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TQE due on Friday
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Project groups created

Check your email for the composition of your group

HW 1: Understanding the problem and existing solutions

Your goal in the first part of the project is not to solve the problem, but to understand the
problem of global inequality and, more specifically, to understand what other people already
know about the problem and what they are currently doing to try to solve it.

Too often, technologists jump into problems they don't understand and try to solve them. At best,

these solutions rarely work. At worst, they often cause more problems than they solve. There will

always be unintended consequences of technology. One of the most important parts of your

semester-long project (and thus your grade on it) is that you show us you’ve done your GI'Ollp HW 1 due on F fi, Feb 14
homework and at least understand the potential for these kinds of unintended consequences.

That work starts now!

OK, enough yammering, let's get to what you have to do! There are two graded parts to Part 1 of the
project:

75% of your grade will come from your submitted report:

You will submit a PDF report that addresses everything below. The report has to be at most
six (6) pages long (not counting references and any appendices, which we cannot promise to
read).
25% of your grade will come from your peer feedback. In class, we'll ask groups to swap
projects (randomly assigned) and then provide, via a two minute presentation, constructive
feedback on another group’s project. This feedback will be graded by us based on what you
present in class.



If you have a question on building systems...

Don’t ask me ©



What this lecture 1s NOT about... (part 1)

I have NO opinion on when AGI will be achieved.... I do think a lot of it is over-hyped...
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Having said that...

It is kind of ridiculous that TC" circuits are causing all this hype.

The Parallelism Tradeoff: Limitations of Log-Precision Transformers

William Merrill
Center for Data Science

New York University, New York, NY

willm@nyu.edu

Abstract

Despite their omnipresence in modern NLP,
characterizing the computational power of
transformer neural nets remains an interest-
ing open question. We prove that trans-
formers whose arithmetic precision is log-
arithmic in the number of input tokens (and
whose feedforward nets are computable us-
ing space linear in their input) can be sim-
ulated by constant-depth logspace-uniform
threshold circuits. This provides insight
on the power of transformers using known
results in complexity theory. For exam-

Ashish Sabharwal
Allen Institute for Al
Seattle, WA
ashishs@allenai.org

Early theoretical work on transformers estab-
lished their Turing completeness, albeit with as-
sumptions like infinite precision and arbitrarily
powerful feedforward subnets (Pérez et al., 2019;
Dehghani et al., 2019). On the other hand, a
strand of more recent work uses techniques from
circuit complexity theory to derive strong limita-
tions on the types of problems transformers can
solve given restrictions on the form of attention
allowed in the transformer. Specifically, Hahn
(2020) and Hao et al. (2022) showed transform-
ers restricted to hard attention are very limited:

thavu ran Aanlvu calva nrahlame in a waalr ~ramnlav

Somethjng very interesting 1s going on here!



What this lecture 1s not about... (part 2)

Not a comprehensive coverage of related work

It’s very much biased by the kinds of things I have thought about

I'll oversimplify things by a LOT



Overview of the rest of the lecture

Next Token Prediction

Abstracting the Setup

Primer on Matrices

Transformers (Attention and MLP)



1 slide summary: Generative L.anguage Models

| > Malia

Language Model

| %
| | | | | | | | |
Barack and Michelle Obama went to Harvard to visit their daughter

Generative Language Models: Generate the Next Token Slide by: Dan Fu



How did pre-generative Al systems work?
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When a new image comes in

Jed
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When an algorithm isn’t...

f‘ ; aa Suresh Venkat | Follow
&/ Oct2,2015 -5 min read ’ n 0]

The popular press is full of articles about “algorithms” and “algorithmic
fairness” and “algorithms that discriminate, (or don’t)”. As a computer
scientist (and one who studies algorithms to boot), I find all this attention

to my field rather gratifying, and not a bit terrifying.

What’s even more pleasing is that the popular explanation of an algorithm

follows along the lines of the definition we’ve been using since, well, forever

An algorithm is a set of steps (the instructions) each of which is simple and well

defined, and that stops after a finite number of these steps.

If we wanted a less intimidating definition of an algorithm, we turn to the
kitchen:



Back to cats vs. dogs

Start with a

Question

Classity image
as cat or dog

Collect data

Train model
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Three things to tocus on...
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Application specific Q Used labeled data Model is deployed “as is”



The two “stage” pipeline for generative Al
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word

Classity image
as cat or dog

Application specific Q

Unlabeled

Internet data

44 langusg
i

Generative artificial intelligence

Used labeled data

Train model

EWES @ & B S BN

eank QIRUS [P R Iﬂim
LEENN I @ -
e sl e T Lo K R KA k7
= e

¢

T2 ey I T S
EO A S O Sl [
L AFERtFE iPF e
N S T Y L B

]ed

v

Evaluate
model

W ELS R A
el QR ]s o)

No error,

so great!

