A MEW DESIGN FOR SNIP
THE SNePS INFERENCE PACKAGE

Richard G. Hull

April 1986

SNePG Technical Mote No. 1l

Department of Computer Science
State University of New York at Buffalo
226 Bell Hall

Buffalo, New York 14260

A New Design for SNIP: the SNePS Inference Package

Richard G. Hull

Department of Computer Science
University at Buffalo
State University of New York
226 Bell Hall
Buffalo, New York 14260

1. Abstract

In this paper we describe a new design and partial
implementation for GSNIP, the 1inference package for the
semantic network processing system SNePS [Shapiro 1979]. We
tegin with a brief description of the current version of
SNIP, along with some of its shortcomings, followed by a
description of the basic design elements of the new system.
Tris is followed by a more detailed look at the algorithms
used to implement the new design, and a look at the abstract

data types used in this implementation. We also describe how

ot
"

1is new design answers the above mentioned shortcomings of
its predecessor. Finally, some suggestions are made for

future enhancements to this latest implementation.

2. Introduction

The ENePS system has been in existence for several years,
during which time it has been extensively modified, updated,
extended, and simply corrected. It has gone through more
than one translation to a new version of Lisp on a new
machine. As the system became more complex, and

modifications <correspondingly harder, it was decided to

page 2

redesign the entire system from the bottonm up, using modern

techniques of data abstraction and software engineering.

The basic SNePS system consists of four major parts: (1)
the "core" SNePS functions for ©building and finding
information in the network, (2) a network pattern matcher,
(3) an inference package, SNIP, which handles both forward
and backward inference using rules which may be built 1into
the network by the user, and (4) a simulated multi-processing
system, MULTI, for controlling inference. At this writing,
bcth the core functions and fhe pattern matcher have been re-
written, along with the necessary abstract data types
[Morgado 198x, Saks 1985]. In addition, a temporary
interface has been provided between the new system and MULTI,
which i1s a stand-alone system. This paper describes the new
design and associated data types for SNIP. For purposes o¥f
distinction, we will refer to the current implementation of

SNIP as SNIP79, and the new one as SNIP34.

5. A Brief Description of SNIP79

The nodes of SNePS represent unique intensional concepts,

among which are included ©propositions. The rules for
reasoning with these propositions are also intensional
concepts, and consequently are also represented by network

nodes. For a description of the types of rules which can be

represented in SNeP§3, see [Shapiro & Rapaport, 1985}. When
inference is initiated, whether it be forward inference or
backward inference, MULTI processes are created to carry out

the necessary passing and tallying of network information, as
well as the calculations needed to determine when new
xnowledge can be inferred. Execution of these processes is
controlled by MULTI. There are processes for collecting

data, processes for initiating pattern matches, processes for

page 3

performing the actual rule calculations, and various
processes for switching variable contexts, filtering out
undesired information, and simply deciding which process to
activate next (see [Martins, McKay & Shapiro, 1981]). The
processes necessary %to carry out a given inference make up an
active comnection graph which contains processes for each of
the nodes, often more than one per node, and a few others not
associated with any particular node. Modifications to the
system have added various new processes, and the graph has

gotten more and more complicated.

In addition, we may have several different instances of
the same type of process working on various instances of the
same node, and sharing of information between these processes

is by no means guaranteed. So it was decided to simplify the

jon

x

esign, in order to eliminate bugs that have arisen and to

make future modifications easier.

4. The Basic Design of SNIP84

It is the intention of SNIP84 to treat inference as an
activation of the network itself, rather than a compilation
of the network into a distinct active —connection graph of
processes. T¢ this end a much smaller set of processes is
defined. SNIP84 processes are activations of nodes in the
network -- there is one process attached to each proposition
node. Thus, the types of processes required is limited to
the types of nodes found in the network. These include
gzeneral proposition nodes, rule nodes, and function nodes.
in addition, there are processes to represent the system user
-- prccesses which initiate the requested 1inference and
collect the results. (For any particular inference there will
be exactly one user process.) The node processes are attached

directly to the network nodes, and communicate with each

bage

other through ‘“channels" which run parallel to rule arcs or
between matched nodes. Following a somewhat object-oriented
style, the processes send and receive various messages, and
perform operations based solely on the information carried by

incoming messages and the information stored at the node
itself.

5. Message Types

There are four types of messages which will be sent
between node-processes. O0f <these, just the first two have

been implemented so far. They are:

REPORTS - messages containing substitutions which
represent instances wnich have been
determined %o be true in the network.
Reports also include whether a positive or
negative instance is known, the name of the
node sending the report, and the name of the
actual node in the network which represents

this instance.

Reports can be generated by forward
inference, and as responses tc requests

initiated by backward inference.

REQUESTS - messages containing desired substitutions, and
the necessary information to set up the
channels through which reports of these

instances can be sent.

STOP - a message telling a node that it should stop
working on finding and sending out instances of

itself, since they are no longer nreeded.

page 5

DONE - a message sent out by a node when it knows that it
has already sent out all of the instances of

itself that it possibly can.

6. Node Processes

In this section we describe the basic structure of each
node process used by SNIP84. As mentioned previously, there
are two major types of node processes: activations of (1)
general propositions and (2) rules. Each process has a set
of registers, which act as private memory and provide the
nechanism for message passing. In addition, each process has
associated with it a set of operations for dealing with the

messages 1t receives.
6.1 Registers:
(1) General proposition nodes:

NAME: - the name of the process template used to create

this process
NODE: - the node to which this process is attached
KNOWN-INSTANCES: - the collection of instances of this
node (both pcsitive and negative)

which are known to be true

REPORTS: - reports received (used for implementation of

message passing)

REQUESTS: - requests received (used for implementation

of message passing)

page

INCOMING-CHANNELS: - the set of channels which will be
feeding instance reports to this

node

OUTGOING-CHANNELS: - the set of channels to which this
node is to report instances that

are discovered

PENDING-FORWARD-INFERENCES: - temporary storage for
' those reports which
contained instances which
had not been requested.
These reports are only
handled after all others

have been taken care of.

2) Rule ncdes: in addition %o all of *he above registers,
the prccesses attached to rule nodes also contain the

following registers:

RULE-USE-CHANNELS: - the set of outgoing channels which
travel parallel to rule arcs, and
thus go tc nodes which may be
considered to be in consequent

position with regard to the rule.

RULE-KANDLER: - the function used to determine when
encugh information is known to draw a

new conclusion.

USABILITY-TEST: - a function to determine whether or not
V an instance of the rule can te used

(based on the sign of the instance and

page 7

quantifier present).

(3) Every oprocess also has two registers which are used
solely to implement scheduling the process on the MULTI queue
for the passing of the various kinds of messages. They are a
(a) PRIORITY: register for scheduling the passing of reports
ahead of requests, and (b) a QUEUES: register which keeps
track of which parts of the queue (high-priority and/or 1low-
priority) the ©process is in. The QUEUES: register is a
temporary patch which should be eliminated when MULTI 1is

rewritten to access its queue through abstract data type

functions.

