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Debugging with Temporal Queries
Example: Binary Search Tree

public class BST {

  private final int value;
  private BST left = null;
  private BST right = null;

  public BST(final int n) {
    value = n;
  }

  public void insert(final int n) {
    if (value == n) { 
      return; 
    }
    if (value < n) {
      if (right == null) { 
        right = new BST(n); 
      }
      else { 
        right.insert(n); 
      }
    }
    else if (left == null) { 
      left = new BST(n); 
    }
    else { 
      left.insert(n); 
    }
  }
}

● Sample debug questions
 was there ever a path between...?
 when was there a path between...?
 was there ever an invariant violatation?



  

Debugging with Temporal Queries
Example: Binary Search Tree

● JIVE's Object Diagram
 run-time view of object heap
 one diagram for each time in execution
 supports visual debugging
 supports back-in-time stepping
 not scalable for large execution traces
 solution: query-based debugging!



  

Debugging with Temporal Queries
Example: Binary Search Tree

● Query-based debugging
 schema: BST(id, key, lid, rid)
 consider the given program state
 recursive Datalog queries (non-temporal)

Q1: Is there a path 100 → K, K < 60?

Q1() :- Path(A,D), 
        BST(A,100,_,_),
        BST(D,K,_,_), K < 60

% base cases: direct edges
Path(A,D) :- BST(A,_,D,_)
Path(A,D) :- BST(A,_,_,D)
% recursive cases
Path(A,D) :- Path(A,N), BST(N,_,D,_)
Path(A,D) :- Path(A,N), BST(N,_,_,D)



  

Debugging with Temporal Queries
Example: Binary Search Tree

● BST Invariant: given a node N
 left subtree keys are smaller than key(N)
 right subtree keys are larger than key(N)
 left and right subtrees are BSTs

Q2: Is the BST invariant violated?

Q2() :- Left(A,D), BST(A,KA,_,_), 
        BST(D,KD,_,_), KA < KD
Q2() :- Right(A,D), BST(A,KA,_,_), 
        BST(D,KD,_,_), KA > KD

% D is a node in A's left subtree
Left(A,D) :- BST(A,_,D,_)
Left(A,D) :- Left(A,N), Path(N,D)

% D is a node in A's right subtree
Right(A,D) :- BST(A,_,_,D)
Right(A,D) :- Right(A,N), Path(N,D)



  

Debugging with Temporal Queries
Example: Binary Search Tree

● Query-based debugging
 Q1 and Q2 only work for a fixed state
 solution-- temporal approach

● Challenges
 how do we incorporate time?
 data model-- points, intervals, or...?
 representation of temporal data
 query language syntax and semantics?
 query language expressiveness?

– set and bag operations?
– grouping and aggregation?
– recursion?



  

Debugging with Temporal Queries
Example: Binary Search Tree

● Point-based temporal model
 BST(id, key, lid, rid, time)
 time is discrete and linearly ordered
 conceptually simple
 query formulation intuitive
 materializing BST is impractical

Q1: When was there a path 100 → K, K < 60?

Q1(T) :- Path(A,D,T), 
         BST(A,100,_,_,T), 
         BST(D,K,_,_,T), K < 60

% base cases: direct edges
Path(A,D,T) :- BST(A,_,D,_,T)
Path(A,D,T) :- BST(A,_,_,D,T)
% recursive cases-- temporal equijoins!
Path(A,D,T) :- Path(A,N,T), BST(N,_,D,_,T)
Path(A,D,T) :- Path(A,N,T), BST(N,_,_,D,T)



  

Debugging with Temporal Queries
Example: Binary Search Tree

Q1: When was there a path 100 → K, K < 60?

% does not preserve set semantics! why?
Q1(TS,TE) :- Path(A,D,TSP,TEP), 
             BST(A,100,_,_,TSA,TEA), 
             BST(D, K,_ _,TSD,TED), K < 60,
% do intervals overlap? (not transitive!)
             TSP < TEA, TSA < TEP,
             TSP < TED, TSD < TEP,
             TSA < TED, TSD < TEA,
% interval construction
             TS = MAX(TSP,TSA,TSD),
             TE = MIN(TEP,TEA,TED)

● Interval-based temporal model
 BST(id, value, lid, rid, time_s, time_e)
 time is discrete and linearly ordered
 time_s < time_e
 space-efficient representation
 query formulation much harder



  

Debugging with Temporal Queries
Example: Binary Search Tree

● Interval-based temporal model
 BST(id, value, lid, rid, time_s, time_e)
 time is discrete and linearly ordered
 time_s < time_e
 space-efficient representation
 query formulation much harder

Q1: When was there a path 100 → K, K < 60?

