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What is a feedback loop
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The “loop” in teedback loop
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Loopy feedback loop example
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Predictive policing




Potential biases in predictive policing




Exercise

Figure out how predictive policing can lead to a feedback loop.



Community organization can get results!

Kate Crawford & '
Y @katecrawford

Big news: LAPD will end the use of the broken predictive
policing system known as PredPol, citing budget
concerns under COVID-19. This is thanks in large part to
community groups like @stoplapdspying pushing back
against its use.

LAPD will end controversial program that aimed to predict where crimes woul...
Chief Moore says, due to financial constraints caused by the pandemic, the
LAPD will end a program that predicts where property crimes could occur.

& latimes.com






Can we formalize this intuition?

How do we “prove” that feedback loops can exist in predictive policing?

Simulation results

Theoretical modeling results



A simulation result

DETAIL

To predict and serve?

Predictive policing systems are used increasingly by law enforcement to try to prevent crime
before it occurs. But what happens when these systems are trained using biased data?
Kristian Lum and William Isaac consider the evidence - and the social consequences
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: Ensign et al.

Proceedings of Machine Learning Research 81:1-12, 2018 Conference on Fairness, Accountability, and Transparency
This page talks about how the ML pipeline when deployed in society can lead to a feedback loop. Runaway FeedbaCk LOOpS in Predict ive POliCing*
Danielle Ensign DANIPHYEQGMAIL.COM

University of Utah
M Under Construction .
This page is still under construction. In particular, nothing here is final while this sign still remains here. Sorel le A-- :E‘rled]-er SORELLE@CS .HAVERFORD.EDU

Haverford College

A Request Scott Neville DROP.SCOTT.N@QGMAIL.COM
1 know | am biased in favor of references that appear in the computer science literature. If you think | am missing a relevant reference (outside or even within CS), please email Un,l,uersity of Utah
it to me.
Carlos Scheidegger CSCHEID@CSCHEID.NET
An overview University of Arizona
Recall that we have considered various notions of bias that can creep in when the ML p[pelme interacts with SOCIEW.‘ Suresh Venkatasubramanian'r SURESH@CSA UTAH . EDU
Real world Real world Dt Which data to Data Umwersz'ty Of Utah
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used to determine how to allS . . .
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Discovered crime data (e .

are used to help update the model, 3
the process is repeated. Such systems
been empirically shown to be susceptible to
runaway feedback loops, where police are
repeatedly sent back to the same neighbor-
hoods reegardless of the true crime rate.
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Only ONE cop patrol E and W

Basic Setup

¥
Crime per Capita in Buffalo

The map below shows crime per 1,000 Buffalo residents.
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Assumption 1: One region/day

Cop can only go to one of E or W region per day

Cop will go to E or W with probability proportional to the number of crimes reported in that region

For any given day #, we will use ng) and n%} to denote the number of observed crimes in E and W respectively from day O to day ¢.

(1)
Ng
Cop will visit E on t+1 with probability ng) + n%}

Cop will visit W on t+1 with probability 1

"0 + 0



Assumption 2: Unequal crime rates

E and W unequal crime rates (which are known)

The crime rate for E is Ax and the crime rate for W is Ay .

Mathematically: 4 # Aw.

Do NOT need A;; and Ay, to be far apart Ag = 10.5% and Ay = 11%



Assumption 3: Observed = actual crime rate

Cop discovers crime at exact/y the same rate as the actual crime rate in either region

Is this a reasonable assumption?

If cop goes to L

Discovers one crime with probability A;; and no crime with probability 1- A

If cop goes to W:

Discovers one ctime with probability 4y, and no crime with probability 1- Ay,



An exercise

If cop goes to E:

Discovers one crime with probability 4;; and no crime with probability 1- 4

If cop goes to W:

Discovers one crime with probability Ay, and no crime with probability 1- Ay

For any given day t, we will use ng) and n%,? to denote the number of observed crimes in E and W respectively from day 0 to day ¢.

Given the above what are the relationships of ngﬂ) with ng) (and similarly the relationship of ng,ﬂ) with n%})?



Solution to exercise

Given the above what are the relationships of ng"'l) with ng) (and similarly the relationship of ng,"'l) with n%})‘?

If the cop visits E with probability Az the cop will discover/report one crime and not crime otherwise. In other words,
1) { n® +1  with probability A

n = .

E n? with probability 1 — Ag

And we have a similar result If the cop visits W:

D) { n\) 41  with probability Ay
n® with probability 1 — A




Finally, we have our model...

The evolution of the number of observed crimes

(0) (0)
E

» The process starts with initial values n;" and ny;".

e Fortr=1,2,...

