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Today’s plan

§AMA / AYA (5-10 mins)
§A whirlwind intro to ML (20 mins)
§ Break
§Causal inference (thinking quantitatively about the social 

world) (rest of class)
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What is Machine 
Learning? / 
aAa(ask Atri anything
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ML as a recipe creator
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https://medium.com/@geomblog/when-an-algorithm-isn-t-2b9fe01b9bb5
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Why this course?
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Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S. (2019). Dissecting racial bias in 
an algorithm used to manage the health of populations. Science, 366(6464), 447–453. 
https://doi.org/10.1126/science.aax2342

https://doi.org/10.1126/science.aax2342
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Putting biased ML into context: Step 1

Machine learning, as you all know, does not 
happen in a vacuum of computers beeping 
and bopping.
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A very brief run-through

For the details:

https://www-student.cse.buffalo.edu/~atri/ml-and-
soc/support/notes/half-pipeline/index.html

https://www-student.cse.buffalo.edu/~atri/ml-and-soc/support/notes/half-pipeline/index.html
https://www-student.cse.buffalo.edu/~atri/ml-and-soc/support/notes/half-pipeline/index.html
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Data collection mechanism: Data doesn’t 
exist

Use 3rd party data brokers
Potential 
issues?
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Which data 
to collect?

Which data to collect?: General thoughts

Expense might determine what gets collected

Time to finish a survey also has implications

Other restrictions, e.g. from an IRB
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https://www.history101.com/april-14-2003-the-human-genome-project-completed/
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Putting biased ML into context: Step 1

By the time we get to the beeping and 
bopping, the problem already exists
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A brief example

Zhao, J., Wang, T., Yatskar, M., Ordonez, V., & Chang, K.-W. (2018). Gender Bias in Coreference Resolution: Evaluation and Debiasing Methods. 
ArXiv:1804.06876 [Cs]. 
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Summary

§There are clear (at least to us) issues with the ML 
pipeline

§These are driven by various social processes
§ I am a computational social scientist, in the I prefer 

to use computation to study these processes
§This is what Unit 1 was about for your ML&Soc 

teammates
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Break!
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Looking at society through a CSS lens

Three things you need for your project/to do good 
[computational social] science (IMO)
1. The ability to understand/reason about the social 

world
2. The ability to use that understanding to design 

interventions on the world
3. The ability to conduct measurements that assess 

the [potential] effect of that intervention

28
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Looking at society through a CSS lens
Three things you need for your project/to do good [computational social] science (IMO)
1. The ability to understand/reason about the social world
2. The ability to use that understanding to design interventions on the world
3. The ability to conduct measurements that assess the [potential] effect of that 

intervention

To help us with this, I’m going to introduce three 
things, and then tie them together:
1. Probability/stats
2. Causal inference
3. Directed Acyclic Graphs

29



@_kenny_joseph

First – the math

§Goal: give us the bare-bones quantitative language 
§ [Also, good to remind ourselves of these concepts]

§Concepts
§Univariate Stats

§ Probability, Random Variables (RVs), Probability of RVs
§ Expectation & Variance
§ Probability distributions

§Multivariate Stats
§ Conditional Probability
§ Covariance and Correlation
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Seeing Theory

31

https://seeing-
theory.brown.edu/ba
sic-probability/

https://seeing-theory.brown.edu/basic-probability/
https://seeing-theory.brown.edu/basic-probability/
https://seeing-theory.brown.edu/basic-probability/
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Correlation vs. Causation

§Correlation: A measure of the relationship between two 
variables

§Causation
§ Informally: “if I change A, then B will also change”
§ Formally, two ways to think about this:

§ “Do calculus”
§ Potential outcomes
§ People argue about which of these is better. Most of that is semantics. 

We’ll make use of both.

§Causal inference: the process of inferring the causal 
relationships between variables.
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Correlation vs causation

https://tylervigen.com/spurious-scholar
§Can you summarize the difference 
between correlation and causation?
§Does correlation always mean 
causation?
§Does no correlation always mean no 
causation?

2/26/24 UB33

https://tylervigen.com/spurious-scholar
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https://goodauthority.org/news/milton-friedmans-thermostat/
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No correlation != No causation

§What does pressing down 
the gas pedal do to speed?

§What does going up/down 
a hill do to speed?

§ If we didn’t know that, what 
conclusions might we draw 
from a skilled driver?

§Can you think of another 
example?

35

https://goodauthority.org/news/milton-friedmans-thermostat/
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Some relevant questions

•Why do we care about causation?
•How do we know something causes 
something else, and how do we prove it?