% base cases: direct edges
Path(A,D,TS,TE) :- BST(A,_,D,_,TS,TE)
Path(A,D,TS,TE) :- BST(A,_,_,D,TS,TE)
% recursive cases-- temporal equijoins!
Path(A,D,TS,TE) :- Path(A,N,TSP,TEP), 
  BST(N,_,D,_,TSN,TEN),
  TSP < TEN, TSN < TEP,
  TS = MAX(TSP, TSN), TE = MIN(TEP, TEN)
Path(A,D,TS,TE) :- Path(A,N,TSP,TEP), 
  BST(N,_,_,D,TSN,TEN),
  TSP < TEN, TSN < TEP,
  TS = MAX(TSP, TSN), TE = MIN(TEP, TEN)
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Query Evaluation
Compilation Approach

● Temporal Model
 Abstract Temporal Database (ATDB)
 Concrete Temporal Database (CTDB)

● ATDB
 point-based, representation independent
 possibly infinite, but finitely representable
 only part of the temporal database exposed to users

● CTDB
 interval-based encoding of the ATDB
 used internally, transparent to users
 an actual SQL/99 RDBMS, so we can leverage existing technology

● Challenge
 how do we execute point-based queries against the CTDB?
 through a query compilation technique



  

Query Evaluation
Compilation Approach

● Semantic mapping, || || 
 maps CTDB elements to respecitve ATDB elements

● Compilation procedure
 input: point-based temporal query Q
 output: interval-based temporal query compile(Q)

● Query evaluation
 compile(Q) is evaluated against the CTDB
 concrete tuples are returned to user



  

Query Evaluation
Compilation Approach



  

Query Evaluation
Compilation Approach

● Guarantee: compilation preserves semantics w.r.t. ATDBs
 for every CTDB D, || compile(Q)(D) || = Q(|| D ||)
 non-trivial!

● Challenges
 mapping points to intervals: quantifier elimination, well studied
 however, not sufficient to guarantee preservation of semantics w.r.t. ATDBs

● What is the problem?
 under set semantics, concrete queries must return disjoint intervals
 otherwise, we will observe several undesirable consequences... 
 set/bag operations:

– e.g., expected empty set but tuples are returned
 duplicate elimination:

– e.g., [5, 10) is a duplicate if [1, 100) is in the result!
 aggregation:

– e.g., inconsistent sums/counts
 recursion:

– e.g., blowu-up in space/time complexity of the bottom-up evaluation



  

Query Evaluation
Compilation Approach

● Time compatibility using the N operator: set difference example



  

Query Evaluation
Compilation Approach

● Time compatibility using the N operator: set union example



  

Query Evaluation
Compilation Approach

● Use of N in the compilation of non-recursive queries
 set/bag operations, grouping, aggregation, duplicate elimination, joins
 → SQL/TP

● However, recursive queries are not supported...

● N Operator (intuition)
 collects left (L) and right (R) interval endpoints of input relations
 splits output relation intervals according to minimal intervals obtained from L and R
 → must reference each input relation at least once to build L and R
 → must introduce negation to guarantee minimality

● What is the problem?
 syntactically, a recursive query is formulated as a union
 compiling a recursive query introduces the N operator
 the compiled recursive query is non-linear and has non-stratified negation!
 SQL/99 and later engines cannot evaluate such queries
 a more general solution to the bottom-up evaluation is required
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Query Evaluation
Recursive Temporal Queries

● Dilemma
 using N: semantics w.r.t. ATDBs is preserved but cannot evaluate queries
 not using N: can evaluate queries but semantics w.r.t. ATDBs is lost
 our approach:

– modified compilation to drop the use of N for recursive predicates
– modified bottom-up evaluation to guarantee preservation of semantics w.r.t. ATDBs

● Modified Compilation
 do not use N for recursive predicates
 modified bottom-up evaluation code is incorporated in the compiled query
 cannot be done in plain SQL-- produce a (database) function instead
 introduce optimizations, e.g., magic sets, index creation, etc

● Modified Bottom-Up Evaluation
 semantics w.r.t. ATDBs is preserved at every stage
 evaluation terminates in finitely many steps
 no redundant computation, i.e., new temporal facts are generated at every stage



  

Query Evaluation
Recursive Temporal Queries

● Traditional Bottom-Up Evaluation
 I, J = ∅
 repeat 
   J = I
   I = TP(I)

 until I = J
 return I;

● Details
 fixpoint computation
 based on the immediate consequence operator, TP

 TP derives new ground facts from existing ground facts

 termination: DB has finitely many symbols, no new symbols are introduced



  

Query Evaluation
Recursive Temporal Queries

● Normalizing Bottom-Up Evaluation
 I, J = ∅
 repeat 
   J = I
   I = TNP(I)

 until || I || = || J ||
 return I;

● Details
 fixpoint computation
 based on the normalizing immediate consequence operator, TNP

 TNP derives new temporal ground facts from existing temporal ground facts

– guarantees that set unions preserve semantics w.r.t. ATDBs

 TNP is not sufficient to guarantee termination or non-redundant computation

– in general, J ⊈ I due to representation differences at consecutive stages

– however, || J || ⊆ || I || holds at every stage, based on the correctness of TNP

 termination: based on the termination of constraint Datalog programs



  

Query Evaluation
Recursive Temporal Queries

● Abstract relation Refs(O, R, T) keeps track of the instants in which object O 
references object R at run-time. Refs(O, R, Ts, Te) is its concrete counterpart.

