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ABSTRACT

This paper describes a recent enhancement made to SNePS to
inclﬁde path-based inference. The previous vefsion of SNePS uséd
only node-based inference and was thus limited in its
capabilities. Combining path-based inference and node-based
iﬁference in SNePS has greatly increased the scope of the system.
The paper first motivates the need for such a change and then
proceeds to outline the theory as well as the implementation
details. Finally, a series of examples are provided which
support the claim that the system is indeed more powerful and

efficient now.
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1. INTRODUCTION

A semantic network is a method of representing knowledge.
Usually included in semantic network systems are procedures to
carry out inference based on the knowledge that is represented.
Two of thé more commonly used methods are node-based inference
and path-based inference. This paper describes the recent
modification made to the SNePS semantic network processing system
which previbusly used only node-based inference, to now allow the
combination of node-based and path-based inference. Section 2
~ briefly discusses the two methods of inference and their
differences as well as their respective advantages. The syntax
for defining paths appears in Section 3. The cognitive theory
involved in combining the two types of inference as well as the
actual implementation details are discussed in sections 4 and 5.
Finally, a series of examples will be presented which will
attempt to .

1) illustrate the use of the extensive syntax

2) illustrate some concepts which are difficult if not
impossible to implement using only node-based inference
but which can be handled easily using path-based

inference.
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2. PATH-BASED INFERENCE AND NODE-BASED INFERENCE

When discussing path-based inference, it is useful to think
of the semantic network as a relational graph. The arcs then
represent semantic relationships between the nodes that they
connect. Thus, if one is looking for the relationship R between
the nodes a and b, one has only to check that the arc labelled R
connects these two nodes. Because of this method of
representation, relations are restricted to being binary. If a
relation does not exist explicitly between two nodes, it may be
inferred from a set of rules and other information present in the
network. Typically, this other information specifies a "path of
arcs" which is semantically equivalent to the original relation
being sought. This method of reasoning is known as path-based
inference. An example of a path-based inference rule is

Class <-- (Compose Class (Kstar (Compose Sub- Sup)))

This rule has the following intérpretation— the arc "Class"
is equivalent to the path of arcs which is composed of a "Class"
arc followed by zero or more occurences of the set of arcs "Sub-"
and "Sup". The idea being expressed here is that "if x is a
member of the class y and y is a subset of a larger set say z,
then x is also a member of the class z. The specific syntax for

describing the paths in SNePS will be given in the next section.

In a system that uses node-based inference, all semantic
information (as opposed to structual information) is stored in
the nodes i.e. all concepts that are input into or inferred by
the system are stored as nodes. The arcs are used only for the

purpose of accessing the information as well as for some
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implementation details. 1In order to carry out reasoning, the
system must have stored in it, some rules of inference. 1In
SNePS, every rule is costructed using the formalism of the
predicate calculus and is stored in the system as a rule node.
The antecedents and consequents of a rule node are represenﬁed by
pattern nodes. Pattern nodes represent a strucéure of nodes that
-migﬁt occur in the network and use variable nodes to allow
generality. When trying to infer a consequent of a rule node,
the system tries to find instances of the pattern nodes
representing the antecedents. If the matches are successful,
then it adds the node representing the consequent to the system.
Such a method is known as node-based inference. An example of a
rule node appears in figure (2.1). A detailed descripg;on of

SNePS and its implementation can be found in [2].

Figure 2.1

Example of a rule-node in SNePS
W

lE X IS A HUMAN, THEN X BELleves IN  GoOD

The primary advantage that path-based inference has over

node-based inference is efficiency. In order to infer that a
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relation exists between two nodes, one has only to check whether
a specified path of arcs goes from one node to the other. An
example will be presented later which will demonstrate the
efficiency of path-based inference. Node-based inference
however, is more general since relationships are not restricted

to being binary. For a further discussion of this refer to [1].

o
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3. SYNTAX FOR SPECIFYING PATHS IN SNePS

When specifying alternate path definitions for relations,
the user must confine himself to the syntax that is given below.
Examples of several of these appear later in the paper. It is
important to keep in mind that in SNePS we have three types of
relations- ascending, descending and auxiliary. Whenever ‘the
relation R is present from node x to node y, the relation R- is
present from node y to node x. Auxiliary relations are used
strictly for implementation purposes and therefore their
converses are not defined. For this reason, we allow only
descending and ascending arcs to have alternate path definitions.
The syntax for'défining paths is given below along with the
appropriate SNePSUL commands (SNePSUL being the SNePS user
language which permits a user to interact with it). Paths are
defined recursively as follows:-

1) A path is either é single relation or a path as described
in part 2 of this definition.
2) If P and Q are paths and x,y and z are nodes, paths
can be formed in phe following manner:-
a) Converse: If P is a path from x to y, (CONVERSE P)
is a path from y to x.
b) Composition: If Xy Xyooo.x are nodes and P is a path
from x to X Q is a path from xlto xg......Z is a
path from meo x, then (COMPOSE P Q ....Z) is a path from
x‘to X
c) Composition zero or more times: This corresponds to the
Kleene star operator and is defined as follows. If P

composed with itself zero or more times is a path from
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d)

e)

)

g)

h)

i)

J)

k)

x to vy, then (KSTAR P) is a path from x to y.
Composition one or more times: If P composed with
itself one or more times is a path from x to y, then
(KPLUS P) is a path from x to y.

Union: If P is a path from x to y or Q is a path from

x toy or R is a path from x to y etc. then

(ORPQR ....) is a path from x to y.

Intersection: If P is a path from x to y, and Q is a
path from x to y and R is a path from x to y etc. then
(AND PQ R ....) is a path from x to y.

Complement: This represents universal complement and is
described as follows. If there is no path P from x to y,
(NOT P) is a path from x to y.

Irreflexive restriction: If P is a path from x to vy, and
x$y, (IRREFLEXIVE-RESTRICT P) is a path from x to y.
Exception: If P is a path from x to y and there is no
path Q from'x to y with length less than or equal to
the length of P, then (EXCEPTION P Q) is a path from

x to y.

Domain restriction: If P is a path from x to y and Q is
a path from x to z, then (DOMAIN-RESTRICT (Q z) P) is a
path from x to y.

The extra set of parentheses is to associate the path Q
with the node z.

Range restriction: If P is a path from x to y and Q

is a path from y to z, (RANGE-RESTRICT P (Q 2)) is a
path from x to y.

The extra set of parentheses is to associate the path
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Q with the node z.
1) Relative complement: If P is a path from x to y and there
is no path Q from x to y, (RELATIVE-COMPLEMENT P Q) is a
path from x to y.
3) In order to specify an alternate path definition for
a relation, one issues the command:-
(DEF-PATH PATH-NAME DEFINING-PATH PATH-NAME DEFINING-PATH
etc.)
where PATH-NAME is a pre-defined relation and DEFINING-PATH

- 1is a path formed by using the above rules.

If a path has already been defined for a given path-name the
user will be asked if he wants it redefined. If the user answers

negatively, the command will be suspended at that point.

Two things should be mentioned at this point. Whenever an
alternate path definition is given, the converse of that path is
automatically stored as an alternate path definition for the
converse of that relation. To remind the users of this, the
path-definitions for both the relation and the converse of the
relation are echoed back to the user. Secondly, whenever an atom
appears in a path-definition, it is taken to represent the
relation of that name and not the alternate path definition for
that relation. This is to prevent users from specifying

recursive path definitions.
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4, COMBINING PATH-BASED AND NODE-BASED INFERENCE

SNePS implements node-based inference through the use of two
subsystems. The first is a sophisticated pattern-matching
routine (MATCH) which when given a pattern node, scans the
network of asserted nodes to find instances of it. The second is
the inference subsystem (INFER) which takes as input a command to
deduce instances of a given pattern node. It calls on MATCH to
locate relevant rule nodes and depending on the logical
connectives and quantifiers being used, find instances of
antecedeqts, consequents etc. INFER operates in a
multi-processing environment enabling it to deduce the required

node much faster.

In order to impleﬁent path-based inference, the MATCH
routine has been modified so that when searching for an instance
of a pattern node,‘it considers alternate path definitions. That
is, when séarching for all nodes Qith the relation R to a node x,
it first checks to see if the user has specified an alternate
path definition for the relation R. Instead of retriéving all
nodes that have the arc R to x, it finds and returns all nodes
that have the path of arcs as identified by the name R to x. The
path has to conform to the syntax given in section [3] and the
path-name is required to be a descending or ascending relation.
The path defintions can then be considered to be inference rules
and the match routine can be said to perform path-based

inference.

Whenever a pattern node representing a node structure to be

inferred (e.g. the pattern node in a DEDUCE command) is
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succcessfully inferred the following action takes place. The
matching node (or nodes depending on how many were found)
representing an instance of the pattern node is asserted into the
network if it is not alreadyvpresent. By the word "instance" we
mean a copy of the pattern node with all variable nodes in it
bound to constant nodes. However, the results of intermediary
calls to MATCH by INFER are not asserted into the network.

Typically, these would involve calls to MATCH in order to match

pattern nodes representing antecedents, arguments to numeric

quantifiers etc. The point of this is to show how path-based

inference and node-based inference can work in unison.

Path-based inference represents the subconcious reasoning
that humans do. There are some logical truths that we take for
granted and it is not unreasonable to have them built into SNePS
so that the system can do "implicit reasoning" where necessary.
Node-based inference on the other hand, represents the concious
reasoning that we do. This involves a systematic thought
pfocedure which enables us to infer the validity or non-validity
of propositions. SNePS has the ability to perform this explicit
type of reasoning through the use of rule nodes. It is often the
case that we combine the two types of reasoning. For example, we
would like to know who believes in God. We are given the rule
(by a Sunday—schoql teacher) stating that "if x is a human, then
x believes in God." We know that Tom is a boy and that all boys
are humans. If we were to do explicit reasoning only, this
information would not enable us to conclude that Tom believes in
God. Our subconcious tells us that since Tom is a boy and boys

are humans, Tom is a human. This implicit reasoning is expressed
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in SNePS as the path-based inference rule

(DEF-PATH Class (Compose Class (Kstar (Compose Sub- Sup))))
We can noQ go back to explicit reasoning to infer that since Tom
is a human, he believes in God. Figure (4.1) is an illustration
ofkthis example. Note that a node representing the concept that
.Tom believes in God has been asserted into the network. However,
the intermediate result that Tom is a human is not assertéd. If
we were to carry out this example through node-based inference
bnly, we would need another rule stating that "If x is a member
of the class y and y is a subclass of the class 2, then x is also
a member of the class z. If we had a long chain of set
inclusions separating the source node and the node that we were
seeking, the deduction procedure would be slowed down
considerably since for each (SUB SUP) relationship, INFER would
have to be called. By using path-based inference, we are able to
obtain all nodes in the chain at once without having to call on

INFER.