“Foundation”
model

B
B e

W EENN e Rl
Il el e B e K0 R B K %

¢ e N L - N

o3 0 R | A MY T TR R
EEm MK EErFAINE
o b e B R, NS
L ANt F- s e
2 VN [ X Y e R Ll (R

»
L

v

Jed

Model is deployed “as is”



Stage 1: Next token generation

Predict next Unlabeled Evaluate Foundation

word Internet data Train model model model




Stage 2: Fine tuning

Predict next Unlabeled Evaluate Foundation

word Internet data Train model model model

Mak ™™ not give out instructions on how to create a bomb
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Overview of the rest of the lecture

Next Token Prediction

Abstracting the Setup

Primer on Matrices

Transformers (Attention and MLP)



Input representation

Barak and Michelle Obama went to Harvard to visit their daughter

A From now our input will be
Barak

and

Michelle L X € R®D

Obama

went

© — )
Harvard N : Sequence length

Input “embedding”

to

. d : Hidden/model dimension
visit

their

daughter

A
v



Matrix notation

row i, column j entr , -
w1, l y A From now our input will be

X[, ]
X € R ™Nd)

row 1 denoted by

X]1,:] —

N : Sequence length

d : Hidden/model dimension

A
v



What (functions) do we want?

£:RND 5 RN




Our function for today: Associative Recall

gu—

1 if X[N-1,:] # X[i,;] for alli < N-1

AR(X) = —

N X[i+1,] if X[N-1,]=X[i,] for some i< N-1




Backing up: Training and Inference

£ RN 5 RO
Inference

fixed Given X, compute M(X, 0) = {(X)

Parameters 6
Training

Given (X,Y)), ..., X.,Y,)

Input X Compute 6 that min
?il I MX;, 0)=Y; |l ¢
tixed



Training = Gradient Descent

Loss function with left being negative

£:RMND s RN i
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:?f 100000
Parameters 0 g
5 80000 -
g
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G (X v ) (}{ Ym) 0 50 100 150 200 250 300
1ven 15X1)5 «oe ms I BMI threshold (b ")
nput X
Conrilpute 0 that min o Gradieﬂt VHM (X, 9)
i=1 | M(Xia 9)_Yi | F

All partial derivatives of M wrt 6



Overview of the rest of the lecture

Next Token Prediction

Abstracting the Setup

Primer on Matrices

Transformers (Attention and MLP)



Matrix-Matrix Multiplication

C=AXB




Special case N = M =1

C=AXB .

o

24111 X

o © O
|

= 2X5+ -4X6 + 11X0 + 1X10

=10-24+0+10=20—24=-4
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(GGeneral case

C=AXB
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Overview of the rest of the lecture

Next Token Prediction

Abstracting the Setup

Primer on Matrices

Transformers (Attention and MLP)




Transformers (and Attention) are the norm..

Output
Focus on Probabilities

these

Linear

( )
Add & Norm .
== Attention Is All You Need
Forward
4 Add & Norm
& g

— Multi-Head Ashish Vaswani* Noam Shazeer* Niki Parmar* Jakob Uszkoreit*

Feed Attention Google Brain Google Brain Google Research Google Research

Forward Nix avaswani@google.com noam@google.com nikip@google.com usz@google.com

 S—— Llion Jones* Aidan N. Gomez* T Lukasz Kaiser*
Add & Norm Google Research University of Toronto Google Brain
Nx Add & Norm 1lion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com
Masked
Multi-Head Multi-Head Illia Polosukhin* *
Attention Attention illia.polosukhin@gmail.com
S— J \. _J)
Positional _9 E— Positional
Encoding Encoding
Input Output
Embedding Embedding

Inputs Outputs

(shifted right)

Figure 1: The Transformer - model architecture.



Feedforward layer/ MLP

X 5 0'XW) =Y

X e RN.-d W e Rd.d




Attention layer /m

X - 5 XQ’ (XK)T) XV’

X->0(QKHV=Y

_

KT

XERN.I Q K, VVERE:I

33



Two most important parts ot each layer

Only “mixes” the

Feedforward layer/ MLP hidden dimension

X_>OJ(X

X € RN.9 W e R 9

Only “mixes” the
sequence length

Attention layer

XERN.I Q K, VVERE:D

Positional

Permutation

invariant Encodings

34




Simplified Transformer Model
i > Y

MLP I
R Parameters 6

Attention [,
. y . ) .
t QK Vi, W,

MILP i Z.— 0 (ZW)=U,, 1<i<L

Attention i Ui - J(Ul Q,i (UlK,l)T) UiV,i = Zi



But why tfocus on these two operations?

- — % W d
A A N X
d KT ) .
d
O | N Q N N Vv
¢ —>
d
Y <T> ' ‘T’ Operator class % flop % Runtime

- A Tensor contraction  99.80 61.0

tat. normalization . .
O Element-wise 0.03 13.5

Ivanov et al., A Case Study on Optimizing Transformers. MLSys 21.

