Ts,Te) :- Refs(X,Y,Ts,Te)
% X → Z during [T1s,T1e) and Z → Y during [T2s,Te)
TTC(X,Y,Ts,Te) :- TTC(X,Z,T1s,T1e), Refs(Z,Y,T2s,Te),
 Te > T1s+1, Ts = MAX(T2s,T1s+1)

% Te > T1s+1 implies that there exists T ∈ [T2s,Te) s.t. T > T1s
% Ts = MAX(T2s,T1s+1) is the smallest left endpoint contained in [T2s,Te)

Query Evaluation
Recursive Temporal Queries

● Now assume that Refs contains a single tuple, <1, 1, 1, 2k+1>, for k > 0.

● Our modified evaluation of the concrete query produces:

% X → Y during [Ts,Te)
TTC(X,Y,Ts,Te) :- Refs(X,Y,Ts,Te)
% X → Z during [T1s,T1e) and Z → Y during [T2s,Te)
TTC(X,Y,Ts,Te) :- TTC(X,Z,T1s,T1e), Refs(Z,Y,T2s,Te),
 Te > T1s+1, Ts = MAX(T2s,T1s+1)

TNP ↑ 1 = {<1,1,1,2
k+1>} % stage #1, base case

TNP ↑ 2 = {<1,1,1,2>,<1,1,2,2
k+1>} % stage #2, recursive case

% || TNP ↑ 1 || = || TNP ↑ 2 ||, i.e., both represent the same ATDB

Query Evaluation
Recursive Temporal Queries

TNP ↑ 1 = {<1,1,1,2
k+1>} % stage #1, base case

TNP ↑ 2 = {<1,1,1,2>,<1,1,2,2
k+1>} % stage #2

...
TNP ↑ 2

k = {<1,1,1,2>,<1,1,2,3>,...,<1<1,1,2k,2k+1>} % stage #2k

TNP ↑ 2
k+1 = {<1,1,1,2>,<1,1,2,3>,...,<1<1,1,2k,2k+1>} % stage #2k+1

● Using TNP alone...

 does not guarantee termination for infinite ATDBs, e.g., <1,1,1,+∞>
 causes blowup, e.g., || J || = || I || may hold early on even though J ≠ I
 re-evaluating the previous example...

Query Evaluation
Recursive Temporal Queries

TNP ↑ 1 = {<1,1,1,2
k+1>} % stage #1, base case

TNP ↑ 2 = {<1,1,1,2
k+1>,<1,1,2,2k+1>} % stage #2

...
TNP ↑ 2

k = {<1,1,1,2k+1>,<1,1,2,2k+1>,...,<1<1,1,2k,2k+1>} % stage #2k

TNP ↑ 2
k+1 = {<1,1,1,2k+1>,<1,1,2,2k+1>,...,<1<1,1,2k,2k+1>} % stage #2k+1

● Using the modified termination condition alone...
 causes space blowup, e.g., at every stage, I and J may contain temporal duplicates
 re-evaluating the previous example...

Query Evaluation
Recursive Temporal Queries

● Applications in debugging and program comprehension.
 questions about temporal state of recursive data structures (Q1, Q2)
 general questions about object relationships (TTC)
 our main focus: query-based dynamic analysis!

● Dynamic Analysis
 analysis of the properties of running programs
 characteristics: precision, input dependence
 e.g., dynamic slicing

– given a variable V and program location L
– determine the program statements that affected the value of V at L

 can be implemented as a temporal recursive query
 further applications

– scaling our tool's visualizations by removing regions unrelated to the slice(s)
– enhancing our tool's visual debugging capabilities

Thank You!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