6.2 Operations:

The btasic algorithm for all node processes is as fcocllows:

if any reports have been received
then handle them appropriately and terminate the process
else
if any requests have been received
then handle them appropriately
if there any pending forward inferences

then handle them appropriately

It should be noted that reports which are responses to
deduc*tion requests should be returned to the user as quickly
as possible; while deduction requests themselves and forward
inference reports should be propogated through the network in
a parallel fashion. Thus we have a gradual spreading
activation of the network interrupted only by prompt reports
of specifically requested results. Toward this end, the
MULTI process queue is divided into two parts: a "high

priority" queue and a "low priority" queue. When a report is

page 8

sent to a process, that process is scheduled in the high-
priority queue, whereas processes receiving requests are
scheduled in the low-priority queue. Thus a node process
which has received both requests and reports will be in both
queues, and the above process termination after handling of
reports does not mean that the requests will be missed.
MULTI will take processes from the low-priority queue only
when the high-priority queue is empty. Also, when reports
are received which were not requested, and are thus actually
fecrward inferences, they are placed in the PENDING-FORWARD-

IJFERENCES: register, and the node process is rescheduled in

the low-priority queue. (See description below of report

nandling.)

Handling of reports, requests and forward inferences are

-
O
2

WS

D
m
(87}
]

0
General proposition rodes:
(a) Request handling:

Requests received by general proposition nodes come
either from matched nodes or from rule nodes for which
the proposition is in antecedent position. In both cases
the requests are for valid instances of the proposition.

The algorithm for handling requests 1is as follows:

install the requested outgoing-channel
if the node is asserted

then send a report of this known instance

else

send any known instances through
if a "wh-question" or no instances were sent

then

page 9

if not already working on the desired instance
then
send requests to any dominating rules for which
the node is in consequent position
if there are resources available and this
request did not come through a "match
channel"
then call match and send requests to all

nodes found

Note: by match channel we mean a channel which
connects two matched nodes (rather than nodes
connected by rule arcs). Any request which
arrives through such a channel mus*% have already
been sent to any other matching nodes, so we need

not call match again in these cases.

Also: a "wh-question" is a request in which at
least one of the variables in the request is not
bound to a constant node. It corresponds to a
question of "who?", "what?", "where?", etc.

Report handling:

Reports received by general proposition nodes

indicate substitutions for which the the proposition is

kncwn to be true. They are handled by the following

algorithm:

go through the received reports one at a time,
eliminating those reports which contain instances which
were already known
building new network nodes for previously unknown

instances

bage

broadcast each remaining report (representing a previously
unknown instance) to all outgoing channels (placing
those which pass none of the channel filters, and thus
were not requested, into the PENDING-FORWARD-
INFERENCES: register)
if the PENDING-FORWARD-INFERENCES: register is non-empty
then reschedule this node process on the low-priority

queue

Note that we postpone the handling of forward inferences
until after all responses'to requests have been passed as
far as possible. Thus, the node is rescheduled on the
low-priority queue, where it will be activated only after

all the processes on the high-priority queue have been
handled.

(e) Forward inferences:

Forward inferences are simply reports for which there

were no existing outgoing channels. They are handled as

follows:

for each report in PENDING-FORWARD-INFERENCES:
send the report on to all rule nodes for which the
proposition node is in antecedent position
if there are resources available and this report
did not come through a "match channel”
then call match and send the report to all nodes

found

10

page 11

(2) Rule nodes:
(a) Request handling:

Requests received bty a rule node can be of two types.
Since rules are propositions, they can receive requests
for instances in the same way that any general

proposition node might. These are handled exactly as

described above.

The second type of request which may be received by =
rule node is a request from a node in consequent position
of the rule. Such a request would be for a substitution
for which the consequent is known to be true. There are

several situations which might occur.
(i) <there are no free variables in the rule:

install the requested "rule use channel"
if the rule is asserted

then

if it is usable (based on quantifier)
then send requests to all nodes in antecedent
position which have not yet been requested

for this instance [1]

[1] Since a request will only come from a consequent if that
ccnsequent 1s not yet known, we can assume that not
enough antecedents have = sent reports to draw. a
conciusion. Thus rather than trying to apply the rule,

we just make sure that all appropriate requests have gone
out to the antecedents.

page

else try to establish the rule (as in the handling of

requests to general proposition nodes)

(ii) there are free variables in the rule, but each

is bound to a constant in the request:

install the requested rule use channel
if the desired rule instance is known
then

if it is usable (basgd on quantifier and sign)
then pass the request back to antecedents

else try to establish the requested rule instance

(iii) there are free variables in the rule, and at

least one of them is not bound *to a constant in the

request

install the requested rule use channel
for each known rule instance with the correct substitution
if it is usable (based on quantifier and sign)
then pass requests back to the antecedents

try *o establish additional rule instances
(b) Report handling:
Reports received by rule nodes can be of several

types, and we have again chosen to describe each case

separately. These report types are:

12

page 13

(i) reports of inferred instances of the rule

- requested as simple propositions
- requested for use of rule

- unrequested (forward inferences)
(ii) reports from antecedents

- requested

- unrequested (forward inferences)

In the following, references to "applying" the rule will
bpe made. What is meant by this is that, for a given

instance, we check the number of known antecedents, both

positive and negative, and decide whether or not to draw
concilusions. If enough antecedents are known, reports
are sent to the consequents. If not, requests are sent

to those antecedents which have not yet been sent

requests for the instance under question.

(i) reports of inferred instances of the rule

for each such report,
send it out any outgoing channels whose filter it
passes
if the reported rule instance is usable
then compare it to the filters of the rule use
channels, and apply the RULE-HANDLER: for
each filter passed
if the report passes no filters of either of the two
above types of channels

then place it in PENDING-FORWARD-INFERENCES:S

(¢

page 14

(ii) reports from antecedents

for each such report,
ii it is not the case that the rule is asserted but
unusable

then

compare the report to the filters of the rule use

channels
for each that it passes
if the node is asserted
then apply the RULE-HANDLER: to try to draw
conclusions
else
if there exist applicable known-instances of
the rule
ther apply the RULE-HANDLER: for each
known instance
if the report passes no rule use channel filters

then place it in PENDING-FORWARD-INFERENCES:

Forward inferences:

Forward inferences which did not come from

antecedents are handled similarly to forward inferences

for general proposition nodes, with the addition that we

also

try to apply any newly inferred rule. That is, when

a new rule instance is inferred, and thus builit into the

network, we set up rule use channels, “with filters

determined by the substitution for this new rule

instance, to all nodes in consequent position, and send

correspondin requests to all nodes in antecedent
S g q

position.

Now we must also consider forward inferences

page 15

which «consist of reports from nodes which are ~in
antecedent position as far as the rule is concerned. For
each of these we must first set up rule use channels to
all nodes in consequent position. Then we proceed as if
a request had just come in for the use of this instance
of the rule. That is, we apply the algorithms described

in 6.2-(2)-(a) above for request handling for rule nodes.

T. Data types of SNIP84

The primary concept behind the redesign of SNePS has been

that of data abstraction. The design of SNIP84 has built

upon the data types of this new implemerntation. For =
complete description of the data types of SNePS, Dboth the
CoreSNePS and Match, see the forthcoming SNePS maintenance
manual. In this secticn we will describe the additional data
types defined for use by SNIP84. These data types fall into
two categories: (1) those data types used i the
implementation of the message passing facility of SNIP84, and
(2) those data types wused 1in constructing the messages
themselves. This distinction is made less clear-cut by the

fact that a request message consists solely of the channel

teing requested.

