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High Performance Algorithms for Learning Exact Bayesian Networks

Abstract
Bayesian Networks (BN) are probabilistic graphical models
often used in biomedical applications. In these applications,
BN structure is a critical component learned from data (e.g.
medical records, gene markers, environmental factors). The
problem of BN exact structure learning is to find a network
structure that is optimal under certain scoring criteria. This
problem has been shown to be NP-hard and the existing
solutions are computationally and memory intensive.

We investigate new high-performance and parallel algorithms
for learning globally optimal large-scale Bayesian Networks. In
the process, we develop novel scalable solutions to sub-
problems shared by various machine learning algorithms.

Why Bayesian Networks
• Clear and intuitive interpretation
• Explicit support to handle uncertainty in data
• Ability to answer complex and speculative queries
• Ability to incorporate expert knowledge
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Challenges
• Irrespective of the scoring function, the search space of

possible BN structures is super-exponential
• Existing approaches based on dynamic programming and

memoization are infeasible even for small input data

Bayesian Network
Pair (G,P) where G is a DAG over a set of random variables, 
and P is the corresponding probability distribution. G encodes 
efficient factorization of the joint probability P. 

BN provides compact
and easy to interpret
representation of conditional
independencies.
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Dataset n BFS URLearning SABNA

Mushroom 23 2m12s 1m29s 1m
Autos 26 3m54s 37s 13s
Insurance 27 8m14s 7m25s 2m28s
Water 32 M M 2m8s
Soybean 36 M M 1h36m
Alarm 37 M T 1h3m
Bands 39 M T 1h10m
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SABNA Toolkit
• We are developing SABNA – Scalable Accelerated Bayesian Network Analytics Toolkit:

https://gitlab.com/SCoRe-Group/SABNA-Release
• The toolkit is open source, and provides our optimized search strategies with support for different scoring functions

Exact Parent Set Identification (EPSI)
• Efficient parallel algorithm for distributed memory

systems using Apache Spark [2]
• New strategy to constraint and reorganize dynamic 

programming computations such that computational grain 
is improved and fine-grained synchronization is avoided

• Currently, the only method capable of analyzing data sets 
with more than 40 variables

Why Network Structure?

Introduction
• Exact BN Learning: Given input data of observations for a set of 

random variables, and certain scoring function, find globally optimal 
BN explaining the data

• Two-step approach: identify optimal parent set for each variable 
given scoring function, find optimal structure by solving shortest 
path problem with distances defined by the choice of optimal 
parent sets

• By decomposing the problem, we can develop more efficient and 
scalable algorithms
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Parallel scalability of our EPSI solver

Example dynamic programming lattice for EPSI with four 
variables and the resulting transformations
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Optimal Path Extension (OPE)
• Novel strategy to constraint the number of ways in which partial BN can be optimally extended [1]
• Negligible overhead, on-the-fly compaction of DP lattice
• Can be seamlessly combined with different shortest path solvers (BFS, IDA, etc.).

Effect of applying OPE to
problem with four variables

Comparison of SABNA with other structure searching methods