//The process repeats "forever"

o)

o With probability ——— do:
np +ny

//Cop visits E

= With probability Az set n\i™ " = n + 1

= Else with probability 1 — Af set ngﬂ) = ng)

®
o Otherwise with probability Y do:

o0, 0
R +ny,

//Cop visits W

= With probability Ay set ali' " = n{) + 1

= Else with probability 1 — Ay set n%"'l) = ng;



Next exercise. ..

To make things concrete assume that ng) = n%,?,) = 100 and Ag = 10.5% and Ay = 11%. What would you consider to be a manifestation of feedback loop as the process

above runs?

0 a0

: Think about how the ratios wn £ o and — Ll & ©evolve as 7 grows larger. (Side question: why are these ratios something worth monitoring?)
ng +nw hg +nw

()
g

Cop will visit E with probability n® + nl)

Cop will visit W with probability n%}

"0 + 0



Solution to exercise

To make things concrete assume that ng) = n%,?,) = 100 and Ag = 10.5% and Ay = 11%. What would you consider to be a manifestation of feedback loop as the process

above runs?

0 a0

: Think about how the ratios wn £ o and — Ll & ©evolve as 7 grows larger. (Side question: why are these ratios something worth monitoring?)
ng +nw hg +nw

(0
ng
Cop will visit E with probability —ng) a0 ~ Ay K Ay > A,
Cop will visit W with probability o n s I

"0 + 0



Does this model have a feedback loop?

The evolution of the number of observed crimes

e The process starts with initial values ng}) and ng},).
e Fortr=1,2,...
//The process repeats "forever"
0]
o With probability (;E 5 do: ng.)) = n%g) = 100 and /IE = 10.5% and /IW = 11%.
np +hy

//Cop visits E

= With probability Az set ™" = n¥ + 1
= Else with probability 1 — Ag set ngﬂ) = ng)
0
o Otherwise with probability 0 u o do:
?’IE +nw
//Cop visits W
: . t+1) _ (@)
= With probability Ay setny, " = ny + 1

= Else with probability 1 — Ay set ng,ﬂ) = ng;



What do you think will happen?

Answer 1s yes and in the most extreme sense.

Cop will visit E with probability

Cop will visit W with probability

(1)
g

Q) O]

ng +nw

®
Ry

(1) OGN

hg +;"!W

Ag > Ay

A < Ay



How the heck do you prove such a thing?

Polya urn model % 6 languages v

Aricle Talk Read Edit View history Tools v

From Wikipedia, the free encyclopedia

In statistics, a Pélya urn model (also known as a Pélya urn scheme or simply as Pélya's urn), named after George Polya, is a family of urn models
that can be used to interpret many commonly used statistical models.

The model represents objects of interest (such as atoms, people, cars, etc.) as colored balls in an urn. In the basic Pélya urn model, the experimenter
puts x white and y black balls into an urn. At each step, one ball is drawn uniformly at random from the urn, and its color observed; it is then returned in
the urn, and an additional ball of the same color is added to the urn.

If by random chance, more black balls are drawn than white balls in the initial few draws, it would make it more likely for more black balls to be drawn
later. Similarly for the white balls. Thus the urn has a self-reinforcing property ("the rich get richer"). It is the opposite of sampling without replacement,
where every time a particular value is observed, it is less likely to be observed again, whereas in a Pélya urn model, an observed value is more likely to
be observed again. In a Pélya urn model, successive acts of measurement over time have less and less effect on future measurements, whereas in
sampling without replacement, the opposite is true: After a certain number of measurements of a particular value, that value will never be seen again.

It is also different from sampling with replacement, where the ball is returned to the urn but without adding new balls. In this case, there is neither self-
reinforcing nor anti-self-reinforcing.

Lemma 3 (Renlund (2010)) Suppose we are
given a Pdlya urn with replacement matriz of the

form
(¢ 3)

with a positive number of balls of each kind to
start with. Assume that a,b,c,d > 0 and at least
one entry is strictly positive. Then the limit of
the fraction of balls of each type exists almost
surely. The fraction p of A-colored balls can be
characterized as follows:

e Ifa=d,c=b=0, then p tends towards a
beta distribution.

e If not, then p tends towards a single point
distribution x*, where z* € [0,1] is a root of
the quadratic polynomial

(c+d—a—0b)z*+ (a—2c—d)z +ec

If two such roots exist, then it is the one such
that f'(z*) < 0.



Now let’s prove this “lemma 37!

Just kidding ©



Now let’s prove this “lemma 37!
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Is there a (mathematical) “fix’?

A potential fix

In the above model, Ensign, Friedler, Neville, Scheidegger and Venkatasubramanian suggest the following fix (which they can mathematically prove that it works) is based
roughly on the following idea. If the cop visits a specific region most of the time, then it should not be a surprise if they discover a crime in the region and in such a case they

should "discount" the crime discovery by not recording such discovery most of the time. On the other hand, if the cop visits region infrequently and they discover a crime, they
have learned something "new" and hence would record such crime discoveries most of the time.
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