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Abstract

The theory of non-well-founded sets-that is, sets that are potentially cir-
cular in hereditary membership—can be applied to a semantic network knowl-
edge/belief representation, SNePS. It provides a particular type of node, the
base node, which represents a primitive concept, with a semantics that is
both influenced by and influences its dominating compound nodes. A se-
mantic function is defined that interprets each node in the network as a
non-well-founded set over the sensory input nodes (words, visual stimula,
etc.).

Under certain axioms governing SNePS structure, results show that the
semantics does not allow meanings that are circular to the point of vacuity,
and that the semantics is inherent in the graphical structure of the SNePS
network itself. The semantics supports SNePS principles such as that the
meaning of each node (concept) is distinguished from all others, and that the
meaning of a node is internal, dependent on its location with regard to other
nodes in the network (rather than on external phenomena). An enhanced
semantics, which incorporates into the hyperset semantics the relations used
to label the arcs, is also developed.

T

198], [Nebel, 1991], [Smith, 1991, pp. 265 ff.]. The semantics of SNePS is intended
to be circular, notwithstanding its acyclic graph representation, in the sense that
the meanings of certain directly-connected nodes influence each other. We address
the provision of circularity in semantics using the theory of non-well-founded sets

:iis the tool.

§

3

S | Circularity in Semantics

5 Several researchers in artificial intelligence and knowledge representation note that
} some real-world phenomena seem inherently circular [Barwise, 1989, pages 194~
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Figure 1: Graphical pictures of 3 as a (hereditary) set

as sets themselves; sets are hereditary. A member of a set S might also be a subset
of S. When we need concrete objects that are not sets, we will call them ‘atoms’.
This simple mechanism permits the standard set-theoretic definition of the natural
numbers N as 0, {0}, {0, {0}}, {0, {0}, {0,{0}}},.... Each n € N is represented
by the set {m € N |m < n}, or, equivalently, n+1 = nU{n}, where 0 is identified
with zero. For example, § C {0, {0}} and 0 € {0, {0}}; 0 is both a member and a
subset of 2. The hereditary nature of these sets allows them to be meaningfully
depicted as rooted directed graphs, with the arrows showing membership. Figure 1
shows the set we call ‘3’ in two ways, on the right with unique occurrences of the
member nodes.

Various axiomatic systems of set theory have been developed; one standard
is that called Zermelo-Frankel Set Theory with the Aziom of Choice, abbreviated
ZFC. It has nine axioms, with the Axiom of Foundation, disallowing any sets
that contain themselves, either directly or indirectly, like the sets below:

a = {a} (1)
b = {s,t}, where s = {t} and t = {s} (2)

In his theory of non-well-founded sets, Peter Aczel negates the Axiom of Foun-
dation, retaining the others [Aczel, 1988]. The statement of his axiom relies on :
the graphical depiction of sets, where an accessible pointed graph or apg of a set is |
a directed graph with a distinguished node called the point from which all other -
nodes are reachable, which has a decoration, an assignment of sets to each node
such that the children are members of their parents’ sets. (A node with no children
is assigned the empty set.) Non-well-founded set theory is ZFC with the Axiom °
of Foundation replaced by a negation of it called the Anti-Foundation Axiom.

The Anti-Foundation Axiom: Every graph has a unique dec-
oration.
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Figure 2: Other pictures of (2

In other words, even cyclic graphs represent sets. All acyclic graphs, such as
that of Figure 1, still represent sets, too. A simple example of one of the new
non-well-founded sets, or hypersets, is given by the picture below.

CO

Aczel calls the hyperset depicted Q. Like other hypersets, this one has many
pictures—including those in Figure 2. Note that writing down its contents in
standard set notation is problematic. Because it is its own child, the solitary node
would have to be decorated with something like this: {{{...}}}.

We now bring in a set of atoms A; a decoration then assigns to each childless
node either an atom or the empty set, with the decoration of other nodes made
up of the sets assigned to their children, as before. The notation V4 stands for all
hypsersets over the set of atoms A, all hypersets that may (but are not required
to) include elements from A or other sets that include elements from A. The range
of the decoration is V4. The thrust of the Anti-Foundation Axiom is that every
picture, even if it has cycles, has a membership-relative assignment of sets to each
node.

