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To predict and serve?

Predictive policing systems are used increasingly by law enforcement to try to prevent crime
before it occurs. But what happens when these systems are trained using biased data?
Kristian Lum and William Isaac consider the evidence - and the social consequences
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Checking In

Who has started on the unit 2 group submission?

This paper will be crucial for Unit 2 mid-point submission:
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Standards for fair decision making could help
us develop algorithms that comport with

our consensus views; however, algorithmic
fairness has its limits.

‘ BY MANISH RAGHAVAN

What Should
We Do when
Our Ildeas

of Fairness
Conflict?

force us to re-examine the broader con-
texts within which algorithms are de-
ployed. Here, we survey these responses
and discuss their implications for the
use of algorithms in decision making.

We are constantly faced with deci-
sions in our daily lives. Some appear
fairly inconsequential: an ad shown
before the next video you watch or the
sequence of posts on your social media
feed. Others can change our lives—for
example, whether we get a certain job
or are approved for a loan. Algorithms
play a growing role in these types of
decisions. In response, a nascent field
has formed, bridging disciplines such
as computer science, economics, soci-
ology, and legal studies in an effort to
understand the impact of algorithmic
decision making on society.**

One key area within this field consid-
ers fair decision making. When algo-
rithms are used to make or assist with
consequential decisions, how do we
ensure that they do so fairly? This ques-
tion is particularly salient when it comes
to machine learning and other data-
driven tools, where we might expect al-
gorithms trained on data produced by
humans to inherit the same biased and
discriminatory behavior that humans
exhibit. Researchers and practitioners
have begun developing tools to address
concerns over these behaviors, often us-
ing phrases like “algorithmic fairness”
or “fairness in machine learning” to de-
scribe their efforts.



Readings this week are a bit disjointed
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Reminder

‘ What do you think when you hear impossible?

In the context of computational problems,

what does an impossible problem (that 1s
defined mathematicall)) mean to your




First interpretation

Essentially not possible to come up with a precise mathematical description of a problem

At least not in the sense of being able

to write the math formulation down

Try to learn the problem from data itself!



Second interpretation

It 1s possible to precisely define the problem but there does not exist azy solution

Solve an approximate version of the impossible problem
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fairness has its limits.

‘ BY MANISH RAGHAVAN

What Should
We Do when

Our Ildeas

of Fairness

Conflict?

force us to re-examine the broader con-
texts within which algorithms are de-
ployed. Here, we survey these responses
and discuss their implications for the
use of algorithms in decision making.

We are constantly faced with deci-
sions in our daily lives. Some appear
fairly inconsequential: an ad shown
before the next video you watch or the
sequence of posts on your social media
feed. Others can change our lives—for
example, whether we get a certain job
or are approved for a loan. Algorithms
play a growing role in these types of
decisions. In response, a nascent field
has formed, bridging disciplines such
as computer science, economics, soci-
ology, and legal studies in an effort to
understand the impact of algorithmic
decision making on society.*

One key area within this field consid-
ers fair decision making. When algo-
rithms are used to make or assist with
consequential decisions, how do we
ensure that they do so fairly? This ques-
tion is particularly salient when it comes
to machine learning and other data-
driven tools, where we might expect al-
gorithms trained on data produced by
humans to inherit the same biased and
discriminatory behavior that humans
exhibit. Researchers and practitioners
have begun developing tools to address
concerns over these behaviors, often us-
ing phrases like “algorithmic fairness”
or “fairness in machine learning” to de-
scribe their efforts.



Case 3.1

It 1s possible to precisely define the problem that has a solution but
COMPUTING the solution is impossible (period)

Solve the problem for “real world” cases

Model CheCking A 13 languages v

Article Talk Read Edit View history Tools v

From Wikipedia, the free encyclopedia

This article is about checking of models in computer science. For the checking of models in statistics, see statistical model validation.

In computer science, model checking or property checking is a method for checking whether a finite-state
model of a system meets a given specification (also known as correctness). This is typically associated with
hardware or software systems, where the specification contains liveness requirements (such as avoidance of
livelock) as well as safety requirements (such as avoidance of states representing a system crash).