36



Associative Recall in 1 layer of Attention”

gu—

* Modulo some assumptions 1

if X[N-1,;] # X[i,;] foralli < N-1

X uses 1-hot encoding ARX) = =
X[i+1,;] it X[N-1,:]=X]i,:] tor some 1< N-1

i B ] _
N N
X - o( XQ XK)I) XV
Q’; K’ ; 0 are identity X - (X X)XV’

XV is X shifted up by 1 X - (XXT') (8X)



Associative Recall in 1 layer of Attention”

gu—

* Modulo some assumptions 1

if X[N-1,;] # X[i,;] foralli < N-1

X uses 1-hot encoding ARX) = =

X[i+1,] if X[N-1,:]=X]1,:] for some 1< N-1
i N | _ j

In
A=XX' — [ W] —

X — A(SX) | (SX) j
Afjl =1iff (] -




Associative Recall in 1 layer of Attention”

* Modulo some assumptions

AR(X) = —

X uses 1-hot encoding

i B |

1 if X[N-1,:] # X[i,;] for alli < N-1

X[i+1,] if X[N-1,:]=X[1,:] for some 1< N-1

il A=XXT

X[i+1,]

X — A(SX)
Afijl = 1iff [ ]

SX

N-1 X[i+1,]

At most one 1 that matches N-1



Two tollow up comments

Transformers end up solving may more than language problems

Outside of scope of this lecture!

Why would gradient descent learn a Transformer model like this?

We have (pretty much) no ideal!



Is there anything that Transformers cannot do?

t
Run in sub-quadratic time! MLP
t
Attention
Feedforward/MLP layer is {1(d?) time and space t
X

X->0XW)=Y




Attention is (L(N?) time in the worst case

A A

A
v

ON THE COMPUTATIONAL COMPLEXITY OF SELF-ATTENTION

Feyza Duman Keles*, Pruthuvi Mahesakya Wijewardena', Chinmay Hegde*
*New York University, ' Microsoft
{fd2153@nyu.edu, chinmay.h}@nyu.edu, pwijewardena@microsoft.com
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Why does quadratic bottleneck matter? -1

Consumption COse (Ibs)
Air travel, 1 passenger, NY +>SF 1984
Human life, avg, 1 year 11,023
American life, avg, 1 year 36,156
Car, avg incl. fuel, 1 lifetime 126,000

Training one model (GPU)

NLP pipeline (parsing, SRL) 39
w/ tuning & experimentation 78,468
Transformer (big) 192
w/ neural architecture search 626,155

Table 1: Estimated CO, emissions from training com-
mon NLP models, compared to familiar consumption.’

Energy and Policy Considerations for Deep Learning in NLP

Emma Strubell Ananya Ganesh Andrew McCallum
College of Information and Computer Sciences
University of Massachusetts Amherst
{strubell, aganesh, mccallum}@cs.umass.edu



Why does quadratic bottleneck matter? -

From Deep to Long Learning?

Dan Fu, Michael Poli, Chris Ré.

Compute budget of B @

we though we wanted flying cars and not 140/280
characters, but really we wanted 32000 tokens

4:03 PM - Mar 25, 2023 - 926.4K Views

For the last two years, a line of work in our lab has been to increase sequence
N z \’ B length. We thought longer sequences would enable a new era of machine learning
foundation models: they could learn from longer contexts, multiple media
sources, complex demonstrations, and more. All data ready and waiting to be
learned from in the world! It's been amazing to see the progress there. As an
aside, we're happy to play a role with the introduction of FlashAttention (code,
d —~ B blog, paper) by Tri Dao and Dan Fu from our lab, who showed that sequence
~~ V lengths of 32k are possible—and now widely available in this era of foundation

models (and we've heard OpenAl, Microsoft, NVIDIA, and others use it for their

models too—awesome!).

Foundation Model Context Length

40000
GPT-4-32K

30000

20000

0 —t t t t t t

July 2020 January July 2021 January July 2022  January

2021 2022 2023
Year ?

FlashAttention Paper (May 2022)



Back up slides



But you said the output has to be a matrix!

gu—

1 if X[N-1,:] # X[i,;] for alli < N-1
AR(X) — -

X[i+1,] if X[N-1,:]=X]1,:] for some 1< N-1

Multi-Query Associate Recall



Associative Recall = Key Value Store problem

k, « X[i,:] l I | | .
v, < X[1+1,] it X[N-1,;] # X][i,:] for all 1 < N-1
q < X[N-1,] ARX) = —

l X[i+1,] if X[N-1,:]=X]1,:] for some 1< N-1

Iﬁpﬂf: (kal): b oo :(kn—lavn—l) > 9

Output 1 if q #Kk foralli < N-1

v; 1f q =Kk for some 1 < N-1