(a) Data types for —constructing the message passing

mechanism:

Two kinds of channels are used by SNIP84. They are:

o

(i) channels which connect matched rodes or run

g
m
L]

n
allel to artecedent arcs (ant, &ant, arg)

(ii) "rule use" channels which run parallel to

consequent arcs (cq, dcq, arg)

page 16

Of these, the first are the simplest, and will be discussed
first. Such a channel is represented by the abstract data

type called simply <channel>. A <channel> has the following

five components:

1. a <{filter> - for filtering out unwanted messages
2. a <{switch> - for changing variable contexts
between the source and destination
nodes of the channel
2. an <mnoderep set> ; containing information about
unbuilt instances which may
be part of the filter and/or
switch
4. a2 <destinaticn> - the place where the message sent
through the channel will gc
S. a {valve> - %o turn the channel cn and off (for

future controlling of inference)

The following functions are defined for the datsa type

{channel>:
RECOGNIZERS is.ch : <channel)> --> <boolean>
CONSTRUCTORS make.ch : <filter> x <switch> x <{mnoderep set>

x <destination> x <valve>

--> <channel>

SELECTORS filter.ch : <channel> --> <(filter>
switch.ch : <channel)> --> <switch>
mnrs.ch : <channel> --> <mnoderep set>
destination.ch : <channel)> --> <destination>

valve.ch : <channel> --> <valve>

page

3
=
w
-3
w

iscpen.ch : <channel> --> <boolean>
isclosed.ch : <channel> --> <boolean>
equivalent.ch : <channel> x <{channel>

--> <boolean>
The following utility procedures are also defined:

open.ch <channel)> -->

close.ch ¢+ <channel)> --=>

which open cr close a channel.

The structure which represents a <{channel) is as follows:

A

~ <channel> is simply a sequence of the above components,

where the components are represented as follows:
<filfer> ::= d{substitution>
{switch> te= {substitution>
<destination> ::= <node> | 'USER
<valve> ::= 'OPEN | 'CLOSED

"he data types <substitution> and <mnoderep set> are
described in [Saks, 1985].

A rule wuse <channel runs ©parallel to a consequent arc
{cq,deq,arg) from a rule node *o a node in consequent
rosition. Rule use channels are represented by the abstract

data type <cg-channel>, which has the following components:

17

page 18

1. a <channel> - to actually carry the message

2. a <node. set> - containing the set of nodes which
are 1in antecedent position with
respect to this consequent

2. a {rule-use-info-set> - containing information

about known antecedents

The following functions are defined for the data type <cq-

channel):

CONSTRUCTCRS make.cqch : <channel> x <node set>
x <rule-use-info setd

--> <cq-channel>

SELECTORS channel.cqch : <cgq-channel> --> <channel>
ants.cqch : <cq-channel)> --> <node set>
ruiset.cqch : <cqg-channel>

--> <rule-use-info set>
tgain the underlying structure is that of a sequence of the
above mentioned components. However, the <rule-use-info set)
is a fairly complex structure itself, which we will now

describe.

First:
{rule-use-info set> ::= { <rule-use-info> ... }

where sels are implemented using the data type <Set>. So the

important part of the structure is the followirng definition:

page 19

{rule-use-info> ::= (<substitution>
{non-negative integer>
{non-negative integer>

<{flagged-node set>)

where the substitution contains more complete bindings than
the channel filter, such as ©bindings for the quantified
variables, the first non-negative integer represents the
number of antecedents known to Dbe true, and the second
represents the number of antecedents known to be false. The

{flagged-node set> is a set of

(flagged-node> ::= (<node> . <truth-flag>)

wnere
{truzh-flag> ::= 'TRUE : 'FALSE { 'UNKNOWN } 'REQUESTED

The nodes of the <flagged-node set> are the antecedents of
the rule. FEach <flagged-node> indicates whether that node is
Known to be true or false or unknown. For the unknown ones,
a flag of 'REQUESTED indicates that a request has been sent

to that antecedent already, but that no answering report has

been received.

In addition to the outgoing channels, we also keep track
of a set of incoming channels. These are represented by the
data type <feeder>, which has the following components:

1. a <restriction> - the substitution (along with a
required <mnoderep set>) which
will be supplied by <his

channel

page

2. a <node> - the source node of this incoming
channel
3. a <valve> - to turn the channel on/off

As mentioned above, a <restriction> is simply:

{restriction> ::= (<substitution) . {mnoderep setd>)
(b) Data types for the messages themselves:

As mentioned previously, a <request) is simply defined as
a <channel>. That is to say, a request message says to the
receiving node: "Install the given channel and activate
yourself to send out instances of yourself." On the other

hand, a <report> must contain the following information:

. a <substitution> - indicating the inferred
instance

2. a <sign> - indicating whether the inferred

instance is a positive or negative

instance (i.e. known to be true or

false)
5. a <{signature> - the <node> sending the report
4. a <node> - the actual network node which

represents the instance being

reported

A report is again simply a sequence of these components. The

data type <(sign> is structured as fcllows:
<sign> ::= 'POS | 'NEG

The messages STOP and DONE have yet fo be implemented.

page 21

8. Backward inference in SHIP84

Backward inference is initiated in SNePS by a call to *he
top level SNePSUL function deduce. This function takes as
arguments an optional number field, indicating the number of
desired results, followed by a "SNePSUL node description”
(see the SNePS User Manual for details). The deduce function
simply tbuilds a node satisfying the SNePSUL node description
and passes this node (along with the number field if present)
to deduce*. Deduce* creates a new "user" process to receive,
tally and return the results of the deduction. This user
process 1is described in more detail below. Deduce* then
activates the temporary node sent to it by deduce, sends it a
request (for a channel to the user process) and schedules the

temporary node's process on the MULTI queue.

Note: since tbuild in the new implementation of SNePS
tries first to find a node meeting the requirements, and only
tbuilds one if no such node is found, the above references to
a "temporary node" should actually be "the node returned by

tbuild", which may be an alfeady existing (permanent) node in

the network.

Deduce* introduces three variables which are used non-

locally by the system. They are:

DEDUCTION-RESULTS - which is side-effected by the USER
process to contain all nodes which
are reported to the USER process in
response to the deduction request.
It will not contain nodes built
during intermediate stages of the

- deduction. When a deduction halts,

the value of DEDUCTION-RESULTS: is

page

returned by deduce, via deduce¥*,.

USER-PROCESS - which holds the process-id of the user
process. This could easily be
eliminated, since it is only accessed
non-locally by one other function, but
to make this change would require making
the destination of a channel be the
process rather than the node. I felt
that for debugging purposes (during an
ev-trace) it would be easier to trace
the deduction with the node in the

channel.
ADDED-NCDES - which is side-effected during the entire
inference process to contain all nodes
built, even those at intermediate stages.
This is currently nct used bty deduce, but

is required for forward inference.

8.1 The user process

The wuser process is the one ©process which does not
represent the activation of a node in the network, but rather
the user who has asked for a deduction to ©be carried out.