To put it another way, an equivalent of the Anti-Foundation Axiom called the

- Solution Lemma that any system of membership relations can be satisfied by hy-
persets. The notions of a system of equations and its solution are built up as in
" albegra, with the equations providing a definition for each “indeterminate”™, ex-
‘pressed as a hyperset over atoms and indeterminates (and so possibly circular), and
‘the solution being an assignment to each indeterminate of a hyperset over atoms
only, not other indeterminates, such that all of the original relationships given by
_the equations still hold when its assignment is substituted for the indeterminate.

of -
_The Solution Lemma: Every system of equations in a collection &

& i . . . .
Wi v?f indeterminates over V4 has a unique solution.
SERATOW |

‘Lhis gets us non-well-founded set theory without reliance on graph notation or
_ l}gepts. We will use both forms.

e
-SNePS and its Principles
e B‘j‘hy o3 7
The particular knowledge representation used is SNePS, developed by Shapiro
3 SNePS is a semantic network representation, with nodes and directed
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arcs, and it adheres to principles that promote intensionality, such as relatlve

belief spaces; it has other significant aspects, such as inference systems, that do
not bear directly on this work. SNePS networks are acyclic and can be deﬁned

compositionally, as new nodes and arcs are added to networks in certain patterns,

thereby creating new larger networks.

&

A SNePS network is a propositional semantic network, that is, one in which
every proposition represented in the network is represented by a node (rather than

an arc). Arcs are best regarded as punctuation, having no conceptual semantics.
For this reason, it is forbidden to add an arc between two existing nodes. Certain
arc labels come with SNePS, while others necessary for a particular implementation
are to be defined by the user. Together they form the set of relations of the
implementation.

Arcs are directed; the node at the origin is called the ‘tail’ node and the node
at the arrowhead, the ‘head’ node. There would be no point in connecting two
nodes with multiple instances of the same arc (arcs with the same label), but
there may well be multiple arcs with the same label emanating from the same
tail node but terminating at different head nodes, or multiple arcs with different
labels connecting two nodes. Nodes with no arcs emanating from them are called
‘atomic’. They include sensory nodes, which represent the real-world interface,
being associated with printed text strings, other visual or tactile or aural data,
etc., and base nodes, which represent individual concepts, and hence have in-arcs
from other nodes.! Nodes that do have arcs emanating from them, i.e., that
dominate others through their out-arcs (and may themselves be dominated with
in-arcs), are called molecular nodes. They are defined to be sets of wires, structures
consisting of a labeled arc and the node at its head.

A wire is an ordered pair (r,n), where r is a SNePS relation, and n is
a SNePS node. [Shapiro, 1991, page 145]

A guiding force in the theory behind SNePS is the Uniqueness Principle, which
states that each concept in the modeled “mind” of a cognitive agent is represented
by a unique node in the SNePS network. In SNePS, the FIND/BUILD mechanism
creates networks, performing one of two operations when some new concept is
submitted to it: (1) if the concept already exists (a node with exactly the right
connections is already in the network), then the new information is added to it,
or (2) if such a node does not exist, it is created and assigned an unused unique
identifier.

4 Circularity through Non-well-founded Sets

Along with the degree and nature of the circularity postulated for SNePS networks,
another outstanding question of current SNePS research is the semantics of base
nodes, which seem heavy with meaning that doesn’t “go” anywhere. Non-well-
founded set theory is the stone that can kill both birds. Let the meaning of a
node, informally, be the set of meanings of subordinate nodes, except that base
nodes have circular meaning, participating also in the meaning of the parent node.

! Variable nodes, which represent arbitrary concepts (individuals or propositions) are not in
the scope of this work.

e | PR
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Figure 3: The SNePS network S

Sensory nodes will be the atoms .A. To focus on the graphical structure, arc labels
will be stripped off for now. Ergo, construed as hereditary sets, base nodes will
be members of their parent nodes, and vice versa, which can be shown graphically
by an additional edge from a base node to each of its parents. The semantics p(n)
of a node n will then be the hyperset, over the sensory atoms, that is depicted by
the subgraph with n as its point.

