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@_kenny_joseph

Overview of our goals for this unit
Three things you need for your project/to do good 
[computational social] science (IMO)
1. The ability to understand/reason about the social 

world
2. The ability to use that understanding to design 

interventions on the world
3. The ability to conduct measurements that assess the 

[potential] effect of that intervention
Tool: causal inference (and causal graphical models)
”Domain”: Racial inequality in healthcare
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Relation to IP
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Relation to IP (cont.)
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Today

§More details on how to use causal graphical 
models, causal inference

§Little bit of time to discuss Midpoint Assignment as
a class

§Questions?
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Reflections on diagram drawing!

§Two minute warmup: 
§Get with your project group
§Gimme one

§Thing that was hard 
§Thing drawing it out helped you think about
§Brainless TV show/movie you all think is really 

good
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Terminology note

§ I’m going to use the following interchangeably:
§ Causal graphical model
§ Directed Acyclic Graph (DAG)
§ Probabilistic graphical model

§ They are not the exact same thing. But for our purposes 
they are close enough (if you want formality, we’re mostly 
talking about causal graphical models)
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My thoughts/guide to our lecture
§ DAGs have limitations!

§ Cycles are real
§ Hard to differentiate certain kinds of probabilistic relationships

§ How do you know there's a node? An edge?
§ What counts as evidence?
§ How do we reference evidence?

§ Some things are hard to put a number on
§ We have to get suuuper specific to actually run experiments, and we have 

to be right
§ “No causation without intervention”

§ We can really use historians...
§ “History” is not an actionable node

§ We disagree on both semantics and beliefs about the issues
§ How do we resolve differences between your DAGs?
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What can we encode in DAGs

§DAGs can encode valid factorizations of a joint probability 
distribution
§ ???

§ Examples of what DAGs can encode:
§ Causal links
§ Unmeasured confounders
§ “Complex causes”

§ E.g. Moderators

§ Examples of what DAGs can’t encode
§ When two things cause each other
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Practice: Get Distribution from DAG
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Practice: Draw DAG from Specified Distribution
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Draw a Causal Chain, write p()
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Draw a moderator, write p()
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What does this tell us?

§We can now do a few important things:
§ Formalize what an experiment does for us
§ Think through the generative story a particular model tells
§ Think more about why causal models cannot encode cycles 

(although we can do other things to address this…)
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How do we know? 

§ Prior work

§Activity:
§ Try to find an academic article that provides support for the 

following statement:

The more severe your illness, the more likely you are to 
die, regardless of treatment

https://europepmc.org/article/med/7105766
https://europepmc.org/article/med/7105766


@_kenny_joseph

How do we know? 
§ Prior work
§Conditional dependencies + Theory

§ What is theory? 
§ Sidebar: How do we identify conditional dependencies that are

not likely to be random?
§ Sidebar to the sidebar: The “standard” way here is to assume 

linearity, do linear regression, and look at statistical significance 
of coefficients. This is fiiiineeee. 

§Causal Evidence
§ Do an experiment!
§ Do causal inference with causal data
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Putting numbers on things – an example
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Draw the causal story here
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Sidebar: This isn’t enough!

§We have to actually specify our assumptions about the 
probability distributions as well. We won’t get there in this 
class, though.
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Threats to validity
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What happens when we can’t experiment?

§A basic propensity-scoring approach
§ Model
§ Define estimand
§ Estimate
§ Check

§A nod to more complex approaches
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Step 1: Model

§We start by building a model of the data generating 
process

§How?!
§Once we’ve done that, this PGM tells us what factors, 

aside from our treatment, impact our outcome
§ The task of causal inference is then to find a way to 

estimate, for a given estimand, the effect of the treatment 
on the outcome
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Step 2: Define an 
Estimand of interest

https://livefreeordichotomize.com/201
9/01/17/understanding-propensity-
score-weighting/
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https://livefreeordichotomize.com/2019/01/17/understanding-propensity-
score-weighting/
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https://livefreeordichotomize.com/2019/01/17/understanding-propensity-
score-weighting/
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Step 3: Select and estimator & compute an estimate!

§ Several common estimators use propensity scoring
§Approach to compute propensity scores (very high level):

§ Identify your treatment
§ Identify all confounding variables (informed by structure of your 

PGM)
§ Build a model to predict whether or not someone was treated 

from the confounders
§ Then you might:

1. Match on propensity scores
2. Weight based on propensity scores
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Example estimand/estimators 
using propensity scores

https://livefreeordichotomize.com/posts/2019-01-17-understanding-
propensity-score-weighting/
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Example estimand/estimators using 
propensity scores for the ATE

https://livefreeordichotomize.com/posts/2019-01-17-understanding-
propensity-score-weighting/
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Example estimand/estimators using 
propensity scores for the ATO

https://livefreeordichotomize.com/posts/2019-01-17-understanding-
propensity-score-weighting/
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Misc. CI stuff

§There are many, many assumptions baked in here!
§Other areas of work

§ Inferring causal structure (e.g. the DAG)
§Using ML in various ways (e.g. to do the propensity 

scoring)
§…
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Beyond Causal Inference (to where?)

34



@_kenny_joseph

Where’s the ML in this?
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My thoughts/guide to our lecture
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