This example illustrates that combining the two types of
inference might be very beneficial for the overall efficiency of

the system.

The implementation of path-based inference adheres to the
notion of implicit reasoning since modifications have only been
made to the MATCH routine and INFER remains unaltered. The only
place where path-definitions are used (or their existence even
recognized) is within the MATCH routine. When INFER calls on
MATCH, it is oblivious of the fact that some of the resultant

matching nodes may have been inferred to exist by using
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(CLASS DEFINED ALTERNATELY AS PATH (COMPOSE CLASS (KSTAR (C
OMPUSE SUB- SUP))))

(CLASS- DEFINED ALTERNATELY AS PATH (COMPOSE (KSTAR (COMPOS
E SUP- SUB)) CLASS-))

(DEFINED)

34 MSECS

$%:$$$$$ (BUILD MEMBER TOM CLASS BOYS)
(M1)
29 MSECS

$%:$$$$$ (BUILD SUB BOYS SUP HUMANS)

(M2)
29 MSECS

$*:$$$$$ (BUILD MEMBER JANE CLASS GIRLS)

(M3)
29 MSECS

f*:§$$$$ (BUILD SUB GIRLS SUP HUMANS)
M4)

. 29 MSECS

$%:$$$$$ (BUILD AVB ($X) |

$*:$3$$$ ANT (BUILD MEMBER *X CLASS HUMANS)
%*:$$$$$ CQ (BUILD AGENT *X VERB BELIEVE-IN-GOD))
MT)

111 MSECS

?*é§$$$$ (BUILD MEMBER SPOT CLASS DOGS) )
M
29 MSECS

$%:$35$$ (DEDUCE AGENT %X VERB BELIEVE-IN-GOD)

SINCE

(M5 (CLASS (HUMANS))
(:SVAR (V1 (:VAR (T)) (:VAL (TOM))))
(MEMBER (V1 (:VAR (T)) (:VAL (TOM)))))

WE INFER

(M6 (VERB (BELIEVE-IN-GOD))
(:SVAR (V1 (:VAR (T)) (:VAL (TOM))))
(AGENT (V1 (:VAR (T)) (:VAL (TOM)))))

Figure 4.1

COMBINING THE TWO TYPES OF INFERENCE

path-based inference rules as opposed to those that are
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COURINTHG PATH-DASED AND MODE-BASED INFEREHCE

SINCE

(M5 (CLASS (HUMANS))
(:SVAR (V1 (:VAR (T)) (:VAL (JANE))))
(MEMBER (V1 (:VAR (T)) (:VAL (JANE)))))

WE INFER

(M6 (VERB (BELIEVE-IN-GOD))
(:SVAR (V1 (:VAR (T)) (:VAL (JANE))))
(AGENT (V1 (:VAR (T)) (:VAL (JANE)))))

(M9 M10)
2214 MSECS

$*:33$$$ (DUMP ¥NODES)

(M10 (VERB (BELIEVE-IN-GOD)) (AGENT (TOM)))
(M9 (VERB (BELIEVE-IN-GOD)) (AGENT (JANE)))
(SPOT (MEMBER- (M8))) :

(DOGS (CLASS- (M8)))

(M8 (CLASS (DOGS)) (MEMBER (SPOT)))

(M7 (CQ (M6)) (ANT (M5)) (AVB (V1)))
(BELIEVE-IN-GOD (VERB- (M10 M9 M6)))

(M6 (VERB (BELIEVE-IN-GOD)) (:SVAR (V1)) (AGENT (V1)) (cQ-

(M7)))

(M5 (CLASS (HUMANS)) (:SVAR (V1)) (MEMBER (V1)) (ANT- (MT7))

) .

Page 14

Contd.

(V1 (:VAR (T)) (MEMBER- (M5)) (AGENT- (M6)) (AVB- (M7)) (:V

AL (JANE)))

(X (:VAL (Q76)))
(M4 (SUP (HUMANS)) (SUB (GIRLS)))

" (JANE (MEMBER- (M3)) (AGENT- (M9)))

(GIRLS (CLASS- (M3)) (SUB- (M4)))

(M3 (CLASS (GIRLS)) (MEMBER (JANE)))
(HUMANS (SUP- (M4 M2)) (CLASS- (M5)))
(M2 (SUP (HUMANS)) (SUB (BOYS)))

(TOM (MEMBER- (M1)) (AGENT- (M10)))
(BOYS (CLASS- (M1)) (SUB- (M2)))

(M1 (CLASS (BOYS)) (MEMBER (TOM)))
(DUMPED)

188 MSECS

Fiocure 4,1
R 8 O PEieT
COMNINTIG THE TN TYPRS OF INEFRRENCH
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éxplicitly preséht ih thé‘géﬁﬁork. Whén the pattern node in a
DEDUCE command can be matched directly in the network (without
the use of any node-based inference rules), the system returns
the message "WE KNOW" followed by the descriptions of the
matching nodes. This if true even if the MATCH routine had to
make use of some path-based inference rules. On the other hand,
if the system has to use node-based deduction rules for a
successful match, it responds with the message "WE INFER". This
reflects the difference between the two types of regsoning and

can be observed in some of the examples that appear later.
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5. IMPLEMENTATION DETAILS

The SNePS source program has been modified to accept the new
command DEF-PATH. LISP functions have been added which check the
validity of the path-definition and print out appropriate error

mesages in case of invalid path definitions.

MATCH makes frequent use of the function GET in order to
retrieve all nodes that have a specified relation to a given
node. The function GET is used since the required nodes are
stored as the value of the property which is the name of the
relation on the property list of the given node. MATCH has been
modified so that all calls to GET are substituted by calls to a
new function GET-NODES. The function GET-NODES is similar to GET
since it also takes a node and a relation as arguments but it
differs in that it also considers the alternate path definition
(if it exists) for that relation. If there is no path definition
for a relation, then GET-NODES is equivalent to GET. Otherwise,
it returns all nodes that have the specified path to or from the
node in question depending on whether the relation is ascending
or descending. In order to do this, it makes use of the key

function PATHGET.

PATHGET takes as arguments a single node and a path and
returns the set of nodes that can reached by traversing the given
path starting at the original node. While traversing the paths,
the function takes into account the syntax for paths given in
section [3]. 1In order to ensure that unasserted nodes are not
matched, PATHGET makes use of the function TOP? while traversing

paths. Whenever PATHGET encounters an ascending relation (i.e.
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whenever PATHGET is required to find all nodes that can be
reached from the current nodeset NODE by following an ascending
relation), it returns only nodes that satisfy the TOP?
requirement. This way no unasserted nodes can be matched (figure
6.5). An exception to this is made for variable nodes in the
nodeset NODE. Here, tﬁe system is allowed to retfieve nodes
other than top-level nodes. This is done to allow matching of
nodes representing possible antecedents, consequents etc. of a

rule node.

When GET-NODES is given a node and relation and asked to
find all nodes having that relation to the given node, it
operates in the following way. After verifying that the relation
is not an auxiliary one, it checks to see if there is an
alternate path definition for that relation. As mentionedgn“
before, if it does not find one, the result is the same as
calling GET. Otherwise GET-NODES calls on PATHGET to find all

nodes that can be reached by traversing the specified path

starting at the given node.

At this point it should be mentioned that while a reasonable
amount of error-checking is done on the syntax of the paths (see
function VALID-PATH), the system cannot detect all errors. Thus
if the user is not getting the results he expected, it would be
beneficial to trace the function PATHGET (and the function

LENGTH-PATH if the exception feature is being used).

A documented listing of all the new functions that have been
added to SNePS in order to implement path-based inference can be

found in the Appendix.
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6. SOME ILLUSTRATIVE EXAMPLES

In this section, several examples of path-based inference
will be presented, some of which are used to illustrate the use
of the extensive syntax and others which are used ﬁo illustrate
the many advantages that path-based inference has over node-based
inference. In many.of the éxamples, the arc labeis are more
"meaningful” then they normally would Dbe. This was done to avoid
repeated use of domain and range restriction since they were not
the primary features being illustrated. For example, an arc
labelled "intelligent" is substituted for the case frame
(HAVE-PROP x ?ROP intelligent) since the latter would call for
domain restriction. The change has been made for the sake of

convenience and in no way affects the validity of the examples.

Figure (6.1) is an example that illustrates the domain
restriction feature. The rule that is being expressed here is

that "A brother is a male sibling".
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$%*:$5$$$ (DEF-PATH BROTHER-OF (DOMAIN-RESTRICT (GENDER MALE) SIBLING-OF))

Figure (6.2) is an example that illustrates the range

(BROTHER-OF DEFINED ALTERNATELY AS PATH (DOMAIN-RESTRICT. (G
ENDER MALE) SIBLING-OF))

(BROTHER-OF- DEFINED ALTERNATELY AS PATH (RANGE-RESTRICT SI
BLING-OF- (GENDER MALE)))

(DEFINED)

29 MSECS

$*:$$$$$ (BUILD SIBLING-OF TOM NAME BILL GENDER MALE)
(M1)
38 MSECS

$%:$$$%$$ (BUILD SIBLING-OF TOM NAME NANCY GENDER FEMALE)
(M2) ' :
38 MSECS

$*:$$$$% (BUILD SIBLING-OF TOM NAME JOHN GENDER MALE)
(M3)
38 MSECS

$*:$$$$$ (BUILD NAME ROBERT GENDER MALE)
-(M4)
29 MSECS

$%:$$$$$ (DEDUCE BROTHER-OF TOM NAME %X)

WE KNOW

(T61 (:SVAR (Q60 (:VAR (T)) (:VAL (JOHN)))
(NAME (Q60 (:VAR (T)) (:VAL (JOHN))))
(BROTHER-OF (TOM)))

)

WE KNOW

(T61 (:SVAR (Q60 (:VAR (T)) (:VAL (BILL))))
(NAME (Q60 (:VAR (T)) (:VAL (BILL))))
(BROTHER-OF (TOM)))

(M5 M6)

ugu MSECS

$*:$$$$$ (DUMP *NODES)

(M6 (NAME (JOHN)) (BROTHER-OF (TOM)))

(M5 (NAME (BILL)) (BROTHER-OF (TOM)))

(X (:VAL (Q60)))