The user process contains the following registers:

REPORTS: - the reports received
DEDUCED-NODES: - the nodes deduced so far

TOTAL-DESIRED: - the total number of results

desired

22

POS-DESIRED:

I

the number of positive results

desired

NEG-DESIRED:

the number of negative results

desired

POS-FOUND: - the number of positive results

found so far

NEG-FOUND: - the number of negative results

found so far

It also contains the utility registersz PRIORITY: and QUEUES

as described earlier.
The algorithm for the user process is:
go through the REPORTS: one a2t a time, and

if the <node> of the report is not in DEDUCED-NODES:
then

update the appropriate XXX-FOUND: register
put the node into DEDUCED-NODES:
DEDUCTION-RESULTS <-- union of DEDUCTION-RESULTS and
DEDUCED-NODES:
if the desired number of results haskbeen found

then suspend the inference

9. Forward inference in SNIP84

page 23

o
L]

Forward inference is initiated by a2 call to the top level

SNePSUL functiorn add, which takes as its argument a SNePSUL

node description. The node to be added is built into the

network, and then passed to the function add¥* which checks

to

see if it 1is a constant molecular node. If so, an activation

page 24

rrocess is created and attached, it is given a report of its
own truth, and the process is placed on +the MULTI queue.

(Note that when this report 1is processed, the node will

assert itself.)

Add* also introduces the variable ADDED-NODES, which was
described previously. At the end of a forward inference,
add* returns the value of ADDED-NODES to add, which then

returns it at the top level.

10. Advantages of SNIP84

By attaching the inference processes %o the actual nodes
of the network, we avoid the confusion of a separate "active
connection graph" of processes. Since we are using only one
process per node, we will avoid unnecessary duplication of
processes. Subsequent inferences wuse ‘these same processes,
and thus can make maximum use of previously derived
information without searching far and wide for it. In
SNIP79, a search of a global list of active "infer" processes

was required.

The entire inference process in SNIP84 can be viewed as a
spreading activation of the network. Informatiorn regarding
known 1instances flows through the channels of the network to
"neighboring” nodes as conclusions are drawn. This
information flow 1is easy to trace, understand, and even
control if necessary through the use of the valves on the

channels. Forward inference becomes a natural part of the

information flow.

One feature of SNIP (79 and 84) is +that a deduction

request will return both positive and negative answers. For

zxample,

page 25

Given: A1l men are mortal.
All gods are immortal.
Socrates is a man.
Plato is a man.

Zeus is a god.
the response to the question "Who is mortal?" would be

Socrates is mortal.
Plato is mortal.

Zeus is not mortal.

This is also important at intermediate stages of an inference
when rules involving and-or, thresh, and numerical
gquantifiers are encountered. Both positive and negative

instances of arguments can affect the conclusions drawn.

In SNIP84 reports contain a sign (POS or NEG) in
addition to a substitution. This allows ©passing of both
positive and negative instances in the same manner. The sign
of each report can then be used by each rule node receiving
the report, with no confusion even in the cases of ©positive

and negative instances of negations.

The passing of signed reports also addresses one of the
major bugs in SNIP79. In certain cases, existentially
quantified rules were not used properly. Figure 1 shows the

network representing the following propositions:

page

mi! : Every man loves some woman.
m2! : John is a man.
m3! : Jane is a woman.
FIGHRE || nl!
TN
ant/ o
[ORi A~ AaX
S 2'::—'. 2
=& TN
2L wb oamg | N\am
e - CAowE @
N ¢l : /\L’\ Bl - pary
nenb ¢l newb: v 0 el el memb
\ oL Newd - \
1 RN T N
Gomd Qo) Gl Qe G o) ¢
~. A
\"‘-.,\ v _,,-/
i \.__“- o t: f//.ﬂ' 3
Clearly we cannot use rule m1! to answer the question "Does

John love Jane?". 1In SNIP79, this inference was prevented by
simply not allowing the match between the temporary node tmi
(buils by the call to deduce) and the pattern node p2. The
presence of the existential quantifier on the variable v2

blocked use of this rule, even though by themselves the nodes

tm! and p2 actually dc match.

2ut now consider replacing rule m1! by the following

(somewhat pessimistic) rule:
mi! Every man loves no woman.

The resulting network is pictured in Figure 2.

26

page 27

‘FIGURE 2
W
! S
) Gl/’.
nenb ! N
@E:/,\m
T\\

This new rule can certainly be used to answer "Does John
love Jane?" -- in the negative, of course. However, SNIP79
would reject the required match between tmt and p2, as

described above, and the rule would be ignored.

In SNIP84, the match would ©be allowed in both cases.
Requests would be passed back to mi1! and then to pt, and
hence to m2!. The positive report sent back would generate a
positive report from mt'! to its consequent (p4 in Figure 1,
pS5 in Figure 2). In the first example, rule p4 would not be
applied, since a positive instance of an existentially
guantified rule cannot answer a specific question of the sort
requested. This fact would be determined by applying p4's
USABILITY-TEST:. However, in the second exampie the positive
instance of p5 would generate a negative report to p4, which

would be usable, and thus the proper conclusion would be

drawn.

page 28

11. Remaining work

Several parts of SNIP84 are yet to be implemented. 1In
particular, rule handler functions have been written for only
or-entailment, and-entailment, and numerical entailment so
far. Function nodes must also be addressed.

Other future work might include the following:

1« 1implement the STOP and DONE messages
2. implement resource limitation

3. make use of the valves on the current channels

4. incorporate belief revision

page 29

References

Martins, J., McKay, D.P., and Shapiro, S.C. [1981] "Bi-
directional Inference”, Technical Report No. 174,

Department of Computer Science, SUNY at Buffalo.

McKay, D.P. and Shapiro, S.C. [1980] "MULTI - A LISP Based
Multiprocessing System”, Technical Report No. 164,

Department of Computer Science, SUNY at Buffalo.

McKay, D.P. and Shapiro, S.C. [1981] "Using active connection

graphs for reasoning with recursive rules"”, Proceedings of

the Seventh International Joint Conference on Artificial

Intelligence, William Kaufman, Los Altos, CA, pp. 368-374.

Saks, V.H. [1985] "A Matcher for Intensional Semantic
Networks", unpublished technical report, Department of

Computer Science, SUNY at Buffalo.

Shapiro, S.C. [1977a] "Representing and Locating Deduction
Rules in a Semantic Network", Proc. Workshop on Pattern-

Pirected Inference Systems, SIGART Newsletter, 63, pp. 14-
18.

Shapiro, S.C. [1977b] "Compiling Deduction Rules from a

Semantic Network into a set of Processes"”, Abstracts of

Workshop on Automatic Deduction, MIT, Cambridge, MA.
(Abstract only)

page 30

Shapiro, S.C. [1979] "The SNePS semantic network processing
L

system”, in Associative Networks: The Representation and

Use of Knowledge by Computers, N. V. Findler (ed.),
Academic Press, New York, pp. 179-203.

Shapiro, S.C. and McKay, D.P. [1980] "Inference with

Recursive Rules", Proceedings of the First Annual National

Conference on Artificial Intelligence, William Kaufman, Los

Altos, CA, pp. 151-153.