An example of a SNePS network (taken from a larger SNePS network) is shown
in Figure 3 and called S. S is the SNePS representation of the sentence fragment
“Nancy asks Tom whether (m23)”—the rest of the structure, rooted at m23, is
omitted. Base nodes include b1, representing the concept of Nancy, and b2, Tom;
v 4., M25, m2, m24, etc., are molecular nodes; Nancy, ask-whether, and Tom sensory
- %7 nodes representing the respective written words. The relations are { proper-name,
. obj, lex, agent, act, predicator, obji, obj2 }. The new graphical structure
(hat includes circularity is shown as the form called S* in Figure 4.

- To formalize the suggested semantic function from nodes to hypersets, we par-
fi!:ion the set of nodes in S into the subsets BASE, SENSORY, and two types
of molecular nodes—those being treated as atoms due to circumscription of the
petwork, the subset MOLATOM (in the example, {m23}), and those treated as
Molecular, MOLFULL (including m1, m2, m25, m24, and so forth). Each sensory
node s € SENSORY is tagged with its lexeme or other sensory datum, and each
ly omic” molecular node a € MOLATOM with its label. The decoration and
the semantic function u are formally derived to allow for circularity by making the
eaning of a node the hyperset assigned to it, respecting the meanings of surround-
g nodes. No semantics is assigned to nodes from SENSORY or MOLATOM, on

e p’rinciple that they are best regarded only as sources of input (actual or po-
Ssesqe
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Tom

Figure 4: The derived graph S*

tential), not as meaningful in their own right. (Of course, any molecular node
in MOLATOM may be interpreted fully under p whenever desired.) Under this
definition, the semantic value of a base node b is influenced by its parent nodes,
as well as vice versa, as desired.

For example, the meanings under p of the base nodes b1 and b2 in the given
S (Figure 3) are shown in Figure 5 as pictures, where the function f turns out to
be the hypserset assignments given by p. We can develop this solution rigorously
using the Solution Lemma. Since they comprise the indeterminates,

X = {b1,b2}, (3)
and
A = {Nancy, ask-whether,m23, Tom}. (4)

As noted, the node m23 is taken as an atom, rather than as a set with its own
subordinates/members, for convenience. The universe of hypersets, then, is

V4 = V(Nancy, ask-whether, m23, Tom} (5)

The solution sought will be an assignment f of sets from V4 to b1 and b2. The
hyperuniverse V4 is all hypersets over A U X. We need a system of equations
defining b1 and b2, where each set on the right-hand side is in V.4::

b1 = {m2,m25} = {{{Nancy},bi1}, {b1, {{ask-whether}, b2,m23}}} (6)
b2 = {m24,m5} = {{{ask-whether}, m23,b2}, {b2, {Tom}}} (7)

The function u is an assignment of hypersets to b1 and b2 such the equations
that defined them in terms of their membership still hold when those hypersets are
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2(b1) =

Figure 5: Assignments to bl and b2 under u

used in place of the indeterminates b1 and b2. Indeed, that is the case when the
hypersets pictured in Figure 5 are substituted for occurrences of the indeterminates
in Equations 6 and 7. For the definition of y as the solution to the system of
equations given by the network, the computation of the sets, and verification that
they are indeed the solution to the defining equations, see [Hill, 1994]. We have a
function p with the desired scope:

# : MOLFULL U BASE — VSENSORY u MOLATOM (8)

In a full network with no molecular nodes treated as atoms, all molecular and
base nodes would be assigned hypersets over sensory nodes only, that is, hypersets
from VgpNngORy: The crucial point is that the semantics given to nodes are

ypersets over the atoms, not over other ungrounded hypersets. No references to
intermediate nodes, such as m24 or b2, are left.

5 Results and Implications of u

Results derived from the foregoing bolster the respectability of u as a semantics
for SNePS. For proofs, see [Hill, 1994].
- Theorem 1 states that no node is circular to the point of “vacuity”.