(ROBERT (NAME- (M4)))

(M4 (GENDER (MALE)) (NAME (ROBERT)))

(JOHN (NAME- (M6 M3)))

(M3 (GENDER (MALE)) (NAME (JOHN)) (SIBLING-OF (TOM)))
(NANCY (NAME- (M2)))

(FEMALE (GENDER- (M2)))

(M2 (GENDER (FEMALE)) (NAME (NANCY)) (SIBLING-OF (TOM)))
(TOM (SIBLING-OF- (M3 M2 M1)) (BROTHER-OF- (M6 M5)))
(BILL (NAME- (M5 M1)))

(MALE (GENDER- (M4 M3 M1)))

(M1 (GENDER (MALE)) (NAME (BILL)) (SIBLING-OF (TOM)))

Fiagure 6.1
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restriction feature. We use the case-frame (HAS-PARENT
HAS-PARENT NAME) to indicate that the person represented by the
node at the terminal end of the NAME arc has as parents the
people represented by the nodes at the terminal ends of the
HAS-PARENT arcs. We then use range-restriction to express the
rule that a father is a male parent. The system can then infer

that in the example of figure (6.2), Tommy has Tom as a father.
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The relation "sibling" is "almost" transitive since if x is

$%:35$$$ (DEF-PATH HAS-FATHER (RANGE-RESTRICT HAS-PARENT
$%:$53$93 ( (COMPOSE MEMBER- CLASS) MALES)))

(HAS-FATHER DEFINED ALTERNATELY AS PATH (RANGE-RESTRICT HAS
-PARENT ((COMPOSE MEMBER- CLASS) MALES)))

(HAS-FATHER- DEFINED ALTERNATELY AS PATH (DOMAIN-RESTRICT (
(COMPUSE MEMBER- CLASS) MALES) HAS-PARENT-))

(DEFINED)

33 MSECS

$%:$$$$$ (BUILD MEMBER TOM CLASS MALES)
(M1)
29 MSECS

$*:$5$$$ (BUILD MEMBER MARY CLASS FEMALES)
(M2)
29 MSECS

$#:$$$$$ (BUILD HAS-PARENT TOM HAS-PARENT MARY NAME TOMMY)
(M3)
37 MSECS

$*:$$$$$ (DEDUCE NAME TOMMY HAS-FATHER %X)

WE KNOW
(T61 (:SVAR (Q60 (:VAR (T)) (:VAL (TOM))))
 (HAS-FATHER (Q60 (:VAR (T)) (:VAL (TOM))))
(NAME (TOMMY)))

(M4)
290 MSECS

$*%:$$$3$ (DUMP *NODES)

(M4 (HAS-FATHER (TOM)) (NAME (TOMMY)))

(X (:VAL (Q60)))

(TOMMY (NAME- (M4 M3)))

(M3 (NAME (TOMMY)) (HAS-PARENT (TOM MARY)))
(MARY (MEMBER- (M2)) (HAS-PARENT- (M3)))
(FEMALES (CLASS- (M2)))

(M2 (CLASS (FEMALES)) (MEMBER (MARY)))

(TOM (MEMBER- (M1)) (HAS-PARENT- (M3)) (HAS-FATHER- (M4)))
(MALES (CLASS- (M1)))

(M1 (CLASS (MALES)) (MEMBER (TOM)))

(DUMPED)
7A MSQF(S

Figure 6.2

example to show use of range-restriction
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a sibling of y and y is a sibling of z, x is a sibling of z. The
qualification "almost" is used since "sibling™ is not reflexive.
The example in figure (6.3) was originally chosen to jllustrate
the irreflexive restriction feature of the syntax. Originally,
the author envisioned a (SIBLING SIBLING) case-frame to denote
that the nodes at the terminal ends of the SIBLING—arcs were
siblings. An alternate path definition for sibling would be
given as follows:-

(DEF-PATH SIBLING (IRREFLEXIVE-RESTRICT (COMPOSE

SIBLING (KSTAR (COMPOSE SIBLING- SIBLING)))))

In attempting to infer a node which has the relation SIBLING to
another node, it is necessary to select an assertion node and
starting there follow the alternate path given above to see which
nodes can be reached. Clearly the only nodes that can be found
by following this path are base nodes. Thefefore there is never
the possibility of reaching the original node and thus the
"IRREFLEXIVE-RESTRICT" used in the path definition becomes
redundant. But we are still jeft with the undesirable
possibility of inferring a node representing the assertion that

some person is a sibling of himself.
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This particular problem was solved using the relative

$*:$$$$$ (DEF-PATH SIBLING2 (RELATIVE-COMPLEMENT (COMPOSE SIBLING2
$*:5535%% (KSTAR (COMPOSE SIBLING1- SIBLING2))) SIBLING1))

(SIBLING2 DEFINED ALTERNATELY AS PATH (RELATIVE-COMPLEMENT
(COMPU?E SIBLING2 (KSTAR (COMPOSE SIBLING1- SIBLING2))) SIB
LING1)

(SIBLING2- DEFINED ALTERNATELY AS PATH (RELATIVE-COMPLEMENT
(COMPUSE (KSTAR (COMPOSE SIBLING2- SIBLING1)) SIBLING2-) S

IBLING1-))

(DEFINED)

45 MSECS

$%:$$$$$ (BUILD SIBLING1 JANE SIBLING2 TOM)
(M1)
29 MSECS

$*:$$$$$ (BUILD SIBLING1 TOM SIBLING2 BILL)
(M2) '
29 MSECS

$%:$3$$$ (BUILD SIBLING1 BILL SIBLING2 JANE)
(M3)
28 MSECS

$*:5883%3 tDEDUCE SIBLING1 JANE SIBLING2 %X)

WE KNOW

(T61 (:SVAR (Q60 (:VAR (T)) (:VAL (BILL))))
(SIBLING2 (Q60 (:VAR (T)) (:VAL (BILL))))
(SIBLING1 (JANE)))

WE KNOW ‘
(T61 (:SVAR (Q60 (:VAR (T)) (:VAL (TOM))))

(SIBLING2 (Q60 (:VAR (T)) (:VAL (TOM))))
(SIBLING1 (JANE)))

(M1 M4)
459 MSECS

$*:3$$$$$ (DUMP *NODES)

(M4 (SIBLING2 (BILL)) (SIBLING1 (JANE)))

(X (:VAL (Q60)))

(M3 (SIBLING2 (JANE)) (SIBLING1 (BILL)))
(BILL (SIBLING2- (M4 M2)) (SIBLING1- (M3)))
(M2 (SIBLING2 (BILL)) (SIBLING1 (TOM)))
(JANE (SIBLING1- (M4 M1)) (SIBLING2- (M3)))
(TOM (SIBLING2- (M1)) (SIBLING1- (M2)))

(M1 (SIBLING2 (TOM)) (SIBLING1 (JANE)))

Figure 6.3

USE OF RELATIVE COMPLEMENT TO IMPLEMENT IRREFLEXIVITY



complement feature of the syntax as jllustrated in figure (6.3).
Here we use the case frame (SIBLING1 SIBLING2) to indicate that
the nodes at the terminal ends of these arcs are siblings. We
give an alternate path definition for the relation SIBLING2 which
represents thé rule.that starting at node x, a SIBLING2 arc can
be inferred to any node which has the path of arcs (COMPOSE
SIBLING2 (KSTAR SIBLING1- SIBLING2)) as long as that node does
not already have the relation SIBLING1 from x to itself

(indicating irreflexivity).

A more general solution to the problem described above is to
allow the path-name to be a path itself. Hitherto we have stated
that a path-name must be a single ascending or descending
relation. Consider a path definition of the form

(DEF-PATH (Sibling- Sibling) (Irreflexive-restrict

(Kstar (Compose Sibling- Sibling))))
MATCH would then have to be modified to accept a path as a
path-name in an alternate path definition. Furthermore, whenever
a node y can be found by following the defining-path from a node
X, a node would have to be asserted with arc-names corresponding
to those in the path-name and terminal nodes corresponding to x,
y and any other intermediary nodes that were found. We could now
use the path-definition given above to find all pairs of

siblings. Further discussion of this can be found in [1].

Figure (6.4) is an implementation of the penguin example
which is mentioned in [1]. It has been chosen since it clearly
illustrates the use of the exception principle which in the

syntax is represented as (EXCEPTION P Q). The need for the
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exception principle arises when we specify a.general rﬁle but
later want to add instances of exceptions to the rule. A
hierarchy consisting of birds and penguins along with their
properties is first built into the network. A rule for
inheritance of properties in this hierarchy is then stated which
can be summarized as "If there is a path from node x to a
property of any node that x is a subclass of, then x inherits
that property- unless there is a path of equal or shorter length
from node x to the opposite property". This concept is
impossible to represent using only node-based inference. At best

you could assert a node representing the exception but this would

‘be inconsistent with what the rule is saying. Returning to the

example of figure (6.4), the test cases are MALE-FLYING-PENGUINS,
EMPEROR-PENGUINS and CANARIES since we do not explicitly
associate any property with them. The example illustrates that
MALE-FLYING-PENGUINS and CANARIES correctly inherit the property
"CAN-FLY" and that EMPEROR-PENGUINS inherit the property

"CANNOT-FLY™",.
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The example in figure (6.5) has been chosen to illustrate

T$%:$$$$$ (DEF-PATH HAVE-PROP (EXCEPTION (OR HAVE-PROP

$*:5588% (COMPOSE PROP PROP- HAVE-PROP
$*:333889 (KSTAR (COMPOSE SUP- SUB))))
$X:55559 (COMPOSE PROP OPA- OPB PROP-
$*:55559 HAVE-PROP (KSTAR (COMPOSE SUP-
$¥:558%9 “ SUB)))))

(HAVE-PROP DEFINED ALTERNATELY AS PATH (EXCEPTION (OR HAVE-
PROP (COMPOSE PROP PROP- HAVE-PROP (KSTAR (COMPOSE SUP- SUB
)))) (COMPOSE PROP OPA- OPB PROP- HAVE-PROP (KSTAR (COMPOSE
SUP- SuUB)))))

(HAVE-PROP- DEFINED ALTERNATELY AS PATH (EXCEPTION (OR HAVE
~-PROP- (COMPOSE (KSTAR (COMPOSE SUB- SUP)) HAVE-PROP- PROP

PROP-)) (COMPOSE (KSTAR (COMPOSE SUB- SUP)) HAVE-PROP- PROP
OPB- OPA PROP-)))