Shapiro, S.C., Martins, J., and McKay, D.P. [1982] "Bi-

directional Inference", Proceedings of the Fourth Annual

Conference of the Cognitive Science Society, Ann Arbor, MI,
rp. 90-93.

Shapiro, S.C. [1986] "Symmetric Relations, Intensional
Individuals, and Variable Binding", Technical Report No.

€6-10, Department of Computer Science, SUNY at Buffalo.

b
b
B,
4
]

Demonstration of backward inference, with chaining of rules:

* (define memb class obj prop)
(memb class obj prop)
CPU time : 0.83 GC time : 0.00

* (build avb $x
ant (build memb *x class man)

cq (build memb *x class human))!
(m1)

CPU time : 3.52 GC time : 5.85
(mt!)
CPU time : 0.32 GC time : 0.00

* (build avb $y
ant (build memb *y class human)
cq (build obj *y prop mortal))!

(m2)
CPU time : 3.15 GC time : 5.95
(m21!)
CPU time : 0.25 GC time : 0.00

* (build memb socrates class man)!

(m3)
CPU time : 0.93 GC time : 0.00
(m31)
CPU time : 0.27 GC time : 0.0O0

* (build memb plato class human)!

(ma)

CPU time : 0.92 GC time : 0.00
(ma4?!)

CPU time : 0.27 GC time : 0.00

* (describe *nodes)

(m4! (memb plato) (class human))
(m3! (memb socrates) (class man))
(m2! (ant (p3 (memb (v2)) (class human)))
(avb (v2))
(cq (p4 (obj (v2)) (prop mortal))))
(m1! (ant (p1 (memb (v1)) (class man)))
(avb (v1)),.
(cq (p2 (memb (v1)) (class human)}))

(m4! plato m3! socrates m2! p4 mortal p3 v2 m1f p2 human p1 man v1)
CPU time : 2.42 GC time : 0.00

| W I S B . . B
AppCauix S . Pag

* (deduce obj %who prop mortal)

I wonder if
((tp1 (prop (mortal)) (obj tv1)))

i wonder if
((p3 (class (human)) (memb v2)))

I know
((ma! (class (human)) (memb (plato))))

Since
((p3 (class (human)) (memb (v2 <-- plato))))

I infer
((p4 (prop (mortal)) (obj (v2 <-- plato))))

I wonder if
((p1 (class (man)) (memb v1)))

I know
({m3! (class (man)) (memb (socrates))))

Since

((p1 (class (man)) (memb (v1 <-- socrates))))

I infer

((p2 (class (human)) (memb (v1 <-- socrates))))
Since

((p3 (class (human)) (memb (v2 <-- socrates))))

I infer
((p4 (prop (mortal)) (obj (vZ <-- socrates))))

(m7! m5S!)
CPU time : 69.62 GC time : 42.23

* (describe *nodes)

(m7! (prop mortal) (obj socrates))

(mé! (class human) (memb socrates))

(m5! (prop mortal) (obj plata))

(m4! (memb plato) (class human))

(m3! (memb socrates) (class man))

(m2! (ant (p3 (memb (v2)) (class human)))
(avb (v2))
(cq (p4 {obj (v2)) (prop mortal))))

(m1t (ant (p1 (memb (v1)) (class man)))
(avb (v1))
(cq (p2 (memb (v1)) (class human))))

(m7! mé6! m5! m4! plato m3! socrates m2! p4 mortal p3 v2 m1! p2
human p1 man v1)
CPU time : 3.10 GC time : 0.00

Nested rules -- demonstration 1:
* (describe *nodes) .

(m&4! (ant (p1 (member (v1)) (class man)))
: (avb (v1))
{cq
(p4 (ant (p2 (member (v2)) (class woman)))

(avb (v2))

(cq (p3 (verb loves) (agent (v1)) (object (v2)))))))
(m3! (member sue) (class woman))
(m2! (member jane) (class woman))
(m1! (member john) (class man))

(m4! p4 p3 loves p2 v2 p1 v1 m3! sue m2! woman jane m1! man john)
CPU time : 2.48 GC time : 0.00

* (deduce agent john verb loves object %whom)

I wonder if
((tp1 (object tv1) (agent (john)) (verb (loves))))

I wonder if

((p4 (cqg (p3 (object v2) (agent (v1 <-- john)) (verb (loves))))
{avb v2)

(ant (p2 (class (woman)) (member v2)))))

I wonder if
((p1 (class (man)) (member (v1 <-- john))))

I know
((m1! (class (man)) (member (john))))

Since
(p1 (class (man)) (member (v1 <-- john))))

I infer
((ps (cq (p3 (object v2) (agent (v1 <-- john)) (verb (loves))))
(avb v2)

(ant (p2 (class (woman)) (member v2)))))

I wonder if
((p2 (class (woman)) (member v2)))

I know
((m3! (class (woman)) (member (sue))))

Since
((p2 (class (woman)) (member (v2 <-- sue))))

I infer

W

((p3 (object (v2 <-- sue)) (agent (v1 <-- john)) (verb (loves))))

I know
(m2! (class (woman)) (member (jane))))

Since
((p2 (class (woman)) (member (v2 <-- jane))))

I infer
((p3 (object (v2 <-- jane)) (agent (v1 <-- john)) (verb (loves))))

(m7! mé6!)
CPU time : 110.67 GC time : 67.08

* (describe *nodes)

(m7! (object jane) (agent john) (verb loves))
(mé6! (object sue) (agent john) (verb loves))
(m5! (cq (p5 (object (v2)) (agent john) (verb loves)))
(avb (v2))
(ant (p2 (member (v2)) (class woman))))
(m4! (ant (p1 (member (v1)) (class man)))
(avb (v1))
(cq
(ps (ant (p2))
(avb (v2))
(cq (p3 (verb loves) (agent (v1)) (object (v2)))))))
(m2! (member sue) (class waman))
(m2! (member jane) (class woman))
(m1! (member john) (class man))

(m7! mé6! m5! p5 m4! p4 p3 loves p2 v2 p1 v1 m3! sue m2! woman
jane m1! man john)

CPU time : 3.87 GC time : 0.0O

b

3

A
’h
e}
l:
e
\.Nn

Nested rules -- demonstration 2:
* (describe *nodes)

(m4! (ant (p1 (member (v1)) (class man)))
(avb (v1)) '
(cq
(pé (ant (p2 (member (v2)) (class woman)))
(avb (v2))

(cq (p3 (verb loves) (agent (v1)) (object (v2)))))))
(m3! - (member sue) (class woman))
(m2! (member jane) (class woman))
(m1! (member john) (class man))

(m4! p4& p3 loves p2 v2 p1 vl m3! sue m2! woman jane m1! man john)
CPU time : 2.62 GC time : 0.00

* (deduce agent %who verb loves object sue)

I wonder if
((tp1 (object (sue)) (agent tvi) (verb (loves))))

I wonder if

((p4 (cq (p3 (object v2) (agent v1) (verb (loves))))
(avb v2)

(ant (p2 (class (woman)) (member v2)))))

I wonder if
((pt (class (men)) (member v1)))

v

I know
((m1! (class (man)) (member (jahn))))

Since
((p1 (class (man)) (member (v1 <-- john))))

I infer
((p4 (cq (p3 (object v2) (agent (v1 <-- john)) (verb (loves))))
(avb v2)

(ant (p2 (class (woman)) (member v2)))))

I wonder 1if
((p2 (class (woman)) (member (v2 <-- sue))))

I know
((m3! (class (woman)) (member (sue))))

Since :
((p2 (class (woman)) (member (v2 <-- sue))))

I infer ,
((p3 (object (v2 <-- sue)) (agent (v1 <-- john)) (verb (loves))))

(mé61)

CPU time

UE’

81.62 GC time : 54.92

* {(describe *nodes)

(mé6!
(m5!