Theorem 1 VYV nodes n € S,u(n) # Q

l~“““Shapiro employs a definition of domination of one node by another that is
analogous to hereditary set definition, providing Theorem 2 to the effect that, for

-E,l}g [meaning of a molecular node, what you see is what you get. The apg rooted
Btanoden € 5" is y(n).
Qheorem 2 (Node-Picture Principle)

b h » Vm € MOLFULL, p(m) = {u(c) | m dominates c}
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OBJECT / ! PROPERTY OBJECT )/ ! PROPER-NAME
SR.4 SR.5

An analog to the Uniqueness Principle holds for the semantic function y as
Theorem 3. Nodes with different meanings under p are different nodes and there-
fore represent different concepts (except in the case where uniqueness depended
on distinction of arc labels).

Theorem 3 (Uniqueness Principle under )  In any C' € SNets' derived
from a full network C, unless nodes n and m dominated eractly the same subordi-
nate nodes (in which case the arc labels differed),

n = m if and only if u(n) = p(m)

6 A Richer Semantics, with Relation

So far in this development, the arc labels, taken from a set of relations R supplied
by SNePS and by the user, have not been considered, and the semantic function p
has been defined over the skeletal structure of a SNePS network only. What is the
role of arc labels, and what exactly is the nature of their “punctuation” function
[Shapiro and Rapaport, 1991, pages 221-222]7 In [Shapiro and Rapaport, 1987],
the two networks given by syntactic rules SR.4 and SR.5 differ only in that one
has an arc labeled PROPERTY and the other has an arc in the same position
labeled PROPER-NAME; the two networks have different semantics, as expressed
in the semantic rules SI.4 and SI.5.

11 e vl ek o AR SR R R TR 1 401

S1.4 m is the Meinongian objective corresponding to the proposi-
tion that ¢ has the property j.

SI.5 m is the Meinongian objective corresponding to the proposi-
tion that Meinongian objectum i’s proper name is j. (j 1s the
Meinongian objectum that is ¢’s proper name; its expression in
English is represented by a node at the head of a LEX-arc ema- :
nating from j.) §

e w01 b AR T IR i TN

If arcs have no semantic import, but the meaning of a node is the entire network
in which it is embedded, in what principled way can the “structural” contribution
of an arc be distinguished from the “semantic” contribution of a node? If arcs make
fixed contributions to the meanings of molecular nodes, they should be involved

in the semantic function p. For an exploration of several alternative solutions, see
[Hill, 1994, Chpater 7].
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Figure 6: Z Figure 7: Z*

Here we present a solution that respects nicely both the definition of a molecu-
lar node and the treatment of atoms as the sole grounding of decorations. Re-
call that a molecular node is a set of a wires. Since wires are ordered pairs
(relation, head-node), they can be expressed as sets in the usual way:

(a,6) = {{a}, {a,b}}

These properties can be used to enhance the original y semantics to provide a
much richer value for the semantics p(n) of a node n, which treats the set of
relations R as atoms, along with the sensory data.

Let us return to the previous example, S and its S* of Figures 3 and 4, and
(because the computations become quite complex) define an even smaller network
context, the very restricted Z, shown in Figure 6, from which Z* is derived. Instead
of the semantically sterile labels for molecular nodes, we use their definitions as
sets of wires, which are ordered pairs, and convert the ordered pairs to sets.

% mi = {(LEX,Nancy)} (9)

= {{{LEX}, {LEX,Nancy}}} (10)
: m2 = {(PROPERNAME,m1), (OBJECT,b1)} (11)
é ' = {{{PROPERNAME}, {PROPERNAME, m1}}, {{OBJECT}, {OBJECT, b1}}}(12)

For this small example, the set of atoms, extended to include the relations that par-
ticipate in the semantics, is A = {Nancy, LEX, PROPERNAME, OBJECT}. To apply the
Solution Lemma to the same task as before—finding assignments to the selected
set of indeterminates, X = {m2,b1}—we need a system of equations expressing
t,}xqm as hypersets over AU X.

e

1 m2 = {{{PROPERNAME}, {PROPERNAME, {{{LEX}, {LEX, Nancy}}}}},
g o {{0BJECT}, {OBJECT, b1}}} (13)
e = {m2) (14)

e A
“__‘(Q?mpa.re these equations to the system that would have been used under the
?rlginal i, where the set of atoms was A4 = {m1}:
: s*:'} .
"o m2 = {mi,bi} (15)
b1 = {m2} (16)

33 ) )



384

f(m2) =

f(b1) = C{

378>

PROPERNANE

Figure 8: Assignments to b1 and b2 under u,

In Equations 13 and 14, m1 no longer exists as an object, having been superseded
by its definition as a set of wires.