(DEFINED) ‘

82 MSECS

$*:$5$$$ (BUILD SUB MALE-FLYING-PENGUINS SUP FLYING-PENGUINS)
(M1)
33 .MSECS

?*:$$$$$ (BUILD SUB FLYING-PENGUINS SUP PENGUINS)
M2)
30 MSECS

%*:$$$$$ (BUILD SUB EMPEROR-PENGUINS SUP PENGUINS)
M3)
33 MSECS

$*:?$$$$ (BUILD SUB PENGUINS SUP BIRDS)
(M4
30 MSECS

$%:$$$$$ (BUILD SUB CANARIES SUP BIRDS)
(M5)
28 MSECS

$*:$$$$$ (BUILD HAVE-PROP BIRDS PROP CAN-FLY)
(M6)
29 MSECS

$*:$$$$$ (BUILD HAVE-PROP PENGUINS PROP CANNOT-FLY)

(MT7)
29 MSECS

Figure 6.4
EXCEPTION FEATURE
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%:4565% (BUILD HAVE-PROP FLYING-PENGUINS PROP CAN=FLY)
M8
29 MSECS

~

$%:$$$$$ (BUILD OPA CANNOT-FLY OPB CAN-FLY)
(M9)
29 MSECS

$*:$5$$$ (BUILD OPB CANNOT-FLY OPA CAN-FLY)

(M10)
31 MSECS

$%:$$$%$ (DEDUCE HAVE-PROP %X PROP CAN-FLY)

WE KNOW

(T61

(PROr (CAN-FLY))

(:SVAR (Q60 (:VAR (T)) (:VAL (MALE-FLYING-PENGUINS))))
(HAVE-PROP (Q60 (:VAR (T)) (:VAL (MALE-FLYING-PENGUINS))))
) .

WE KNOW

(T61 (PROP (CAN-FLY))
(:SVAR (Q60 (:VAR (T)) (:VAL (CANARIES))))
(HAVE-PROP (Q60 (:VAR (T)) (:VAL (CANARIES)))))

WE KNOW

(T61 (PROP (CAN-FLY))
(:SVAR (Q60 (:VAR (T)) (:VAL (BIRDS))))
(HAVE-PROP (Q60 (:VAR (T)) (:VAL (BIRDS)))))

WE KNOW
(T61

(PROP (CAN-FLY))

(:SVAR (Q60 (:VAR (T)) (:VAL (FLYING-PENGUINS))))
(HAVE-PROP (Q60 (:VAR (T)) (:VAL (FLYING-PENGUINS)))))

WE KNOW
(T61

(PROP (CAN-FLY))

(:SVAR (Q60 (:VAR (T)) (:VAL (MALE-FLYING-PENGUINS))))
(HAVE-PROP (Q60 (:VAR (T)) (:VAL (MALE-FLYING-PENGUINS))))

)

WE KNOW

(T61 (PROP (CAN-FLY))
(:SVAR (Q60 (:VAR (T)) (:VAL (CANARIES))))
(HAVE-PROP (Q60 (:VAR (T)) (:VAL (CANARIES)))))

WE KNOW
(T61

(PROP (CAN-FLY)) '

(:SVAR (Q60 (:VAR (T)) (:VAL (FLYING-PENGUINS))))

(HAVE-PROP (Q60 (:VAR (T)) (:VAL (FLYING-PENGUINS)))))

Figufe G- Y
Contad -




SOME ILLUSTRATIVE EXAMPLES _Page 28

WE KNOW

(T61 (PROP (CAN-FLY))
(:SVAR (Q60 (:VAR (T)) (:VAL (BIRDS))))
(HAVE-PROP (Q60 (:VAR (T)) (:VAL (BIRDS)))))

(M6 M8 M11 M12)
2869 MSECS

$*:$$$$$ (DEDUCE HAVE-PROP %Y PROP CANNOT-FLY)

WE KNOW
(T66

(PROY (CANNOT-FLY))

(:SVAR (Q65 (:VAR (T)) (:VAL (EMPEROR-PENGUINS))))
(HAVE-PROP (Q65 (:VAR (T)) (:VAL (EMPEROR-PENGUINS)))))

WE KNOW

(T66 (PROP (CANNOT-FLY))
(:SVAR (Q65 (:VAR (T)) (:VAL (PENGUINS))))
(HAVE-PROP (Q65 (:VAR (T)) (:VAL (PENGUINS)))))

(M7 M13)
793 MSECS

$*%:3$5$$$ (DUMP *NODES)

~ (M13 (PROP (CANNOT-FLY)) (HAVE-PROP (EMPEROR-PENGUINS)))
(Y (:VAL (Q65)))

(M12 (PROP (CAN-FLY)) (HAVE-PROP (MALE-FLYING-PENGUINS)))
(M11 (PROP (CAN-FLY)) (HAVE-PROP (CANARIES)))

(X (:VAL (Q60)))

(M10 (OPA (CAN-FLY)) (OPB (CANNOT-FLY)))

(M9 (OPB (CAN-FLY)) (OPA (CANNOT-FLY)))

(M8 (PROP (CAN-FLY)) (HAVE-PROP (FLYING-PENGUINS)))
(CANNOT-FLY (PROP- (M13 M7)) (OPA- (M9)) (OPB- (M10)))
(M7 (PROP (CANNOT-FLY)) (HAVE-PROP (PENGUINS)))

(CAN-FLY (PROP- (M12 M11 M8 M6)) (OPB- (M9)) (OPA- (M10)))
(M6 (PROP (CAN-FLY)) (HAVE-PROP (BIRDS)))

(CANARIES (SUB- (M5)) (HAVE-PROP- (M11)))

(M5 (SUP (BIRDS)) (SUB (CANARIES)))

(BIRDS (SUP- (M5 M4)) (HAVE-PROP- (M6)))

(M4 (SUP (BIRDS)) (SUB (PENGUINS)))

(EMPEROR-PENGUINS (SUB- (M3)) (HAVE-PROP- (M13)))

(M3 (SUP (PENGUINS)) (SUB (EMPEROR-PENGUINS)))

(PENGUINS (SUP- (M3 M2)) (SUB- (M4)) (HAVE-PROP- (MT7)))
(M2 (SUP (PENGUINS)) (SUB (FLYING-PENGUINS)))
(MALE-FLYING-PENGUINS (SUB- (M1)) (HAVE-PROP- (M12)))
(FLYING-PENGUINS (SUP- (M1)) (SUB- (M2)) (HAVE-PROP- (M8)))
(M1 (SUP (FLYING-PENGUINS)) (SUB (MALE-FLYING-PENGUINS)))
(DUMPED)

Figure 6.4 contd.
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two features. One of these is the AND feature of the syntax
(representiné intersection of paths) and the other is that only
nodes that are asserted may be returned by MATCH. In figure
(6.5) a node (M5) is included which meets the "AND" requirement
but does not meet the requirement that it be asserted. As

expected, it is not returned as the result of the DEDUCE command.

Figure (6.6) is the implementation of the Maureen Gelt
example discussed in [1] and shows how path-based inference can
be used to infer that two intensional concepts are extensionally

equivalent. We are given two sets of facts about two individuals

| Dr. Smith and John Smith and later told that Dr. Smith is John

Smith. It is then the case that anything true about Dr. Smith
is true about John Smith and vice versa. To relate the two sets
of information, the case frame (EQUIV EQUIV) is used and paths
are re-defined to include the segment (EQUIV- EQUIV) so that all
information pertaining to Dr. Smith can be inferred to be true
about John Smith and vice versa. Using node-based inference
only, this would be at least very difficult to implement if not
impossible since it involves building rules with antecedents that
quantify over higher-order case-frames such as (MEMBER CLASS).

Further discussion of this can be found in [1].



) ) s
ol i sillie [ "] - s (] ] (] Sy sty il e slnny vy ~ P—"

SOME ILLUSTRATIVE EXAMPLES Page

~§%:$$$$$ (DEFINE SUCCEED SUCCEED- HARD-WORKING HARD-WORKING-

$%:$$$$$ INTELLIGENT INTELLIGENT-)

(SUCCEED SUCCEED-)
(HARD-WORKING HARD-WORKING-)
(INTELLIGENT INTELLIGENT-)

(DEFINED)
24 MSECS

$%:$$$$$ (DEF-PATH SUCCEED (AND HARD-WORKING INTELLIGENT))

(SUCCEED DEFINED ALTERNATELY AS PATH (AND HARD-WORKING INTE
LLIGENT))

(SUCCEED- DEFINED ALTERNATELY AS PATH (AND HARD-WORKING- IN

TELLIGENT-))
(DEFINED)
29 MSECS

$%:$$$$$ (BUILD HARD-WORKING TOM INTELLIGENT TOM)

(M1)
29 MSECS

$%:$$$$$ (BUILD INTELLIGENT MARY)
(M2)
20 MSECS

$%:$$$$$ (BUILD HARD-WORKING BILL)

(M3)
20 MSECS

$*:$$$$$ (BUILD INTELLIGENT MICHAEL HARD-WORKING MICHAEL)

(M%)
30 MSECS

$*:$$$$$ (BUILD MIN O MAX O

$%:$$$$$ ARG (BUILD INTELLIGENT ROBERT HARD-WORKING ROBERT))

(M6)
61 MSECS

$*:$3$$$ (DEDUCE SUCCEED %X)

Figure 6.5
"AND" and TOP-LEVEL NODE FEATURES

Ff%ure é) 5

39
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WE KNOW
(T61 (:SVAR (Q60 (:VAR (T)) (:VAL (MICHAEL))))
(SUCCEED (Q60 (:VAR (T)) (:VAL (MICHAEL)))))

WE KNOW
(T61 (:SVAR (Q60 (:VAR (T)) (:VAL (TOM))))
(SUCCEED (Q60 (:VAR (T)) (:VAL (TOM)))))

(M7 M8)
488 MSECS

$%:$$$$$ (DUMP *NODES)

(M8 (SUCCEED (MICHAEL)))

(M7 (SUCCEED (TOM)))

(X (:VAL (Q60)))

(M6 (ARG (M5)) (MAX (0)) (MIN (0)))

( ROBERT (HARD-WORKING- (M5)) (INTELLIGENT- (M5)))

(M5 ( HARD-WORKING (ROBERT)) (INTELLIGENT (ROBERT)) (ARG- (M

6))) _

(MICHAEL (HARD-WORKING- (M4)) (INTELLIGENT- (M4)) (SUCCEED-
(M8))) v ’
(M4 (HARD-WORKING (MICHAEL)) (INTELLIGENT (MICHAEL)))