(ma!

(m31
(m2!
(m1!

(object sue) (agent john) {verb loves))
(cqg (p5 (object (v2)) (agent john) (verb loves)))

(avb
(ant
(ant
(avb
(cq
(p4

(v2))

(p2 (member (v2)) (class woman))))
(p1 (member (v1)) (class man)))
(v1))

(ant (p2))
(avb (v2))
(cq (p3 (verb loves) (agent (v1)) (object (v2)))))))

(member sue) (class woman))
(member jane) (class woman))
(member john) (class man))

(mé6! m5! p5 m&! p4 p3 loves p2 v2 p1 v1 m3! sue m2! woman
jane m1!
CPU time

man john)

3.47 GC time : 0.00

o

Appendix
i Dpen:

3
g
-3

Demonstration of use of recursive rules:
* (describe *nodes)

(m5! (parent c) (child d))
(m4! (parent b) (child c))
(m3! (parent a) (child b))
(m2! (&ant (p3 (parent (v3)) (child (v4)))
(p4 (ancestor (v4)) (descendant (v5))))
(avb (v3) (va4) (v5))
(cq (p5 (ancestor (v3)) (descendant (v5)))))
(m1! (ant (p1 (parent (v1)) (child (v2))))
(avb (v1) (v2))
(cq (p2 (ancestor (v1)) (descendant (v2)))))

(mS! d ma! ¢ m3! b a m2! p5S p4 p3 v5 v4 v3 m1! p2 pl v2 v1)
CPU time : 3.47 GC time : 0.00

* (deduce ancestor a descendant d)

I wonder if
((tm1 (descendant (d)) (ancestor (a3))))

I wonder if
((p3 (child v&4) (parent (v3 <-- a))))

I wonder if
({p4 {(descendant (v5 <-- d)) (ancestor v&)))

I wonder 1if
((p1 (child (v2 <-- d)) (parent (v1 <-- a))))

I know
((m3! (child (b)) (parent (a))))

I wonder if
((p3 (child v4) (parent v3)))

I wonder if
((p1 (child (v2 <-- d)) (parent v1)))

i know)
((mS! (child (d)) (parent (c))))

Since
((p1 (child (v2 <-- d)) (parent (v1 <-- ¢))))

I infer
((p2 (descendant (v2 <-- d)) (ancestor (v1-<-- c))))

I know
((m4! (child (c)) (parent (b))))

"
"8
B
s
¥

|

;
o)

Since
((p3 (child (v4 <-- c)) (parent (v3 <-= b))))
and

((p4 (descendant (v5 <-- d)) (ancestor (v4 <-- ¢c))))

I infer
((p5 (descendant (v5 <-- d)) (ancestor (v3 <-- b))))

Since

((p3 (child (v4 <-- b)) (parent (v3 <-- a))))

and

((p4 (descendant (v5 <-- d)) (ancestor (v4 <-- b))))

I infer
((p5 (descendant (v5 <-- d)) (ancestor (v3 <-- a))))

I know
((m3! (child (b)) (parent (a))))

(mB1!)
CPU time : 192.12 GC time : 112.88

* (describe *nodes)

(m8! (descendant d) (ancestor a))
(m7! (descendant d) (ancestor b))
(mé! (descendant d) (ancestaor c))
(m5! (parent c) (child d))
(m4! (parent b) (child c))
(m3! (parent a) (child b))
(m2! (&ant (p3 (parent (v3)) (child (v4)))
(p4 (ancestor (v4)) (descendant (v5))))
(avb (v3) (va4) (v5))
(cq (p5 (ancestor (v3)) (descendant (v5)))))
{m1t (ant (p1 (parent (v1)) (child (v2))))
(avb (v1) (v2))
(cq (p2 (ancestor (v1)) (descendant (v2)))))

(m8! m7! mé6! m5! d m4! c m3! b a m2! PS5 P4 p3 v5 v4 v3I m1! p2 p1 v2 v1)
CPU time : 4.20 GC time : 0.00

0

Append

[
)]
1
]
O

Demonstration of backward inference with numerical entailment:

* (describe *nodes)

(mé6! (&ant (p1 (member (v1)) (class mathematician))
(p2 (member (v1)) (class philosopher))
(p3 (member (v1)) (class scientist)))
(thresh 2)
(avb (v1))
(cq (p4 (member (v1)) (class multitalented))))
(m5! (member tom) (class scientist))
(m4! (member bill) (class scientist))
(m3! (member bill) (class philosopher))
(m2! (member fred) (class philosopher))
(m1! (member fred) (class mathematician))

(mé! p4 multitalented p3 p2 pt vi-2 m5! tom m4! scientist m3! bill m2!
philosopher m1! mathematician fred)
CPU time : 2.97 GC time : 0.00

* (deduce member %who class multitalented)

I wonder if
((tp1 (class (multitalented)) (member tv1)))

I wonder if
((p1 (class (mathematician)) (member v1)))

I wonder if
((p2 (class (philosopher)) (member v1)))

I wonder if
{((p3 (class (scientist)) (member v1)))

I know
((m1! (class (mathematician)) (member (fred))))

I know
({m3! (class (philosopher)) (member (bill))))

I know
((m2! (class (philosopher)) (member (fred))))

Since
((p1 (class (mathematician)) (member (v1 <-- fred))))

and
((p2 (class (philosopher)) (member (v1 <-- fred))))

I infer
((p4 (class (multitalented)) (member (v1 <-- fred))))

I know
((mS! (class (scientist)) (member (tom))))

Ap?éﬁﬂix

I know

((ma1

Since
((p2 (class (philosopher)) (member (v1 <-- bill))))

and

(class (scientist)) (member (bill))))

({p3 (class (scientist)) (member (v1 <-- bill))))

I infer
((p4 (class (multitalented)) (member (v1 <-- bill))))

(m8!

m71!)

CPU time : 135.63

* (describe *nodes)

(m8!
(m71
(m6!

(m5!
(m4!
(m3!
(m2!
(m1!