● Now, consider the following temporal transitive closure query:

% X → Y at time T
TTC(X,Y,T) :- Refs(X,Y,T)
% X → Z at time T1 and Z → Y at a later time T
TTC(X,Y,T) :- TTC(X,Z,T1), Refs(Z,Y,T), T > T1

● The point-to-interval translation performed by the compiler yields:

% X → Y during [Ts,Te)
TTC(X,Y,Ts,Te) :- Refs(X,Y,Ts,Te)
% X → Z during [T1s,T1e) and Z → Y during [T2s,Te)
TTC(X,Y,Ts,Te) :- TTC(X,Z,T1s,T1e), Refs(Z,Y,T2s,Te), 
                  Te > T1s+1, Ts = MAX(T2s,T1s+1)

% Te > T1s+1 implies that there exists T ∈ [T2s,Te) s.t. T > T1s
% Ts = MAX(T2s,T1s+1) is the smallest left endpoint contained in [T2s,Te)



  

Query Evaluation
Recursive Temporal Queries

● Now assume that Refs contains a single tuple, <1, 1, 1, 2k+1>, for k > 0. 

● Our modified evaluation of the concrete query produces:

% X → Y during [Ts,Te)
TTC(X,Y,Ts,Te) :- Refs(X,Y,Ts,Te)
% X → Z during [T1s,T1e) and Z → Y during [T2s,Te)
TTC(X,Y,Ts,Te) :- TTC(X,Z,T1s,T1e), Refs(Z,Y,T2s,Te), 
                  Te > T1s+1, Ts = MAX(T2s,T1s+1)

TNP ↑ 1 = {<1,1,1,2
k+1>}                       % stage #1, base case

TNP ↑ 2 = {<1,1,1,2>,<1,1,2,2
k+1>}               % stage #2, recursive case

% || TNP ↑ 1 || = || TNP ↑ 2 ||, i.e., both represent the same ATDB



  

Query Evaluation
Recursive Temporal Queries

TNP ↑ 1   = {<1,1,1,2
k+1>}                             % stage #1, base case

TNP ↑ 2   = {<1,1,1,2>,<1,1,2,2
k+1>}                   % stage #2

...
TNP ↑ 2

k   = {<1,1,1,2>,<1,1,2,3>,...,<1<1,1,2k,2k+1>}  % stage #2k

TNP ↑ 2
k+1 = {<1,1,1,2>,<1,1,2,3>,...,<1<1,1,2k,2k+1>}  % stage #2k+1

● Using TNP alone...

 does not guarantee termination for infinite ATDBs, e.g., <1,1,1,+∞>
 causes blowup, e.g., || J || = || I || may hold early on even though J ≠ I
 re-evaluating the previous example...



  

Query Evaluation
Recursive Temporal Queries

TNP ↑ 1   = {<1,1,1,2
k+1>}                                  % stage #1, base case

TNP ↑ 2   = {<1,1,1,2
k+1>,<1,1,2,2k+1>}                      % stage #2

...
TNP ↑ 2

k   = {<1,1,1,2k+1>,<1,1,2,2k+1>,...,<1<1,1,2k,2k+1>}  % stage #2k

TNP ↑ 2
k+1 = {<1,1,1,2k+1>,<1,1,2,2k+1>,...,<1<1,1,2k,2k+1>}  % stage #2k+1

● Using the modified termination condition alone...
 causes space blowup, e.g., at every stage, I and J may contain temporal duplicates
 re-evaluating the previous example...



  

Query Evaluation
Recursive Temporal Queries

● Applications in debugging and program comprehension.
 questions about temporal state of recursive data structures (Q1, Q2)
 general questions about object relationships (TTC)
 our main focus: query-based dynamic analysis!

● Dynamic Analysis
 analysis of the properties of running programs
 characteristics: precision, input dependence
 e.g., dynamic slicing

– given a variable V and program location L
– determine the program statements that affected the value of V at L

 can be implemented as a temporal recursive query
 further applications

– scaling our tool's visualizations by removing regions unrelated to the slice(s)
– enhancing our tool's visual debugging capabilities



  

Thank You!
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