(BILL (HARD-WORKING- (M3)))

(M3 (HARD-WORKING (BILL)))

(MARY (INTELLIGENT- (M2)))

(M2 (INTELLIGENT (MARY)))

(TOM (INTELLIGENT- (M1)) (HARD-WORKING- (M1)) (SUCCEED- (M7

)))
(M1 (INTELLIGENT (TOM)) (HARD-WORKING (TOM)))

(DUMPED)
119 MSECS

Figure 6.5 contd.
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Finally we present an example figure (6.7) which illustrates

TT$%:$$5%$ (DEF-PATH AGENT (COMPOSE AGENT (KSTAR (COMPOSE EQUIV- EQUIV)))
$%:535%9% MEMBER (COMPOSE MEMBER (KSTAR (COMPOSE EQUIV- EQUIV)))
$%:$53%9% HAS-PROP (COMPOSE HAS-PROP (KSTAR (COMPOSE EQUIV- EQUIV))))

(AGENT DEFINED ALTERNATELY AS PATH (COMPOSE AGENT (KSTAR (C
OMPOSE EQUIV- EQUIV))))

(AGENT- DEFINED ALTERNATELY AS PATH (COMPOSE (KSTAR (COMPOS
E EQUIV- EQUIV)) AGENT-))

(MEMBER DEFINED ALTERNATELY AS PATH (COMPOSE MEMBER (KSTAR
(COMPUSE EQUIV- EQUIV))))

(MEMBER- DEFINED ALTERNATELY AS PATH (COMPOSE (KSTAR (COMPO
SE EQUIV- EQUIV)) MEMBER-))

(HAS-PROP DEFINED ALTERNATELY AS PATH (COMPOSE HAS-PROP (KS
TAR (COMPOSE EQUIV- EQUIV))))

(HAS-PROP- DEFINED ALTERNATELY AS PATH (COMPOSE (KSTAR (COM
POSE EQUIV-= EQUIV)) HAS-PROP-))

(DEFINED)

97 MSECS

$%:$$$$$ (BUILD MEMBER DR.SMITH CLASS SURGEONS)
(M1)
32 MSECS

?*:§$$$$ (BUILD OBJ MAUREEN-GELT VERB SAVED AGENT DR.SMITH)
M2
39 MSECS

$*%:$$$$$ (BUILD HAS-PROP JOHN-SMITH PROP FIVE-FEET-SIX-INCHES-TALL
$*:58588 PROP BLACK-HAIR)

(M3)
40 MSECS
$*:$$$$$ (BUILD EQUIV DR.SMITH EQUIV JOHN-SMITH)

(M4)
31 MSECS

d4%.4cd¢¢ (NENICE HAQK_PRNP NR IMTTH PRNP 7Y

Figure 6.6

EXTENSIONAL EQUIVALENCE OF INTENSIONAL CONCEPTS
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WE KNOW

(T61

(:SVAR (Q60 (:VAR (T)) (:VAL (FIVE-FEET-SIX-INCHES-TALL)))
) -

(PROP (Q60 (:VAR (T)) (:VAL (FIVE-FEET-SIX-INCHES-TALL))))
"(HAS-PROP (DR.SMITH)))

WE KNOW '
(T61 (:SVAR (Q60 (:VAR (T)) (:VAL (BLACK-HAIR))))
(PROP (Q60 (:VAR (T)) (:VAL (BLACK-HAIR))))

(HAS-PROP (DR.SMITH)))

(M5 M6)
478 MSECS

$*:$5$$$ (DEDUCE OBJ MAUREEN-GELT VERB SAVED AGENT %Y)

WE KNOW
(T66 (:SVAR (Q65 (:VAR (T)) (:VAL (JOHN-SMITH))))
(AGENT (Q65 (:VAR (T)) (:VAL (JOHN=SMITH))))
(VERB (SAVED))
(0OBJ (MAUREEN-GELT)))

WE KNOW

(T66 (:SVAR (Q65 (:VAR (T)) (:VAL (DR.SMITH))))
(AGENT (Q65 (:VAR (T)) (:VAL (DR.SMITH))))
(VERB (SAVED))
(OBJ (MAUREEN-GELT)))

(M2 MT)

540 MSECS

$*:$$$5% (DEDUCE MEMBER JOHN-SMITH CLASS SURGEONS)
WE KNOW

(T70 (CLASS (SURGEONS)) (MEMBER (JOHN-SMITH)))

(M8)
260 MSECS
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$*:$5$$$ (DUMP *NODES)
(M8 (CLASS (SURGEONS)) (MEMBER (JOHN-SMITH)))
(M7 (AGENT (JOHN-SMITH)) (VERB (SAVED)) (OBJ (MAUREEN-GELT)
))
(Y (:VAL (Q65)))
(M6 (PROP (FIVE-FEET-SIX-INCHES-TALL)) (HAS-PROP (DR.SMITH)
))
(M5 (PROP (BLACK-HAIR)) (HAS-PROP (DR.SMITH)))
(X (:VAL (Q60)))
(M4 (EQUIV (DR.SMITH JOHN-SMITH)))
( JOHN-SMITH (HAS-PROP- (M3)) (EQUIV- (M4)) (AGENT- (M7)) (M
EMBER- (M8))) -
(FIVE-FEET-SIX-INCHES-TALL (PROP- (M6 M3)))
. (BLACK-HAIR (PROP- (M5 M3)))
(M3 (PROP (FIVE-FEET-SIX-INCHES-TALL BLACK-HAIR)) (HAS-PROP
(JOHN=SMITH)))
(MAUREEN-GELT (0BJ- (M7 M2)))
(SAVED (VERB- (M7 M2))) '
(M2 (AGENT (DR.SMITH)) (VERB (SAVED)) (OBJ (MAUREEN-GELT)))
(DR.SMITH (MEMBER- (M1)) (AGENT- (M2)) (EQUIV- (M4)) (HAS-P
ROP- (M6 M5))) :
(SURGEONS (CLASS- (M8 M1)))
(M1 (CLASS (SURGEONS)) (MEMBER (DR.SMITH)))
(DUMPED)
1018 MSECS

Figure 6.6 contd.
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the efficiency that path-based inference has over node-based
inference. A hierarchy of automobiles is built into the network
along with a node representing the fact that automobiles are
fuel-powered. A path-based rule is specified which states that
"if x is a subclass of y and y has the property z, then x also
has this property. We also build rule nodes (M8 M11 M14) which
when combined allow us to conclude that Harrys car has the
property of being fuel-powered. After going through a long chain
of set inclusions, we successfully infer (using path-based
inference) that the Dodge is fuel-powered. Compare the execution
time.of this deduction (348 msecs) to the execution time involved
in inferring that Harrys car is fuel—pbwered (3944 msecs). For
this last deduction, the system is forced to use the rule nodes
since Harrys car is not linked to the automobile hierarchy with
the use of the (SUB SUP) case frame. Clearly path-based

inference is more efficient and should be used whenever possible.
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$*:$$$$$ (DEF-PATH HAVE-PROP (COMPOSE HAVE-PROP (KSTAR (COMPOSE SUP- SUB))))

(HAVE-PROP DEFINED ALTERNATELY AS PATH (COMPOSE HAVE-PROP (
KSTAR (COMPOSE SUP- SUB))))

(HAVE-PROP- DEFINED ALTERNATELY AS PATH (COMPOSE (KSTAR (cCoO
MPOSE SUB- SUP)) HAVE-PROP-))

(DEFINED)

36 MSECS

%*:?$$$$ (BUILD SUB DODGE-AUTOMOBILES SUP CHRYSLER-AUTOMOBILES)
M1
31 MSECS

?*:§$$$$ (BUILD SUB CHRYSLER-AUTOMOBILES SUP AMERICAN-AUTOMOBILES)
M2
30 MSECS

$*:$3$%% (BUILD SUB AMERICAN-AUTOMOBILES SUP AUTOMOBILES)
(M3)
31 MSECS

?*:$$$$$ (BUILD HAVE-PROP AUTOMOBILES PROP FUEL-POWERED)
MY)
29 MSECS

$*:$$$$$ (BUILD MEMBER HARRYS-CAR CLASS MERCEDES)
(M5)
31 MSECS

$*¥:388$$ (BUILD AVB ($X)

$*:$555% ANT (BUILD MEMBER *X CLASS MERCEDES)

$*:5838% CQ (BUILD MEMBER *X CLASS GERMAN-AUTOMOBILES))
(M8)

110 MSECS

$*:$3$$$ (BUILD AVB ($X)

$*:8$3%%% ANT (BUILD MEMBER *X CLASS GERMAN-AUTOMOBILES)
$*¥:55333 CQ (BUILD MEMBER *X CLASS AUTOMOBILES))

(M11)

115 MSECS

$*:$3$$$ (BUILD AVB ($X)

$¥:838%% ANT (BUILD MEMBER *X CLASS AUTOMOBILES)
?*:$§$$$ CQ (BUILD HAVE-PROP *X PROP FUEL-POWERED))
M14

835 MSECS

Figure 6.7
EFFICIENCY OF PATH-BASED INFERENCE
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$*¥:$$$$%$ (DEDUCE HAVE-PROP DODGE-AUTOMOBILES PROP FUEL-POWERED)

WE KNOW

(T60 (PROP (FUEL-POWERED)) (HAVE-PROP (DODGE-AUTOMOBILES)))

(M15)
348 MSECS

$%*:$$$$$ (DEDUCE HAVE-PROP HARRYS-CAR PROP FUEL-POWERED)

SINCE

(M6 (CLASS (MERCEDES))

(:SVAR (V1 (:
(MEMBER (V1 (:VAR (T)) (:VAL (HARRYS-CAR)))))

WE INFER
(M7

VAR (T)) (:VAL (HARRYS-CAR))))

(CLASS (GERMAN-AUTOMOBILES))
(:SVAR (V1 (:VAR (T)) (:VAL (HARRYS-CAR)))) "
(MEMBER (V1 (:VAR (T)) (:VAL (HARRYS-CAR)))))

SINCE
(M9

(CLASS (GERMAN-AUTOMOBILES))
(:SVAR (V2 (:VAR (T)) (:VAL (HARRYS-CAR))))
(MEMBER (V2 (:VAR (T)) (:VAL (HARRYS-CAR)))))

WE INFER
(M10

(CLASS (AUTOMOBILES))
(:SVAR (V2 (:VAR (T)) (:VAL (HARRYS-CAR))))
(MEMBER (V2 (:VAR (T)) (:VAL (HARRYS-CAR)))))

SINCE
(M12

(CLASS (AUTOMOBILES)) o

(:SVAR (V3 (:VAR

(T)) (:VAL (HARRYS-CAR))))

(MEMBER (V3 (:VAR (T)) (:VAL (HARRYS-CAR)))))

WE INFER
(M13

(PROP (FUEL-POWERED) )

(:SVAR (V3 (:VAR
(HAVE-PROP (V3 ¢

(M16 M17 M18)
3944 MSECS

(T)) (:VAL (HARRYS-CAR))))
:VAR (T)) (:VAL (HARRYS-CAR)))))

Fl 3\) e () ‘_,
Covntd.

