
X1, X2, X4 X1, X3, X4

X1, X3 X1, X4 X3, X4

X1, X2, X3

X3

X2, X3

X1, X2, X3, X4

X2, X3, X4

∅

X1, X2

X1 X2 X4

X2, X4

group

Subhadeep KARAN, Jaroslaw ZOLA ∙ SCoRe – Scalable Computing Research Group
{skaran,jzola}@buffalo.edu Department of Computer Science and Engineering

High Performance Algorithms for Learning Exact Bayesian Networks

Abstract
Bayesian Networks (BN) are probabilistic graphical models
often used in biomedical applications. In these applications,
BN structure is a critical component learned from data (e.g.
medical records, gene markers, environmental factors). The
problem of BN exact structure learning is to find a network
structure that is optimal under certain scoring criteria. This
problem has been shown to be NP-hard and the existing
solutions are computationally and memory intensive.

We investigate new high-performance and parallel algorithms
for learning globally optimal large-scale Bayesian Networks. In
the process, we develop novel scalable solutions to sub-
problems shared by various machine learning algorithms.

Why Bayesian Networks
• Clear and intuitive interpretation
• Explicit support to handle uncertainty in data
• Ability to answer complex and speculative queries
• Ability to incorporate expert knowledge

References
1. S. Karan, J. Zola, Exact Structure Learning of Bayesian

Networks by Optimal Path Extension, In Proc. of IEEE
BigData, 2016.

2. S. Karan, J. Zola, Scalable Exact Parent Sets Identification
in Bayesian Networks Learning with Apache Spark, In Proc.
of IEEE HiPC, 2017.

Challenges
• Irrespective of the scoring function, the search space of

possible BN structures is super-exponential
• Existing approaches based on dynamic programming and

memoization are infeasible even for small input data

Bayesian Network
Pair (G,P) where G is a DAG over a set of random variables,
and P is the corresponding probability distribution. G encodes
efficient factorization of the joint probability P.

BN provides compact
and easy to interpret
representation of conditional
independencies.

Acknowledgment
Authors wish to acknowledge support provided by the Center
for Computational Research at the University at Buffalo.

Dataset n BFS URLearning SABNA

Mushroom 23 2m12s 1m29s 1m
Autos 26 3m54s 37s 13s
Insurance 27 8m14s 7m25s 2m28s
Water 32 M M 2m8s
Soybean 36 M M 1h36m
Alarm 37 M T 1h3m
Bands 39 M T 1h10m

2

4

6

8

10

12

4 8 12 16 20 24

R
el
at
iv
e
Sp
ee
du
p

20-core Compute Nodes

AL-4K
AL-10K
HF-10K
USCD

SABNA Toolkit
• We are developing SABNA – Scalable Accelerated Bayesian Network Analytics Toolkit:

https://gitlab.com/SCoRe-Group/SABNA-Release
• The toolkit is open source, and provides our optimized search strategies with support for different scoring functions

Exact Parent Set Identification (EPSI)
• Efficient parallel algorithm for distributed memory

systems using Apache Spark [2]
• New strategy to constraint and reorganize dynamic

programming computations such that computational grain
is improved and fine-grained synchronization is avoided

• Currently, the only method capable of analyzing data sets
with more than 40 variables

Why Network Structure?

Introduction
• Exact BN Learning: Given input data of observations for a set of

random variables, and certain scoring function, find globally optimal
BN explaining the data

• Two-step approach: identify optimal parent set for each variable
given scoring function, find optimal structure by solving shortest
path problem with distances defined by the choice of optimal
parent sets

• By decomposing the problem, we can develop more efficient and
scalable algorithms

X2 X3X1 X4

X2 X3 X4

∅

X2,X3

X2,X3,X4

∅

X1 X3 X4

X2,X4 X3,X4 X1,X3

X1 X2 X4

∅ ∅

X1,X4 X3,X4

X1,X3,X4

X1,X2 X1,X4 X2,X4

X1,X2,X4

X1 X2 X3

X1,X2 X1,X3 X2,X3

X1,X2,X3

s(X4,∅)s(X1,∅)

s(X1,{X2,X3,X4})

X2 X3X1 X4

X2 X3 X4

∅

X2,X3

∅

X1 X3 X4

X2,X4 X3,X4 X1,X3

X1 X2 X4

∅ ∅

X1,X2 X1,X4 X2,X4

X1,X2,X4

X1 X2 X3

X1,X2 X1,X3 X2,X3

X1,X3,X4 | X2X2,X3,X4 | X1 X1,X2,X4 | X3 X1,X2,X3 | X4

X3,X4 | X1,X2 X2,X4 | X1,X3 X3 | X1,X4 X1,X4 | X2,X3 X1,X3 | X2,X4 X1 | X3,X4

X3 | X1,X2,X4

X={X1,X2,X3,X4} | U=∅

s(X2,{X1}), s(X3,{X1}), s(X4,{X1})

s(X3,{X1,X2}), s(X4,{X1,X2})

X1,X3,X4 | X2X2,X3,X4 | X1 X1,X2,X4 | X3 X1,X2,X3 | X4

X3,X4 | X1,X2 X2,X4 | X1,X3 X3 | X1,X4 X1,X4 | X2,X3 X1,X3 | X2,X4 X1 | X3,X4

X3 | X1,X2,X4

X={X1,X2,X3,X4} | U=∅

Parallel scalability of our EPSI solver

Example dynamic programming lattice for EPSI with four
variables and the resulting transformations

X1 X2 X4

X1, X3 X1, X4 X2, X4 X3, X4X1, X2

X1, X2, X3 X1, X2, X4 X1, X3, X4

X3

∅

X2, X3

X1, X2, X3, X4

X2, X3, X4

Optimal Path Extension (OPE)
• Novel strategy to constraint the number of ways in which partial BN can be optimally extended [1]
• Negligible overhead, on-the-fly compaction of DP lattice
• Can be seamlessly combined with different shortest path solvers (BFS, IDA, etc.).

Effect of applying OPE to
problem with four variables

Comparison of SABNA with other structure searching methods