• Sidebar: What is the goal of machine 
learning? 

36
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Looking at society through a CSS lens

Three things you need for your project/to do good 
[computational social] science (IMO)
1. The ability to understand/reason about the social 

world
2. The ability to use that understanding to design 

interventions on the world
3. The ability to conduct measurements that assess 

the [potential] effect of that intervention
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Causal DAGs– a tool to explain causal reasoning

2/26/24 UB38

https://causalens.com/resources/white-papers/why-correlation-based-machine-learning-
leads-to-bad-predictions/
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What is a causal graphical model?

§A diagram that helps us explain our assumed 
causal relationships between two things
§Nodes are random variables
§Edges are causal relationships between RVs

§Let’s practice!
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A brief example

Zhao, J., Wang, T., Yatskar, M., Ordonez, V., & Chang, K.-W. (2018). Gender Bias in Coreference Resolution: Evaluation and Debiasing Methods. 
ArXiv:1804.06876 [Cs]. 
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Some questions about DAGs
§DAGs have limitations!

§ Cycles are real
§ Hard to differentiate certain kinds of probabilistic relationships

§We disagree on both semantics and beliefs about the issues
§ How do we resolve differences between your DAGs?

§ Some things are hard to put a number on
§ We have to get suuuper specific to actually run experiments, and 

we have to be right
§ “No causation without intervention”

§How do you know there's a node? An edge?
§ What counts as evidence?
§ How do we reference evidence?

41
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How do we know? 

§ Prior work

§Activity: 
§ Try to find an academic article that provides support for the 

following statement:

The more severe your illness, the more likely you are to 
die, regardless of treatment

https://europepmc.org/article/med/7105766
https://europepmc.org/article/med/7105766
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How do we know? 

§ Prior work
§Conditional dependencies + Theory

§ What is theory? 
§ Sidebar: How do we identify conditional dependencies that are 

not likely to be random?
§ Sidebar to the sidebar: The “standard” way here is to assume 

linearity, do linear regression, and look at statistical significance 
of coefficients. This is fiiiineeee. 

§Causal Evidence
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Introducing causal inference
What if we had a method that could explicitly account for 
these challenges and help us measure real causation?
Enter causal inference!

44

https://microsoft.github.io/dowhy/example_notebooks/tutorial-causalinference-
machinelearning-using-dowhy-econml.html
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Sounds great! But there’s a catch…

I want to know if telling Bernie he is going to get an A no 
matter what will make his participation better or worse

45

https://microsoft.github.io/dowhy/example_notebooks/tutorial-causalinference-
machinelearning-using-dowhy-econml.html

I can’t both give Bernie an A AND not give it to him!
This is the Fundamental Problem of Causal Inference
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Problems with the simple story

§Sometimes, experimentation is unethical
§ I suspect half of you would be very angry if I gave you a 

placebo study guide J 
§Other times, we might have wanted to experiment 

but simply couldn’t, and are left with a bunch of 
observational data
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Uh-oh
§Now:

§ We have an idea how to evaluate an intervention, but when we 
can’t experiment, we have to control for factors associated with 
both the intervention and the outcome

§ Related: how do we decide on a treatment in the first place?
§ Enter DAGs [and then, causal graphical models]. 

Informally, there are two “kinds” of probabilistic DAGs
§ Bayes Nets encode the factorizations of any joint probability 

distribution
§ Causal Graphical Models put explicit assumptions about 

causation into DAGs.
§ We’ll focus on the latter

47



@_kenny_joseph

As always – easier said than done

48

Rachel Corwin
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Threats to validity
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Some questions about DAGs
§DAGs have limitations!

§ Cycles are real
§ Hard to differentiate certain kinds of probabilistic relationships

§We disagree on both semantics and beliefs about the issues
§ How do we resolve differences between your DAGs?

§ Some things are hard to put a number on
§ We have to get suuuper specific to actually run experiments, and 

we have to be right
§ “No causation without intervention”

§How do you know there's a node? An edge?
§ What counts as evidence?
§ How do we reference evidence?
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Looking at society through a CSS lens

Three things you need for your project/to do good 
[computational social] science (IMO)
1. The ability to understand/reason about the social 

world
2. The ability to use that understanding to design 

interventions on the world
3. The ability to conduct measurements that assess 

the [potential] effect of that intervention

51



Real world 
goal

Real world 
mechanism

Learning 
problem

Data 
collection 

mechanism

Which data 
to collect?

Data 
representati

on

Target 
class/model

Training 
data set

Model 
training

Predict on 
test data

Evaluate 
errorDeploy!

Society

Putting biased ML into context