Page
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FF: (DUMP *NODES)

(M18 (PROP (FUEL-POWERED)) (HAVE-PROP (HARRYS-CAR)))

(M17 (CLASS (AUTOMOBILES)) (MEMBER (HARRYS-CAR)))

(M16 (CLASS (GERMAN-AUTOMOBILES)) (MEMBER (HARRYS-CAR)))

(M15 (PROP (FUEL-POWERED)) (HAVE-PROP (DODGE-AUTOMOBILES)))

(M14 (cQ (M13)) (ANT (M12)) (AVB (V3)))

(M13 (PROP (FUEL-POWERED)) (:SVAR (V3)) (HAVE-PROP (V3)) (C

Q- (M114)))

(M12 (CLASS (AUTOMOBILES)) (:SVAR (v3)) (MEMBER (V3)) (ANT-
(M14)))

(v3 (:VAR (T)) (MEMBER- (M12)) (HAVE-PROP- (M13)) (AVB- (M1

4)) (:VAL (HARRYS-CAR)))

(M11 (cQ (M10)) (ANT (M9)) (AVB (V2)))

(M10 (CLASS (AUTOMOBILES)) (:SVAR (V2)) (MEMBER (Vv2)) (cCQ-

(M11)))

(M9 (CLASS (GERMAN-AUTOMOBILES)) (:SVAR (v2)) (MEMBER (V2))
(ANT- (M11))) _

(V2 (:VAR (T)) (MEMBER- (M10 M9)) (AVB- (M11)) (:VAL (HARRY

S-CAR)))

(M8 (CQ (M7)) (ANT (M6)) (AVB (V1)))

( GERMAN-AUTOMOBILES (CLASS- (M16 M9 MT)))

(M7 (CLASS (GERMAN-AUTOMOBILES)) (:SVAR (V1)) (MEMBER (V1))
(cQ- (M8)))

(M? (CLASS (MERCEDES)) (:SVAR (V1)) (MEMBER (V1)) (ANT- (M8

))

(V1 (:VAR (T)) (MEMBER- (M7 M6)) (AVB- (M8)) (:VAL (HARRYS-
CAR)))

(X (:VAL (V3))) '

(HARRYS-CAR (MEMBER- (M17 M16 M5)) (HAVE-PROP- (M18)))

(MERCEDES (CLASS- (M6 M5)))

(M5 (CLASS (MERCEDES)) (MEMBER (HARRYS-CAR)))

(FUEL-POWERED (PROP- (M18 M15 M13 MU)))

(M4 (PROP (FUEL-POWERED)) (HAVE-PROP (AUTOMOBILES)))

(AUTOMOBILES (SUP- (M3)) (HAVE-PROP- (M4)) (CLASS- (M17 M12
M10)))

(M3 (SUP (AUTOMOBILES)) (SUB (AMERICAN-AUTOMOBILES)))

(AMERICAN-AUTOMOBILES (SUP- (M2)) (SUB- (M3)))

§?§ (SUP (AMERICAN-AUTOMOBILES)) (SUB (CHRYSLER-AUTOMOBILES

(DODGE-AUTOMOBILES (SUB- (M1)) (HAVE-PROP- (M15)))

(CHRYSLER-AUTOMOBILES (SUP- (M1)) (SUB- (M2)))

(M1 (SUP (CHRYSLER-AUTOMOBILES)) (SUB (DODGE-AUTOMOBILES)))

(DUMPED)
F\'%\er G-

Contd.
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7. CONCLUSIONS

A modification to SNePS has been described which consists of
adding path-based inference to a system which previously used
only node-based inference. A brief discussion of the two types
of inference is given followed by the formal syntax for defining
paths in SNePS. Section [4] discussed the theory involved in
combining the two types of inference and the signficance of the
fact that all the changes are restricted to the MATCH subsystem.
The section on implementation details appears for those who are
familiar with MATCH and the LISP functions that it is comprised
of. Finally a series of examples are presented which not only
illusﬁrate the use of the syntax, but also illustrate concepts
that currently cannot be implemented using node-based inference

alone.
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8. APPENDIX

DEF-PATH

THIS FUNCTION ENABLES THE USER TO SPECIFY ALTERNATE
PATH-DEFINITIONS FOR PREVIOUSLY DEFINED RELATIONS. IF AN
ALTERNATE PATH-DEFINITION ALREADY EXISTS FOR THAT RELATION, THE
USER WILL BE ASKED WHETHER HE WANTS IT REDEFINED AND ACTION IS

TAKEN ACCORDINGLY. THE SYNTAX FOR DEFINING PATHS APPEARS IN THE
SNEPS USER MANUAL.

DEF-PATH
VALUE ‘
(FLAMBDA ////L
(REPEAT (PATH-NAME PATH-SPEC)
BEGIN (IF (NULL ////L) (RETURN ' (DEFINED)))
(SETQ PATH-NAME (CAR ////L))
(IF (NULL (CDR ////L))
(RETURN (LIST 'PATH-DEFINITION 'EXPECTED)))
(SETQ PATH-SPEC (CADR ////L))
(IF (NOT (OR (DNREL PATH-NAME) (UPREL PATH-NAME)))
(RETURN (LIST PATH-NAME
'*NOT
'A
'DESCENDING
'OR
'ASCENDING
'"RELATION)))
(COND
((ISPATH PATH-NAME)
(PRINT (LIST PATH-NAME
' ALREADY
'*DEFINED
'AS
'PATH
(GET PATH-NAME 'PATHDEF)))
(PRINT (LIST 'DO
'YOU
"TWANT
'IT
'REDEFINED?
'TYPE
'YES
'OR
*NO))
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(IF (EQ (READ) 'NO) (RETURN (LIST ' COMMAND 'CANCELLED)))

T)
(T T))
(IF (NOT (VALID-PATH PATH-SPEC)) -
(RETURN (LIST 'INVALID 'PATH 'SPECIFIED)))
(PUT PATH-NAME 'PATHDEF PATH-SPEC)

(PUT (CONV PATH-NAME) 'PATHDEF (CONV-PATH PATH-SPEC))

(PRIN3 <> <>)
(PRINT (LIST PATH-NAME
'DEFINED
"ALTERNATELY
'AS
'"PATH
PATH-SPEC))
(PRIN3 <> <)
(PRINT (LIST (CONV PATH-NAME)
'DEFINED
'ALTERNATELY
YAS .
'"PATH
(GET (CONV PATH-NAME) '*PATHDEF)))
(SETQ ////L (CDDR ////L))))

PLIST

NIL

ISPATH

—— - ————

THIS FUNCTION RETRIEVES THE PATH-DEFINITION (IF SPECIFIED
EARLIER BY THE USER) WHICH IS ASSOCIATED WITH THE

- RELATION "ARC". IF THERE IS NO PATH-DEFINITION FOR THIS
RELATION, THEN IT RETURNS NIL.

ISPATH
VALUE

(LAMBDA (ARC) (GET ARC '"PATHDEF))

PLIST
NIL
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THIS FUNCTION TAKES A PATH AS AN ARGUMENT AND RETURNS T IF THE
PATH CONFORMS TO THE SYNTAX GIVEN IN THE SNEPS USER MANUAL. A
LIMITED AMOUNT OF ERROR-CHECKING IS DONE (E.G. CHECKING FOR
CORRECT NUMBER AND TYPE OF ARGUMENTS) BUT NO CHECKING IS

DONE TO TEST THE SEMANTIC CORRECTNESS OF THE PATH. VALID-PATH
RETURNS NIL IF ANY ERROR IS FOUND IN THE PATH-DEFINITION.

VALID-PATH
" VALUE
(LAMBDA (ARC-LIST)
(COND
((NULL ARC-LIST) NIL)
((ATOM ARC- LIST) (OR (DNREL ARC- LIST) (UPREL ARC- LIST)))
({EQ {CAR ARC-LIST) 'LOMPDSE)
(REPEAT (CPATH).
(SETQ CPATH (CDR ARC-LIST))
BEGIN (IF (NOT (VALID-PATH (CAR CPATH))) (RETURN NIL))
(SETQ CPATH (CDR CPATH))
(IF (NULL CPATH) (RETURN T))))
((EQ (CAR ARC-LIST) 'CONVERSE)
(COND ((NOT (EQ (CDDR ARC-LIST) NIL)) NIL)
(T (VALID-PATH (CADR ARC-LIST)))))
((OR (EQ (CAR ARC-LIST) 'OR) (EQ (CAR ARC-LIST) 'AND))
(REPEAT (PATH-LIST)
(SETQ PATH-LIST (CDR ARC-LIST))
(IF (NULL (CDR PATH-LIST)) (RETURN NIL))
BEGIN (IF (NOT (VALID-PATH (CAR PATH-LIST))) (RETURN NIL))
(SETQ PATH-LIST (CDR PATH-LIST))
(IF (NULL PATH-LIST) (RETURN T))))
((OR (EQ (CAR ARC-LIST) 'NOT)
(EQ (CAR ARC-LIST) 'IRREFLEXIVE-RESTRICT))
(COND ((NOT (EQ (CDDR ARC-LIST) NIL)) NIL)
(T (VALID-PATH (CADR ARC-LIST))))) :
((OR (EQ (CAR ARC-LIST) 'KSTAR) (EQ (CAR ARC-LIST) 'KPLUS))
(VALID-PATH (CADR ARC-LIST)))
((EQ (CAR ARC-LIST) 'RELATIVE-COMPLEMENT)
(AND (VALID-PATH (CADR ARC-LIST)) (VALID-PATH (RAC ARC-LIST))))
((EQ (CAR ARC-LIST) 'EXCEPTION)
(AND (VALID-PATH (CADR ARC-LIST)) (VALID-PATH (RAC ARC-LIST))))
((EQ (CAR ARC-LIST) 'DOMAIN-RESTRICT)
(AND (VALID-PATH (CAADR ARC-LIST))
(VALID-PATH (RAC ARC-LIST))
(ATOM (CADR (CADR ARC-LIST)))))
((EQ (CAR ARC-LIST) 'RANGE-RESTRICT)
(AND (VALID-PATH (CADR ARC-LIST))
(VALID-PATH (CAR (RAC ARC-LIST)))
(ATOM (CADR (RAC ARC-LIST)))))))

PLIST
NIL
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CONV-PATH

— s - ——— o — -

- e o s S o ———

THIS FUNCTION TAKES A-PATH (WHICH HAS BEEN DETERMINED TO BE VALID)
AS ARGUMENT AND RETURNS THE CONVERSE OF THAT PATH. THE CONVERSE OF A
NULL PATH IS ASSUMED TO BE NIL. THE USER SHOULD KEEP IN MIND THAT
THE CONVERSE OF PATHS IS NOT THE SAME AS COMPLEMENTS OF SETS- E.G.
THE CONVERSE OF THE PATH (OR P Q) WHERE P AND Q ARE PATHS IS

(OR (CONVERSE OF PATH P) (CONVERSE OF PATH Q)) AND NOT

(AND (CONVERSE OF PATH P) (CONVERSE OF PATH Q)).