In order to solve such a problem algorithmically, both the model of the system and its specification are
formulated in some precise mathematical language. To this end, the problem is formulated as a task in logic,
namely to check whether a structure satisfies a given logical formula. This general concept applies to many
kinds of logic and many kinds of structures. A simple model-checking problem consists of verifying whether a
formula in the propositional logic is satisfied by a given structure.

Overview [edit]

Property checking is used for verification when two descriptions are not equivalent. During refinement, the
specification is complemented with details that are unnecessary in the higher-level specification. There is no

5 . . . - - ) L. . Elevator control software can be &1
need to verify the newly introduced properties against the original specification since this is not possible. model-checked to verify both safety

Therefore, the strict bi-directional equivalence check is relaxed to a one-way property check. The implementation properties, like "The cabin never

moves with its door open”,[! and
liveness properties, like "Whenever the
nth floor's call button is pressed, the
cabin will eventually stop at the nth
floor and open the door".

or design is regarded as a model of the system, whereas the specifications are properties that the model must
satisfy.[2]

An important class of model-checking methods has been developed for checking models of hardware and
software designs where the specification is given by a temporal logic formula. Pioneering work in temporal logic
specification was done by Amir Pnueli, who received the 1996 Turing award for "seminal work introducing
temporal logic into computing science".[3] Model checking began with the pioneering work of E. M. Clarke, E. A. Emerson,“II5I¢] by J. P. Queille, and J.
Sifakis.[”] Clarke, Emerson, and Sifakis shared the 2007 Turing Award for their seminal work founding and developing the field of model checking.(8ll°]



Case 3.2.1

It 1s possible to precisely define the problem that has a solution but
COMPUTING the solution efficiently with current technology is very hard

w Shtetl-Optimized

Solve the problem mathematically

The Blog of Scott Aaronson  ~ /
If you take nothing else from this blog: quantum computer‘won ¥ )
solve hard problems instantly by just'trying all solutions in parallel. 30

5
And also: deliberately gunning down Jewish (br apy) children is wrong.

« NAND now for something completely different

S h O r ' S alg O rith m Shor, Il d(;u;:tum Computing Since Democritus Lecture 10: Quantum Computing »
0y {& P S

. I've been talking a lot recently about how quantum algorithms don’t work. But last
QFT—I ) week JR Minkel, an editor at Scientific American, asked me to write a brief essay

2n ( about how quantum algorithms do work, which he could then link to from SciAm's
website.”OK!” | replied, momentarily forgetting about the 10105000 quantum
algorithm tutorials that are already on the web. So, here’s the task I've set for myself:
jna to explain Shor’s algorithm without using a single ket sign, or for that matter any
/74_ math beyond arithmetic.

0) 4 H T
Alright, so let’s say you want to break the RSA cryptosystem, in order to rob some
|]_> —,L Ua2() — UCL21 — . . — Ual22"_1 —_— banks, read your ex’s email, whatever. We all know that breaking RSA reduces to
finding the prime factors of a large integer N. Unfortunately, we also know that
“trying all possible divisors in parallel,” and then instantly picking the right one, isn’t
going to work. Hundreds of popular magazine articles notwithstanding, trying
https://en.wikipedia.org/wiki/File:Shor's_algorithm.svg everything in parallel just isn’t the sort of thing that a quantum computer can do.
Sure, in some sense you can “try all possible divisors” — but if you then measure the
outcome, you’ll get a random divisor, which almost certainly won’t be the one you







Case 3.2.2

It 1s possible to precisely define the problem that has a solution but
implementing the solution etficiently in current world is hard

Any example?
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l.et us assume...

Real world Real world Learning Data collection Which data to Data
goal mechanism problem mechanism collect? representation

-

Measurement Historical bias Historical bias Measurement
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Target
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What 1s a feedback loop

Real world Real world Learning Data collection Which data to Data
goal mechanism problem mechanism collect? representation

-

Measurement Historical bias Historical bias Measurement

bias Measurement Measurement bias

Target

SOCIGW class/model

Historical bias Representation bias

V‘

Predict on test - Trainingo data
Evaluate error Model training &

data set




The “loop” in tfeedback loop

Real world Real world Learning Data collection Which data to

goal mechanism problem rV mechanism collect?