(mB!
m3!
CPU

GC time

: 80.65

(class multitalented) (member bill))
(cless multitalented) (member fred))

(&ant (p1 (member (v1))
(p2 (member (v1))
(p3 (member (v1))

(thresh 2)
(avb (v1))

(class mathematician))
(class philosopher))
{class scientist)))

(cq (p4 (member (v1)) (class multitalented))))
(member tom) (class scientist))

(class scientist))

(class philesopher))

(class philosopher))

(class mathematician))

(member bill)
(member bill)
(member fred)
(member fred)

m7! mé6! p4 multitalented p3 p2 p1 v1 2 m5! tom m4!

bill m2! philosopher m1!

time : 3.43

GC time

mathematician fred)
0.00

scientist

J
)
)
)
-
-

Demonstration of forward inference with nested rules:

* (describe *nodes)

(m1! (ant (p1 (member (v1)) (class man)))
(avb (v1))
(cq
(p4 (ant (p2 (member (v2)) (class woman)))
(avb (v2))
(cq (p3 (verb loves) (agent (v1)) (object (v2)))))))

(m1! p4 p3 loves p2 woman v2 pt man v1)
CPU time : 1.93 GC time : 5.92

* (add member john class man)

Since -
((p1 (class (man)) (member (v1 <-- john))))

I infer
((p4 (cq (p3 (object v2) (agent (v1 <-- john)) (verb (loves))))
(avb v2)

(ant (p2 (class (woman)) (member v2)))))

I wonder if
((p2 (class (woman)) (member v2)))

(m3! m2!)
CPU time : 40.50 GC time : 30.35

* (describe *nodes)

(m31 (cq (p5 (object (v2)) (agent john) (verb loves)))
(avb (v2))
(ant (p2 (member (v2)) (class waman))))
(m2! (member john) (class man))
(m1! (ant (p1 (member (v1)) (class man)))
(avb (v1))
(cq
(ps (ant (p2))
(avb (v2))
(cqg (p3 (verb loves) (agent (v1)) (object (v2)))))))

(m3! p5 m2! john m1! p4 p3 loves p2 woman v2 p1 man v1)
CPU time : 2.78 GC time : 0.00

* (add member jane class waman)

Since
((p2 (class (woman)) (member (v2 <-- jane))))

I infer
((p3 (object (v2 <-- jane)) (agent (v1 <-- john)) (verb (loves))))

Kppendi page 12
{(m5! m4!)
CPU time : 34.98 GC time : 24.30

* {(describe *nodes)

(m5! (object jane) (agent john) (verb loves))
(m4! (member jane) (class woman))
(m31 (cq (p5 (object (v2)) (agent john) (verb loves)))
(avb (v2))
(ant (p2 (member (v2)) (class waman))))
(m2! (member john) (class man))
(m1! (ant (p1 (member (v1)) (class man)))
(avb (v1))
(cq
(ps (ant (p2))
(avb (v2)) .
(cqg (p3 (verb loves) (agent (v1)) (object (v2)))))))

(m5! m4! jane m3! p5 m2! john m1! p4 p3 loves p2 waoman v2 p1 man v1)
CPU time : 3.25 GC time : C.00

i
3
5]
o
]
23
3
o

Demonstration of simple backward inference with tracing showing the
initiation of processes and contents of registers during execution:

* (describe *nodes)

(m2! (ant (p1 (member (v1)) (class man)))
(avb (v1))
(cq (p2 (obj (v1)) (prop mortal))))
(m1t (member socrates) (class man))

(m2! p2 mortal pt1 v1 m1! man socrates)
CAU time : 1.40 GC time : 0.00

* (deduce obj socrates prop mortal)
** new - user id - p00605 **
** new - non-rule id - p00606 **

et entering processes: p00606 e+
NAME: non-rule
NODE: tm1
KNOWN-INSTANCES: nil
REPORTS: nil
REQUESTS: ((nil nil nil USER OPEN))
INCOMING-CHANNELS: nil
QUTGOING-CHANNEL S: nil
PENDING-F ORWARD- INFERENCES: nil
PRIORITY: LOW
QUEVES: nil

I wonder if
((tm1 (prop (mortal)) (obj (socrates))))

** new - non-rule id - p00607 **
** initiate - non-rule id - p00607 initiated by - p00606 length of evnts - 1 **

#HHHE]egving processes: p00606 *H
NAME: non-rule
NODE: tm1
KNOWN-INSTANCES: nil
REPORTS: nil
REQUESTS: nil
INCOMING-CHANNELS: (((nil) p2 OPEN))
QUTGOING-CHANNELS: ((nil nil nil USER OPEN))
PENDING-F ORWARD- INFERENCES: nil
PRIORITY: LOW
QUELES: nil

REQUESTS: ((((v1 . socrates)) nil nil tm1 OPEN))
INCOMING-CHANNELS: nil

QUTGOING-CHANNELS: nil

PENDING-F ORWARD-INFERENCES: nil

PRIORITY: LOW

QUELES: nil

** new - rule id - p00608 **
**init_iate-rulejd-p(IJ6(Binitiatedby-p(l)6071engthof‘evnts-1H

**#x# leaving processes: pO0607 *Hess
NAME: ron-rule
NDE: p2
KNOWN-INSTANCES: nil
REPORTS: nil
REQUESTS: nil
INCOMING-CHANNELS: (((((v1 . socrates))) m2 OPEN))
QUTGOING-CHANNELS: ((({v1 . socrates)) nil nil tm1 GPEN))
PENDING-FORWARD- INFERENCES: nil
PRIORITY: LOW
QUEUES: nil

% entering processes: pO0608 e+
NAME: rule
TYPE: or-entailment
NODE: m2
KNOWN-INSTANCES: nil
REPORTS: nil
REQUESTS: ((((v1 . socrates)) nil nil p2 OPEN))
INCOMING-CHANNELS: nil
(QUTGOING-CHANNEL S: nil
RULE-USE-CHANNELS: nil
PENDING-FORWARD- INFERENCES: nil
PRIORITY: LOW
QUEUES: nil
RULE-HANDUER: rule-handler.v-ent
USABILITY-TEST: usability-test.v-ent

** new - non-rule id - p00609 **
** initiate - ron-rule id - p00609 initiated by - p00608 length of evnts - 1 **

% leaving processes: pO0608 **ex
NAME: rule
TYPE: or-entailment
NODE: m2
KNOWN- INSTANCES: nil
REPORTS: nil
REQUESTS: nil

-
-

Avnnands w

INCOMING-CHANNELS: (((((v1 . socrates))) p1 OPEN))

CUTGOING-CHANNEL S: nil

RULE-USE-CHANNELS: (((((v1 . socrates)) nil nil p2 OPEN)
(p1)

((((v1 . socrates)) 0 0 ((p1 . REQUESTED))))))

PENDING-F ORWARD-INFERENCES: nil
PRIORITY: LOW

QUELES: nil

RULE-HANDLER: rule-handler.v-ent
USABILITY-TEST: usability-test.v-ent

HHEE entering processes: pO0609 -
NAME: non-rule
NODE: p1
KNOWN-INSTANCES: nil
REPORTS: nil
REQUESTS: ((((v1 . socrates)) nil nil m2 OPEN))
INCOMING-CHANNELS: nil
(UTGOING-CHANNEL S: nil
PENDING—F ORWARD- INFERENCES: nil
PRIORITY: LOW
QUELES: nil

I wonder if
((p1 (class (man)) (member (v1 <— socrates))))

** new - non-rule id - p00610 **
** jnitiate - non-rule id - p00610 initiated by - p00609 length of evnts - 1 **

e Jeaving processes: pO060F oo
NAME: non-rule
NODE: p1
KNOMN=INSTANCES: nil
REPORTS: nil
REQUESTS: nil
INCOMING-CHANNEL S: (((((v1 . socrates))) m1 OPEN))
QUTGOING-CHANNELS: ((((v1 . socrates)) nil nil m2 OPEN))
PENDING-F ORWARD- INFERENCES: nil
PRIORITY: LOA4
QUELES: nil