CONV-PATH

VALUE
(LAMBDA (PATH)

(COND

((NULL PATH) NIL)
((ATOM PATH) (CONV PATH))
((EQ (CAR PATH) 'COMPOSE)

(CONS 'COMPOSE (MAPCAR (REVERSE (CDR PATH)) CONV-PATH)))
((EQ (CAR PATH) 'CONVERSE) :

(CONS 'CONVERSE (LIST (CONV-PATH (CADR PATH)))))
((OR (EQUAL (CAR PATH) 'KSTAR) (EQUAL (CAR PATH) 'KPLUS))

 (CONS (CAR PATH) (MAPCAR (REVERSE (CDR PATH)) CONV-PATH)))

((EQ (CAR PATH) 'OR) (CONS 'OR
o , ' (MAPCAR (CDR PATH)
: (LAMBDA (X) (CONV=PATH X)))))
{(EQ (CAR PATH) 'AND) (CONS 'AND
: : (MAFCAK (CDR PATH)
(LAMBDA (X) (CONV-PATH X)))))
((EQ (CAR PATH) 'NOT) (LIST 'NOT (CONV-PATH (CADR PATH))))
((EQ (CAR PATH) 'RELATIVE-COMPLEMENT) :
(LIST 'RELATIVE-COMPLEMENT
(CONV-PATH (CADR PATH))
_ (CONV-PATH (RAC PATH))))
((EQ (CAR PATH) 'IRREFLEXIVE-RESTRICT)
(LIST 'IRREFLEXIVE-RESTRICT (CONV-PATH (CADR PATH))))
((EQ (CAR PATH) 'EXCEPTION)
(LIST 'EXCEPTION (CONV-PATH (CADR PATH)) (CONV-PATH (RAC PATH))))
((EQ (CAR PATH) 'DOMAIN-RESTRICT)
(LIST 'RANGE-RESTRICT
(CONV-PATH (RAC PATH))
(LIST (CAADR PATH) (CADR (CADR PATH)))))
((EQ (CAR PATH) 'RANGE-RESTRICT)
(LIST 'DOMAIN-RESTRICT
(LIST (CAR (RAC PATH)) (CADR (RAC PATH)))
(CONV-PATH (CADR PATH))))))

PLIST

NIL
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INTERSCTN

- - o o o - ————

THIS FUNCTION COMPUTES THE INTERSECTION OF TWO SETS- THAT IS,
IT RETURNS L1 K L2.

INTERSCTN
VALUE -
(LAMBDA (L1 L2) (MAPCONC L1 (LAMBDA (X) (IF (MEMEQL X L2) (LIST X)))))

PLIST
NIL

COMPLEMENT

THIS FUNCTION COMPUTES SET DIFFERENCE. IT RETURNS THE SET
OF NODES WHICH REPRESENTS L1 - L2.

COMPLEMENT
VALUE |
(LAMBDA (L1 L2) _ '

(MAPCONC L1 (LAMBDA (X) (IF (NOT (MEMEQL X L2)) (LIST X)))))

PLIST
NIL

SHORTER-LENGTH

o - — —— - e = - o - —

GIVEN TWO LISTS OF ELEMENTS, EACH ELEMENT CONSISTING OF
(NODE-IDENTIFIER PATH- LENGTH), THIS FUNCTION RETURNS ANOTHER
LIST OF ELEMENTS SAY L3, SUCH THAT EVERY
NODE-IDENTIFIER IN L3 IS ALSO FOUND IN L1 AND L2 AND

. THAT IT IS ASSOCIATED WITH A SHORTER OR EQUAL PATH-LENGTH
IN THE LIST L2 THAN THE PATH-LENGTH WITH WHICH IT IS
ASSOCIATED IN THE LIST L1. THIS IS USED TO IMPLEMENT
THE EXCEPTION FEATURE OF THE SYNTAX. THIS FUNCTION
IS CALLED BY THE FUNCTION LENGTH-PATH.

SHORTER-LENGTH

VALUE
(LAMBDA (L1 L2)

(MAPCONC

L1

(LAMBDA (X)

(MAPCONC L2
(LAMBDA (Y)
(IF (AND (EQ (CAR X) (CAR Y))
(NOT (LESSP (CADR X) (CADR Y))))
(LIST X)))))))

~J

H
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LONGER-PATH-NODES

- o —— - o — = -
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This returns a list of elements each of the form (node identifier
path—length) such that every node-identifier in this list can

be found in either the list s1 or the list s2 with a shorter
path-length- i.e. can be reached from the original node by a
shorter path. These nodes will eventually be deleted from the

union of the lists s1 and sZ2.

LONGER-PATH-NODES

VALUE
(LAMBDA (S1 S2)
(MAPCONC
S1
(LAMBDA (X)
(MAPCONC
- s2
(LAMBDA (Y)
(IF (EQ (CAR X) (CAR Y))
(COND ((LESSP (CADR X) (CADR Y)) (LIST Y))
((LESSP (CADR Y) (CADR X)) (LIST X))
(T NIL)))I))
PLIST
NIL

COMPL-WITH-PLENGTH

————————— - —— - —— - ——

RETURNS THE SET OF NODES WHICH IS FOUND BY TAKING THE SET
DIFFERENCE OF S1 AND S2 I.E.- (S1 - S2). THE ONLY DIFFERENCE
BETWEEN THIS AND THE FUNCTION COMPLEMENT IS THAT THE ELEMENTS
HERE COMPRLSE OF A NODE-IDENTIFIER AND A PATH-LENGTH. THIS
FUNCTION IS CALLED BY THE FUNCTION LENGTH-PATH.
TWO ELEMENTS ARE CONSIDERED TO BE THE SAME IF THEIR
NODE-IDENTIFIER IS THE SAME (I.E. THE PATH-LENGTH IS

IGNORED).

COMPL-WITH-PLENGTH

VALUE

(LAMEBDA (S1 S2)

(MAPCONC S1
(LAMBDA (X) .
(IF (NOT (MEMEQL (CAR X)
(MAPCAR S2 (LAMBDA (Y) (CAR Y)))))
(LIST X)))))

PLIST
NIL



Page 46

APPENDIX

INT-NODES-WITH-PLENGTH

O o e e o o e e e e e - - - ——_—— -
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RETURNS THE SET OF NODES WHICH REPRESENTS THE INTERSECTION OF
THE SETS S1 AND S2. IF THE SAME NODE-IDENTIFIER IS FOUND IN

BOTH SETS S1 AND S2, THE ONE WITH THE SHORTER PATH-LENGTH
ASSOCIATED WITH IT IS INCLUDED. ‘

INT-NODES-WITH-PLENGTH
VALUE

“(LAMBDA (S1 S2)
(PROG (TEMP1 TEMP2)

(SETQ TEMP1 (LONGER-PATH-NODES S1 S2))
(SETQ TEMP2 (MAPCONC

S1

(LAMBDA (X)

(IF (MEMEQL (CAR X)
(MAPCAR S2 (LAMBDA (Y) (CAR Y))))
(LIST X)))))

(RETURN (COMPLEMENT TEMP2 TEMP1))))

PLIST
NIL

NIL
GET-NODES

GET-NODES TAKES A NODE AND A RELATION AS ARGUMENTS. IT CHECKS
TO SEE WHETHER THERE IS A PATH-DEFINITION FOR THAT RELATION.
IF THERE IS NOT, GET-NODES IS THE SAME AS GET. OTHERWISE,
GET-NODES CALLS ON THE FUNCTION PATH-GET TO RETRIEVE ALL NODES
THAT CAN BE REACHED BY FOLLOWING THE PATH ASSOCIATED WITH

THE GIVEN RELATION STARTING AT THE GIVEN NODE.

GET-NODES
VALUE
(LAMBDA (START-NODE RELN)
(COND
- ((AUXREL RELN) (GET START-NODE RELN))
((NOT (ISPATH RELN)) (GET START-NODE RELN))
(T (PATHGET START-NODE (GET RELN *PATHDEF)))))

PLIST
NIL
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FINDS AND RETURNS A SET OF NODES WHICH CAN BE REACHED BY FOLLOWING
A PATH "PATH"™ STARTING AT ANY NODE IN THE SET OF NODES "NODE".
"PATH" MUST CONFORM TO THE SYNTAX OF PATHS AS DESCRIBED IN THE
SNEPS USER MANUAL AND "NODE" MUST CONSIST OF A LIST OF
NODE-IDENTIFIERS. ONLY TOP-LEVEL NODES ARE RETURNED.