Historical bias Historical bias Measurement
Measurement Measurement bias \

class/ I. odel

Representation bias

A4

Predict on test Aining data
Evaluate erro Meods

) _‘_“‘- -



Case 3.2.2

It 1s possible to precisely define the problem that has a solution but
implementing the solution efficiently in current world is hard

How do you “prove” that a specific Al system will result in a feedback loop?

Model the world mathematically and show a feedback loop in your model

DETAIL

To predict and serve?

Predictive policing systems are used increasingly by law enforcement to try to prevent crime
before it occurs. But what happens when these systems are trained using biased data?
Kristian Lum and William Isaac consider the evidence - and the social consequences
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Proceedings of Machine Learning Research 81:1-12, 2018

Conference on Fairness, Accountability, and Transparency

Runaway Feedback Loops in Predictive Policing*

Danielle Ensign
University of Utah

Sorelle A. Friedler
Haverford College

Scott Neville
University of Utah

Carlos Scheidegger

University of Arizona

Suresh Venkatasubramanian'
University of Utah

Editors: Sorelle A. Friedler and Christo Wilson

Abstract

Predictive policing systems are increasingly
used to determine how to allocate police
across a city in order to best prevent crime.
Discovered crime data (e.g., arrest counts)
are used to help update the model, and
the process is repeated. Such systems have
been empirically shown to be susceptible to
runaway feedback loops, where police are
repeatedly sent back to the same neighbor-
hoods regardless of the true crime rate.

In response, we develop a mathemati-
cal model of predictive policine that proves

DANIPHYEQ@QGMAIL.COM
SORELLE@CS.HAVERFORD.EDU
DROP.SCOTT.NQGMAIL.COM
CSCHEID@CSCHEID.NET

SURESHQCS.UTAH.EDU

the predictive policing algorithm) interact:
in brief, while reported incidents can atten-
uate the degree of runaway feedback, they
cannot entirely remove it without the in-
terventions we suggest.

Keywords: Feedback loops, predictive
policing, online learning.

1. Introduction

Machine learning models are increasingly being
used to make real-world decisions. such as who



Case 3.3

It 1s possible to precisely define the problem that has a solution but
COMPUTING the solution efficiently is hard/not known with current technology

Problems that are hard because no one has been
able to show that it is “easy”

Note the human angle!

Encryption and HUGE numbers - Numberphile

Numberphile ©@ - —
Subscrib 23K QJ] Sh: =+ S
‘ 4.45M subscribers S i} > Share ave




The “swwvork around”

If something is impossible, it might make something e/se possible



Cryptography!

| twakl:er

@ BARCLAYS

)

facebool . e

Numberphile

¢







The “loop” in tfeedback loop

Real world Real world Learning Data collection Which data to

goal mechanism problem rV mechanism collect?

Historical bias Historical bias Measurement
Measurement Measurement bias \

class/ I. odel

Representation bias
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Predictive policing




Potential biases in predictive policing




Exercise

Figure out how predictive policing can lead to a feedback loop.



Aside 1: DAGs in causal diagrams

Consider a world that can be represented as a causal DAG

Can we have a feedback loop 1n this world?

Going forward your causal diagrams can have cycles!



Community organization can get results!

Kate Crawford & b
’ @katecrawford

Big news: LAPD will end the use of the broken predictive
policing system known as PredPol, citing budget
concerns under COVID-19. This is thanks in large part to
community groups like @stoplapdspying pushing back
against its use.

LAPD will end controversial program that aimed to predict where crimes woul...

Chief Moore says, due to financial constraints caused by the pandemic, the
LAPD will end a program that predicts where property crimes could occur.
& latimes.com






Can we formalize this intuition?

How do we “prove” that feedback loops can exist in predictive policing?

Simulation results

Theoretical modeling results



A simulation result
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Theoretical modeling: Ensign et al.