#eoee entering processes: p00610 ***
NAME: ron-rule
NODE: m1
KNOWN-INSTANCES: nil
REPORTS: nil
REQUESTS: ((nil ((v1 . sccrates)) nil pt OPEN))
INCOMING-CHANNEL S: nil '
QUTGOING-CHANNELS: nil
PENDING-F ORWARD-INFERENCES: nil
PRIORITY: LOW
QUELES: nil

’
§

dix R —— S— page 16

I know
({m1! (class (man)) (member (socrates))))

** initiate - non-rule id - p00609 initiated by - p0B&10 length of evnts - 1 **

- leaving processes: p00610 *HHHH
NAME: non-rule
NODE: m1
KNOWN-INSTANCES: nil
REPORTS: nil
REQUESTS: nil
INCOMING-CHANNELS: nil
QUTGOING-CHANNELS: ((nil ((v1 . socrates)) nil p1 OPEN))
PENDING-FORWARD- INFERENCES: nil
PRIORITY: LOW
QUELES: nil

e entering processes: pO0609 *HHe .
NAME: non-rule
NODE: p1
KNOWN-INSTANCES: nil
REPORTS: ((((v1 . socrates)) PGS m1 m1))
REQUESTS: nil
INCOMING-CHANNELS: (((((v1 . socrates))) m1 OPEN))
QUTGOING-CHANNELS: ((((v1 . socrates)) nil nil m2 OPEN))
PENDING-F ORWARD- INFERENCES: nil
PRIORITY: HIGH
QUELES: nil

** initiate - rule id - p00608 initiated by - p00609 length of evnts - 1 **

% leaving processes: p0609 s
NAME: non-rule
NODE: p1
KNOWN-INSTANCES: ((((v1 . socrates)) . P0S))
REPORTS: nil
REQUESTS: nil
INCOMING-CHANNELS: (((((v1 . socrates))) m1 OPEN))
QUTGOING-CHANNELS: ((((v1 . socrates)) nil nil m2 OPEN))
PENDING-F ORWARD~ INFERENCES: nil
PRIORITY: HIGH
QUELES: nil

W entering processes: p00608 e

NAME: rule

TYPE: or-entailment

NODE: m2

KNOWN-INSTANCES: nil

REPORTS: ((((v1 . socrates)) PGS p1 m1))

REQUESTS: nil

INCOMING-CHANNEL S: (((((v1 . socrates))) p1 OPEN))

OUTGOING-CHANNELS: nil

RULE-USE-CHANNELS: (((((v1 . socrates)) nil nil p2 OPEN)
(p1)
((((v1 . socrates)) 0 0 ((p1 . REQUESTED))))))

A =22
AppTuuiix

PENDING-F ORWARD- INFERENCES: nil
PRIORITY: HIGH

QUELES: nil

RULE-HANDLER: rule-handler.v-ent
USABILITY-TEST: usability-test.v-ent

Since
((p1 (class (man)) (member (v1 <— socrates))))

I infer
((p2 (prop (mortal)) (obj (v1 <— socrates))))

** jnitiate - non-rule id - p00607 initiated by - p00608 length of evnts - 1 **

#HHHe Jegving processes: pO0608 e

NAME: rule

TYPE: or-entailment

NODE: m2

KNOWN-INSTANCES: nil

REPORTS: nil

REQUESTS: nil

INCOMING-CHANNELS: (((((v1 . socrates))) p1 OPEN))

QUTGOING-CHANNELS: nil

RULE-USE-CHANNELS: (((((v1 . socrates)) nil nil p2 OPEN)
(€-1)]
((({(v1 . socrates)) 1 0 ({p1 . TRUE))))))

PENDING-F ORWARD- INFERENCES: nil

PRIORITY: HIGH

QUELES: nil

RULE-HANDLER: rule-handler.v-ent

USABILITY-TEST: usability-test.v-ent

HHHet entering processes: p00607 e
NAME: ron-rule
NODE: p2
KNOWN-INSTANCES: nil
REPORTS: ((((v1 . socrates)) POS m2 nil))
REQUESTS: nil
INCOMING-CHANNEL S: (((((v1 . socrates))) m2 OPEN))
QUTGOING-CHANNELS: ((((v1 . socrates)) nil nil tm1 OPEN))
PENDING-F ORWARD-INFERENCES: nil
PRIORITY: HIGH
QUELIES: nil

** jnitiate - non-rule id - p00606 initiated by - p00607 length of evnts - 1 **

#eHH Jegving processes: p00607 e
NAME: non-rule
NODE: p2
KNOWN-INSTANCES: ((((v1 . socrates)) . PGS))
REPORTS: nil
REQUESTS: nil
INCOMING-CHANNELS: (((((v1 . socrates))) m2 OPEN))
QUTGOING-CHANNELS: ((((v1 . socrates)) nil nil tm1 OPEN))
PENDING-FORWARD-INFERENCES: nil

1]
o

-
-3

PRIORITY: HIGH
QUEES: nil

et entering processes: pO0606 e

** initiate - user id - p00605 initiated by - p00606 length of evnts - 1 **

NAME: non-rule

NODE: tm1

KNOWN- INSTANCES: nil

REPORTS: ((((v1 . socrates)) PGS p2 m3))
REQUESTS: nil

INCOMING-CHANNEL S: (((nil) p2 OPEN))
QUTGOING-CHANNELS: ((nil nil nil USER OPEN))
PENDING-F ORWARD-INFERENCES: nil

PRIORITY: HIGH

QUELES: nil

*%46% leaving processes: p0606 HHee

NAME: non-rule

NIDE: tm1

KNOWN-INSTANCES: ((((v1 . socrates)) . PQS))
REPORTS: nil

REQUESTS: nil

INCOMING-CHANNELS: (((nil) p2 OPEN))
QUTGOING-CHANNELS: ((nil nil nil USER OPEN))
PENDING-F ORWARD- INFERENCES: nil

PRIGRITY: HIGH

QUELES: nil

e entering processes: pQO060S *Hqex

NAME: user

REPORTS: ((((v1 . socrates)) POS tm1 m3))
DEDUCED-NODES: nil

TOTAL-DESIRED: nil

POS-DESIRED: nil

NEG-DESIRED: nil

POS-FOUND: O

NEG-FOUND: O

PRIORITY: HIGH

QUELES: nil

**#%% leaving processes: p0605 e

(m31)
CPU time : 37.63

NAME: user
REPORTS: nil
DEDUCED-NODES: (m3)
TOTAL-DESIRED: nil
POS-DESIRED: nil
NEG-DESIRED: nil
POS-FOUND: 1
NEG-FOUND: O
PRIORITY: HIGH
QUELES: nil

GC time : 18.33

|
)

-

(o0

* (describe *nodes)

(m3! (prop mortal) (obj socrates))
(m2! (ant (p1 (member (v1)) (class man)))
(avb (v1))
(cq (p2 (obj (v1)) (prop mortal))))
(m1! (member socrates) (class man))

(m3! m2! p2 mortal p1 v1 m1! man socrates)
CAJ time : 1.65 GC time : 6.10

s

[
[

(1¢)