As the solution f, of course, we want hypersets over A, that is, hypersets from
the universe V4, such that the following relationships are maintained:

f(m2) = {{{PROPERNAME}, {PROPERNAME, {{{LEX}, {LEX, Nancy}}}}},
{{0BJECT}, {OBJECT, f(b1)}}} (17)
f(b1) = {f(m2)} (18)

The solution is shown graphically in Figure 8. Compare the hypersets assigned
here (via f, which is the enhanced semantic function x, made manifest), to those
given under the plain x, shown in Figure 5. For the definition of y,, computation
of the solution, and its verification, see [Hill, 1994, Chapter 7).

We have computed the semantics of nodes in a standard SNePS network Z,
incorporating rather than neglecting the arc labels (and even allowing for multiple
arcs between the same pair of head and tail nodes, a configuration that can exist
in SNePS where the arcs are labeled with distinct relations). Given a SNePS
network S, the set of molecular nodes MOLFULL is not unstructured primitives,
but consists of wires, sets of ordered pairs (r,n), and the relations are included in
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the range of the semantic function.

pr : MOLFULL U BASE — VSENSORY v MOLATOM u = (19)

7 Results and Implications of u,

Though complex, p, is significant for reasons of the integrity of the semantics.
It seems obvious that the two arcs labeled PROPERTY and PROPERNAME in SR.4
and SR..5 above have something to do with the establishment of distinct meanings
for their respective dominating molecular nodes. In fact, they could both occur
in the same cognitive agent, as discussed above, since the BUILD command of
SNEPSUL would not judge them to violate the Uniqueness Principle. In other
words, the new version of Theorem 3 would state that n = m < pr(n) = p,(m),
no longer qualified by the exclusion of the case where n and m dominate exactly
the same structure but have different arc labels. Theorem 2 does not hold for
pr, however, since the SNePS network itself does not show the hyperset structure
rooted at nodes if relations from the arc labels are to be atoms along with the
sensory nodes.

The treatment given above distinguishes SNePS from other semantic network
approaches that have explicitly-named relations between nodes, but no way to
build them into nodes themselves at a fundamental level. The definition of the
SNePS object “wire” as a node and relation is the key here. (Of course, any
semantic network treatment could have such a definition added to it.) On the
other hand, the original semantic function g, which ignores arc labels in favor of
node identifiers and connectivity, shows what participates in the meaning of a node
(that is, what other nodes) without making a commitment as to how, and could
be applied (with its handling of circularity) to any graphically structured knowl-
edge/belief representation—even those that do not allow propositions modelled to
have multiple arguments in a single position (see [Shapiro, 1991, page 138ff.] for
comparison).

8 Contributions to Semantics of Representations

The semantic function p expresses the meaning of a concept, such as grandmother,
in terms not of other concepts, such as grandparents’ house, lilac eau de
toilette, and blood being thicker than water, but in terms of the discrete
sensory stimula involved—the voice, the sight of the house, the scent of lilacs, and
the myriad other components of feeling that contribute to the cognitive agent’s
‘notion of grandmother. Motivations and principles of SNePS are also supported.
_’The meaning of a node is highly dependent on its location within the surrounding
4network rather than on some external property of the concept itself.

“We ha.ve seen, as an improvement on the basic idea, an enhanced semantics p,
&corporat& the relations used as arc labels into the semantics as atoms, treatmg
““them also as primitives. It is also straightforward to define a “measured” p

_'_;that provides semantics to some degree of elaboration §, useful for computatlonal
' ’;md algorithmic analysis [Hill, 1994]. A further use of y would be to provide the

semantics of the entire “mind” of a cognitive agent, the union of meanings of all

rera
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nodes constituting the point basis, those nodes from one of which all other nodes -

are reachable.

Since non-well-founded sets must rely on apgs for their finite depiction, so a

knowledge representation that embraces circularity will naturally be graphical,
providing an advantage exclusive to graphical representations. »
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