Feedback Loop and ML

This page talks about how the ML pipeline when deployed in society can lead to a feedback loop.

A Under Construction

This page is still under construction. In particular, nothing here is final while this sign still remains here.

A Request

| know | am biased in favor of references that appear in the computer science literature. If you think | am missing a relevant reference (outside or even within CS), please email
ittome.

An overview

Recall that we have considered various notions of bias that can creep in when the ML pipeline interacts with society:

Data q

Real world n . Which data to Data

i collection .

mechanism ) collect? representation
mechanism
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goal

H\starl:‘al Hlstarlc_al Measuremi
Representation s il Representation bias i
Measurement Measurement

Measurement
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Abstract

Predictive policing syste A LOT Of
simplifications!

used to determine how to a
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TOWN OF TONAWANDA
TOWN OF AMHERST

VILLAGE OF KENMORE

Only ONE cop patrol E and W

Basic Setup

¥
Crime per Capita in Buffalo

The map below shows crime per 1,000 Buffalo residents.
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Assumption 1: One region/day

Cop can only go to one of L or W region per day

Cop will go to E or W with probability proportional to the number of crimes reported in that region

For any given day ¢, we will use ng) and n(&) to denote the number of observed crimes in E and W respectively from day O to day 7.

)
Ng

Cop will visit E on t+1 with probability n? + n)
Cop will visit W on t+1 with probability ny

"D 4+ 0



Assumption 2: Unequal crime rates

E and W unequal crime rates (which are known)

The crime rate for E is Ag and the crime rate for W is Ay .

Mathematically: 4 # Aw.

Do NOT need Ay; and Ay to be far apart Ag = 10.5% and Ay = 11%



Assumption 3: Observed = actual crime rate

Cop discovers crime at exact/y the same rate as the actual crime rate in either region

Is this a reasonable assumption?

If cop goes to L

Discovers one crime with probability 4;; and no crime with probability 1- A,

If cop goes to W:

Discovers one crime with probability Ay and no crime with probability 1- Ay



An exercise

If cop goes to E:

Discovers one crime with probability A;; and no crime with probability 1- Ay

If cop goes to W

Discovers one crime with probability Ay, and no crime with probability 1- Ay

For any given day ¢, we will use ng) and ngg to denote the number of observed crimes in E and W respectively from day 0 to day ¢.

Given the above what are the relationships of ngﬂ) with ng) (and similarly the relationship of n(vi,ﬂ) with n%})?



Solution to exercise

®

@+ with n (and similarly the relationship of nt with n(t))?

Given the above what are the relationships of n

If the cop visits E with probability Az the cop will discover/report one crime and not crime otherwise. In other words,

) _ { n® +1  with probability Ag
D) -

ng) with probability 1 — Az

And we have a similar result If the cop visits W:

{ n) +1  with probability Ay
nW =

n) with probability 1 — Ay




Finally, we have our model...

The evolution of the number of observed crimes

©0) 0

 The process starts with initial values n;" and ny,

e Fort=1,2,...

//The process repeats "forever"

n®

o With probability do:

n® O nlp 0]

//Cop visits E

= With probability Az set n( = ng) + 1

= Else with probability 1 — Ag set n(H'l) = ng)

(z)
do:

o Otherwise with probability WO

//Cop visits W

= With probability Ay set n(t+1) = ngg +1

= Else with probability 1 — Ay set n(’+l) = ”(ve



Next exercise...

To make things concrete assume that ng)) = ngl),) = 100 and Az = 10.5% and Ay = 11%. What would you consider to be a manifestation of feedback loop as the process

above runs?

® 20

: Think about how the ratios % and (D—“’m evolve as t grows larger. (Side question: why are these ratios something worth monitoring?)
ng +nw ng +nw

®
Ng
Cop will visit E with probability O
Cop will visit W with probability ny
0 "

ng +nW



Solution to exercise

To make things concrete assume that ng)) = ngl),) = 100 and Az = 10.5% and Ay = 11%. What would you consider to be a manifestation of feedback loop as the process

above runs?