PATHGET
VALUE
(LAMBDA (NODE PATH)
(COND
((NULL NODE) NIL)
((ATOM NODE) (PATHGET (LIST NODE) PATH))
((NULL PATH) NODE)
((ATOM PATH)
(u
(COND
((VAR (CAR NODE)) (GET (CAR NODE) PATH))
((UPREL PATH) (MAPCONC (GET (CAR NODE) PATH)
(LAMBDA (X) (IF (TOP? X) (LIST X)))))
(T (GET (CAR NODE) PATH)))
(PATHGET (CDR NODE) PATH)))
((EQ (CAR PATH) 'COMPOSE)
(PROG NIL
(IF (CDDR PATH)
(RETURN (PATHGET (PATHGET NODE (CADR PATH))
(CONS 'COMPOSE (CDDR PATH)))))
(RETURN (PATHGET NODE (CADR PATH)))))
((EQ (CAR PATH) 'CONVERSE) (PATHGET NODE (CONV-PATH (CADR PATH))))
((EQ (CAR PATH) 'OR)
(REPEAT (PATH-LIST U-LIST)
(SETQ PATH-LIST (CDR PATH))
(SETQ U-LIST NIL)
BEGIN (SETQ U-LIST (U (PATHGET NODE (CAR PATH-LIST)) U-LIST))
(SETQ PATH-LIST (CDR PATH-LIST))
(IF (NULL PATH-LIST) (RETURN U-LIST))))
((EQ (CAR PATH) ‘'AND)
(REPEAT (PATH-LIST INT-LIST)
(SETQ PATH-LIST (CDDR PATH))
(SETQ INT-LIST (PATHGET NODE (CADR PATH)))
"BEGIN (SETQ INT-LIST (INTERSCTN (PATHGET NODE (CAR PATH- LIST))
INT-LIST))
(SETQ PATH-LIST (CDR PATH-LIST))
(IF (NULL PATH-LIST) (RETURN INT-LIST))))
((EQ (CAR PATH) 'NOT) (COMPLEMENT (GET 'NODES ':VAL)
(PATHGET NODE (CADR PATH))))
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((EQ (CAR PATH) 'RELATIVE-COMPLEMENT)
(COMPLEMENT (PATHGET NODE (CADR PATH)) (PATHGET NODE (RAC PATH))))
((EQ (CAR PATH) 'IRREFLEXIVE-RESTRICT)
(MAPCONC (PATHGET NODE (CADR PATH))
(LAMBDA (X) (IF (NOT (EQ X NODE)) (LIST X)))))
((EQ (CAR PATH) 'KSTAR) _
(REPEAT (FOUND)
_ (SETQ FOUND. NODE PATH (CADR PATH))
BEGIN (SETQ NODE (SETSUB (PATHGET NODE PATH) FOUND).
FOUND (APPEND NODE FOUND))
(IF (NULL NODE) (RETURN FOUND))))
((EQ (CAR PATH) 'KPLUS) :
(PATHGET (PATHGET NODE (CADR PATH)) (CONS 'KSTAR (CDR PATH))))
((EQ (CAR PATH) 'EXCEPTION)
{PROG (TEMP1 TEMP2)
(SETQ TEMP1 (LENGTH-PATH (MAPCAR NODE
(LAMBDA (X) (LIST X 0)))
(CADR PATH)))

(SETQ TEMP2 (LENGTH-PATH (MAPCAR NODE
(LAMBDA (X) (LIST X 0)))

(RAC PATH)))

(RETURN .
(COMPLEMENT
(MAPCAR TEMP1 (LAMBDA (X) (CAR X)))
(MAPGAR ( SHORTER-LENGTH TEMP1 TEMP2) (LAMBDA (Y) (CAR Y))))

)))
((EQ (CAR PATH) 'DOMAIN-RESTRICT)

(PROG (TEMP)
(SETQ TEMP (PATHGET (CADR (CADR PATH)) (CAADR PATH)))
(RETURN (MAPCONC (PATHGET NODE (RAC PATH))
(LAMBDA (X) (IF (MEMEQL X TEMP) (LIST X)))))
)) .
((EQ (CAR PATH) 'RANGE-RESTRICT)
(MAPCONC
(PATHGET NODE (CADR PATH))
(LAMBDA (X)
(IF (MEMEQL (CADR (RAC PATH)) (PATHGET X (CAR (RAC PATHE))))
(LIST X)))))))

PLIST
NIL
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THIS FUNCTION IS SIMILAR TO PATHGET IN THAT IT ALSO TAKES A SET
OF NODES AND A PATH AS ARGUMENTS AND RETURNS THE SET OF NODES
WHICH CAN BE FOUND BY FOLLOWING "PATH" STARTING FROM ANY NODE
IN "NODE". HOWEVER, IT NOT ONLY RETURNS A SET OF NODES, BUT
ALSO RETURNS THE PATH-LENGTH ASSOCIATED WITH REACHING EACH
RESULTANT NODE. THE PATH-LENGTH RETURNED IS THE SHORTEST
PATH-LENGTH AND IT IS ASSUMED THAT EVERY TIME AN ARC IS
TRAVERSED, THE PATH-LENGTH IS INCREMENTED BY 1. ALL ELEMENTS
'OF THE ARGUMENT LIST "NODE" MUST HAVE SOME PATH-LENGTH ASSOCIATED
WITH THEM WHEN THE FUNCTION IS CALLED (NORMALLY THIS WOULD BE
0). THIS FUNCTION IS USED TO IMPLEMENT THE EXCEPTION FEATURE OF
THE SYNTAX WHERE PATH-LENGTHS ARE ESSENTIAL. IT IS CALLED BY
THE FUNTION PATHGET (AND ITSELF).

LENGTH-PATH
VALUE
(LAMBDA (NODE PATH)
(COND
((NULL NODE) NIL) _
((ATOM NODE) (LENGTH-PATH (LIST NODE) PATH))
(C(NULL PATH) NODE)
((ATOM PATH)
(PROG (SET1 SET2)
(SETQ
SET1 (COND
((VAR (CAAR NODE))
(MAPCAR (GET (CAAR NODE) PATH)
(LAMBDA (X) (LIST X (ADD1 (CADAR NODE))))))
((UPREL PATH) ‘
(MAPCONC
(GET (CAAR NODE) PATH)
(LAMBDA (X)
(IF (TOP? X) s
(LIST (LIST X (ADD1 (CADAR NODE))))))))
(T (MAPCAR (GET (CAAR NODE) PATH)
) (LAMBDA (X) (LIST X (ADD1 (CADAR NODE))))))
)

(SETQ SET2 (LENGTH-PATH (CDR NODE) PATH))
(RETURN (COMPLEMENT (U SET1 SET2)
(LONGER-PATH-NODES SET1 SET2)))))
((EQ (CAR PATH) 'COMPOSE)
(PROG NIL
(IF (CDDR PATH)
(RETURN (LENGTH-PATH
(LENGTH-PATH NODE (CADR PATH))
(CONS 'COMPOSE (CDDR PATH)))))
(RETURN (LENGTH-PATH NODE {(CADR PATH)))))
((EQ (CAR PATH) 'CONVERSE) (LENGTH-PATH NODE
(CONV-PATH (CADR PATE))))
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((EQ (CAR PATH) 'OR)
(REPEAT (PATH-LIST U-LIST)
(SETQ PATH-LIST (CDR PATH))
(SETQ U-LIST NIL)
BEGIN (SETQ
U-LIST (PROG (SET1)
(SETQ SET1 (LENGTH-PATH NODE
(CAR PATH-LIST)))
(RETURN
(COMPLEMENT (U SET1 U-LIST)
(LONGER-PATH-NODES SET1 U-LIST))
)))

(SETQ PATH-LIST (CDR PATH-LIST))
(IF (NULL PATH-LIST) (RETURN U-LIST))))
((EQ (CAR PATH) 'AND)
(REPEAT (PATH-LIST INT-LIST)
(SETQ PATH-LIST (CDDR PATH))
(SETQ INT-LIST (LENGTH-PATH NODE (CADR PATH)))
BEGIN (SETQ INT-LIST (INT-NODES-WITH-PLENGTH
(LENGTH-PATH NODE (CAR PATH-LIST))
INT-LIST))
(SETQ PATH-LIST (CDR PATH-LIST))
(IF (NULL PATH-LIST) (RETURN INT-LIST))))
(CEQ (CAR PATH) 'NOT)
(COMPL-WITH-PLENGTH
(MAPCAR (GET 'NODES ':VAL) (LAMBDA (X) (LIST X 0)))
(LENGTH-PATH NODE (CADR PATH))))
((EQ (CAR PATH) 'RELATIVE-COMPLEMENT)
(COMPL-WITH-PLENGTH (LENGTH-PATH NODE (CADR PATH))
(LENGTH-PATH NODE (RAC PATH))))
((EG (CAR PATH) 'IRREFLEXIVE-RESTRICT)
(MAPCONC
(LENGTH-PATH NODE (CADR PATH))
(LAMBDA (X)
(IF (NOT (MEMEQL (CAR X) (MAPCAR NODE (LAMBDA (Y) (CAR Y¥)))))
(LIST X)))))
((EQ (CAR PATH) 'KSTAR)
(REPEAT (FOUND TEMP1)
(SETQ FOUND NODE PATH (CADR PATH))
BEGIN (SETQ TEMP1 (LENGTH-PATH NODE PATH))
(SETQ NODE (COMPL-WITH-PLENGTH TEMP1 FOUND))
(SETQ FOUND (COMPLEMENT (U TEMP1 FOUND)
(LONGER-PATH-NODES TEMP1 FOUND)))
(IF (NULL NODE) (RETURN FOUND))))
((EQ (CAR PATH) 'KPLUS)
(LENGTH-PATH (LENGTH-PATH NODE (CADR PATH))
(CONS 'KSTAR (CDR PATH))))
(CEQ (CAR PATH) 'EXCEPTION)
(PROG (TEMP1 TEMP2)
(SETQ TEMP1 (LENGTH-PATH (MAPCAR NODE
(LAMBDA (X)
(LIST (CAR X) O)))
(CADR PATH)))
(SETQ TEMP2 (LENGTH-PATH (MAPCAR NODE
(LAMBDA (X)
(LIST (CAR X) 0)))
(RAC PATH)))
(RETURN (COMPL-WITH-PLENGTH TEMP1
(SHORTER-LENGTH TEMP1 TEMP2)))))
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((EQ (CAR PATH) 'DOMAIN-RESTRICT)
(PROG (TEMP)
(SETQ TEMP (LENGTH-PATH (LIST (CADR (CADR PATH)) 0)
(CAADR PATH)))
(RETURN
(MAPCONC
(LENGTH-PATH (MAPCAR NODE (LAMBDA (Y) (LIST (CAR. Y) 0)))
(RAC PATH))
(LAMBDA (X)
(IF (MEMEQL (CAR X) (MAPCAR TEMP (LAMBDA (P) (CAR P))))
(LIST X)))))))
((EQ (CAR PATH) 'RANGE-RESTRICT)

(MAPCONC
(LENGTH-PATH (MAPCAR NODE (LAMBDA (Y) (LIST Y 0))) (CADR PATH))

(LAMBDA (X)
(IF (MEMEQL (CADR (RAC PATH))
(MAPCAR (LENGTH-PATH X (CAR (RAC PATH)))
(LAMBDA (P) (CAR P))))
(LIST X)))))))

PLIST
NIL
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