NEXOS Project Documentation

Introduction, purpose of the document:

The purpose of the document is to provide adequate information about the setup and working of NEXOS lab. This lab consists of modified Linksys routers which are connected to a server. This server can be accessed from any computer on campus to work on the routers. The documentation provides detailed information about accessing and modifying the XINU operating system installed on the routers, and possible troubleshooting steps for problems that might occur in the process.

Explain the extended setup:

The laboratory for NEXOS will be realized using the Embedded XINU model developed by PI Brylow [5, 6]. Brylow has produced the first translation of the XINU operating system to a modern, RISC platform (the WRT54G router), using ANSI C and readily available open source tools. The Embedded XINU lab at MU has been specifically designed to address the many portability issues that prevented Purdue's XINU laboratory from being more widely adopted.

The target platform (LinkSys WRT54G[21, 43]) is a wireless router with a wide area network (WAN) port, four local area network (LAN) ports, and a wireless network interface.

Internally, the WRT54G contains one of several models of the Broadcom BCM 47XX/53XX family of “system-on-a-chip” (“SoC”) platforms, a 200MHz, 32-bit embedded MIPS [23] architecture with 16 MB of RAM, and 4 MB flash ROM. (Some newer models are now shipping with smaller memory configurations.) Unpopulated pins on the circuit board include two UART serial ports and a JTAG interface suitable for interfacing directly to the processor.

With only slight modifications, we have access to two serial consoles on the embedded device, and the first of these is already preconfigured as an interface to the system firmware. Figure 1, read in row-major order gives a brief, pictorial overview of the necessary modifications, which are documented in far greater detail at [8]. It illustrates the ease of opening up the unit, working with the internal board, addition of the chip and connections and reassembly of the unit. The modifications require less than $10 of parts per unit, and can be undertaken by any typical department with the skills and tools necessary to offer a course on digital logic or electronics prototyping.

XINU Backends

Backend targets upload a student's kernel over a private network on boot, and run the O/S directly. No simulations or emulation are involved; this is real hardware.

XINU Server

A general purpose server with multiple network interfaces manages a private network for the XINU backends, using standard network protocols like DHCP and TFTP.

Backend serial consoles can connect directly to server's serial ports, or, in larger installations, to a serial annex or concentrator that allows many more serial ports.

A daemon running on the server allows users on frontend workstations to remotely access backend serial consoles, or upload fresh kernels. Optional rebooting hardware allows clients to remotely reset crashed backends.

XINU Frontends

General purpose computer laboratory workstations can compile the XINU kernel, using a standard GNU C compiler and UNIX toolchain. GCCcross-compilers are readily available when the frontend architecture does not match the backend architecture. Backend consoles can be connected directly to frontend serial ports, or frontends can communicate with the server daemon that manages collections of backend serial consoles. With fully remote console access, kernel upload and powercycling, any machine on the network is a potential frontend, and need not be physically near the XINU server and laboratory hardware. Students can work on their operating system projects from their dorm room computers.

What are the machines/ WRTGL involved? Names, pictures etc. Physical connection/ switches etc for administrator

1) LinkSys WRT54GL

Given below are the router-names:

1) brylow

2) bina

3) stump

4) daekeun

5) ashish

6) waggonner

7) hartnett

8) moiz

9) russell

What were the problems encountered during assembly? Log of the problems and solutions

The lab setup was done using the website: http://xinu.mscs.mu.edu/Main_Page as reference

Following are the problems encountered during the process:

10) Installing the correct Operating System:

a) We started our effort for lab setup using UB Linux, but it was not compatible with the required software

b) Fedora 9 was the operating system which allowed us to continue the setup without interruptions

c) Recommended version of Linux OS for lab setup is Fedora 8 or 9, or Ubuntu.

11) Loading the kernel of Xinu operating system on the modified routers

a) After modifying the routers, and completing the software setup by following http://xinu.mscs.mu.edu/Main_Page, we encountered a problem of not being able to boot the Xinu kernel into the router

b) In spite of checking the wiring, and setting of the tftp server, and other configurations the boot process could not be successfully completed.

c) The SE Linux Firewall in Fedora 9 was running by default.

d) The Firewall had to be modified to allow any connection the front-end was using to connect to the back-end routers

e) This solution can be found on http://xinu.mscs.mu.edu/HOWTO:Deploy_Xinu

12) Setting up the Baytech power strip

a) The power strip setup power-on, power-off, and power-cycle configuration files needed to be modified.

b) A new username and password was created for the powerstrip, and the shell script for the router had to be altered to automatically enter the username for the router in the command prompt.

How to access them? NEXOS, individual units?

Answer same as the answer of the next question.

How to prepare a program on CSE Machines, cross compile + download to Nexos, show sample run

 1)
Accessing the routers remotely:

2) Compile and create a 'xinu.boot' file (The boot file's name SHOULD be 'xinu.boot')

3) Transfer the file to the nexos-dlink.cse.buffalo.edu server using sftp

4) Log on to the nexos-dlink.cse.buffalo.edu

5) Go to the folder which contains 'xinu.boot' file

6) Type xinu-status and press enter to check which routers are free

7) Type mips-console <router-name>

The above steps should boot your xinu.boot file and directly take you to Xinu prompt.

How to see the output?

The output can be seen on the terminal window on the commands to access the router are entered.

How to connect other devices to serial port?

In order to connect other devices to the serial port, one has to use the following command:

xinu-console <router-name>1

For example, if the name of the router is brylow, to access the serial port of the router one would need to type in the command: xinu-console brylow1