® 20

: Think about how the ratios % and (D—W(n evolve as t grows larger. (Side question: why are these ratios something worth monitoring?)
ng +nw ng +nw

®
Ng
Cop will visit E with probability WO A &L Ay » A
. ) . 0
Cop will visit W with probability Ny _ > 1 « 1
00 AW W w

ng +nW



Does this model have a feedback loop?

The evolution of the number of observed crimes

©0) 0)

©0) _
=Ry =

= 100 and A = 10.5% and Ay = 11%.

 The process starts with initial values n;" and ny,
e Fort=1,2,...
//The process repeats "forever"
(’) (0)
o With probability ——— do: ng
ng +ny
//Cop visits E
= With probability Az set n(tH) = n(t) + 1
= Else with probability 1 — A set n(tH) = ng)
U]
o Otherwise with probability (,)n 5 do:
nE +n
//Cop visits W
= With probability Ay set n(t+1) = ngg + 1

(t+1) _

= Else with probability 1 — Ay setny, = ny,

®




What do you think will happen?

Answer 1s yes and in the most extreme sense.

Ap> Aw Ap < Aw
i p =1 =0
Cop will visit E with probability n? + n) =
oy i - (1)
C 11 visit W with probabili n
Ole V1S W proalty w zAW =0 =1

0] O
ng + Ny



How the heck do you prove such a thing?

Pélya urn model Xp 6 languages v

Article Talk Read Edit View history Tools v

From Wikipedia, the free encyclopedia

In statistics, a Pélya urn model (also known as a Pélya urn scheme or simply as Pélya's urn), named after George Pdlya, is a family of urn models
that can be used to interpret many commonly used statistical models.

The model represents objects of interest (such as atoms, people, cars, etc.) as colored balls in an urn. In the basic Pélya urn model, the experimenter
puts x white and y black balls into an urn. At each step, one ball is drawn uniformly at random from the urn, and its color observed; it is then returned in
the urn, and an additional ball of the same color is added to the urn.

If by random chance, more black balls are drawn than white balls in the initial few draws, it would make it more likely for more black balls to be drawn
later. Similarly for the white balls. Thus the urn has a self-reinforcing property ("the rich get richer"). It is the opposite of sampling without replacement,
where every time a particular value is observed, it is less likely to be observed again, whereas in a P6lya urn model, an observed value is more likely to
be observed again. In a Pélya urn model, successive acts of measurement over time have less and less effect on future measurements, whereas in
sampling without replacement, the opposite is true: After a certain number of measurements of a particular value, that value will never be seen again.

It is also different from sampling with replacement, where the ball is returned to the urn but without adding new balls. In this case, there is neither self-
reinforcing nor anti-self-reinforcing.

Lemma 3 (Renlund (2010)) Suppose we are
given a Pdlya urn with replacement matriz of the

form
a b
(¢ 2)

with a positive number of balls of each kind to
start with. Assume that a,b,c,d > 0 and at least
one entry is strictly positive. Then the limit of
the fraction of balls of each type exists almost
surely. The fraction p of A-colored balls can be
characterized as follows:

e Ifa=d,c=b=0, then p tends towards a
beta distribution.

e If not, then p tends towards a single point
distribution x*, where z* € [0, 1] is a root of
the quadratic polynomial

(c+d—a—0b)z*+ (a—2c—d)z+c

If two such roots exist, then it is the one such
that f'(z*) < 0.



Now let’s prove this “lemma 3!

Just kidding ©



Now let’s prove this “lemma 3!

Just kidding ©
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Is there a (mathematical) “t1x’’?

A potential fix

In the above model, Ensign, Friedler, Neville, Scheidegger and Venkatasubramanian suggest the following fix (which they can mathematically prove that it works) is based
roughly on the following idea. If the cop visits a specific region most of the time, then it should not be a surprise if they discover a crime in the region and in such a case they

should "discount" the crime discovery by not recording such discovery most of the time. On the other hand, if the cop visits region infrequently and they discover a crime, they
have learned something "new" and hence would record such crime discoveries most of the time.



Discussion Summary due Sat 11:59pm!
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