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Abstract

General knowledge is widely applicable� but relatively slow to apply to any particular

situation� Speci�c knowledge can be used rapidly where it applies� but is only narrowly ap�

plicable� We present an automatic scheme to migrate general knowledge to speci�c knowledge

during reasoning� This scheme relies on a nested rule representation which retains the rule

builder�s intentions about which of the possible specializations of the rule will be most useful�

If both general and speci�c knowledge is available and applicable� a system may be slowed

down by trying to use the general knowledge as well as� or instead of� the speci�c knowledge�

However� if general knowledge is purged from the system after migration� the system will lose

the 	exibility of being able to handle di�erent situations� To retain the 	exibility without

paying the price in speed� a shadowing scheme is presented that prevents general knowledge

from being used when speci�c knowledge migrated from it is available and applicable� The

combination of knowledge migration and knowledge shadowing allows a deductive reasoning

system to learn from and exploit previous experience� Experience is represented by the in�

stance relationship between the general knowledge and the speci�c knowledge migrated from

it�

We also present techniques for implementing e
cient rules of inference in natural deduc�

tion systems by caching and recalling the history of rule activation steps that alleviate duplicate

pattern matchings and binding con	ict resolutions� To reduce the complexity of manipulating

rule activation steps from exponential to polynomial� methods of distributing the information

about rule activation steps are developed that minimize the number of activation steps and

the number of substitution compatibility tests among shared variables�

An implementation of these schemes in a network�based reasoning system is discussed�

Test results are shown that demonstrate the predicted bene�ts of these ideas�
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CHAPTER �� INTRODUCTION �

��� Role of Experience in Reasoning

Experience plays a major role in distinguishing an expert from a novice �Kolodner� ������

An expert is able to recall and exploit previous experience with already known or familiar

situations� and consequently is able to to behave more intelligently and perform more e�ectively

than non�experts in solving problems of certain domains� Roles of experience include re�nement

and modi�cation of reasoning processes and knowledge� as well as guidance of later decision

making and problem solving based on the analogy to previous cases �Kolodner and Kolodner�

������

The task of using experience in problem solving can be described in several di�erent

aspects� Experience does not simply mean the addition of acquired knowledge to memory �the

knowledge base
 from a series of problem solvings� The system may even be slowed down

by adding new knowledge indiscriminately because of increased search space� What is more

important for achieving system e
ciency is how to apply and use experience appropriately in

subsequent reasoning�

Experience�based problem solving is particularly e�ective for a problem domain that

retains the property of what we call locality in reasoning� Locality in reasoning is a phenomenon

that the same or similar kind of reasoning is repeated in a particular domain of application�

For instance� consider a plan�action system for the blocks world� All actions in this system are

decomposed into a series of primitive operations such as pick up a block� put a block on top of

another block� and put a block on the table� The number of primitive operations is limited� and

a complex operation is built by combining several primitive operations� For example� a plan

for achieving a goal pile three blocks A� B� and C on the table can be divided into a sequence

of primitive operations such as pick up the block C� put C on the table� pick up the block B�

put B on top of C� pick up the block A� and put A on top of B� It is easy to anticipate in this

system that a small number of rules for primitive operations can be used repeatedly even in a

single plan�

Another example of locality in reasoning can be found in the domain of fault diagnosis for

electronic devices� The primary objective of fault diagnosis is to check if a device is malfunc�

tioning� and� if it is� to determine which components of the device went wrong� An interesting
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heuristic in this application is that the components that were diagnosed as faulty in previous

testings are more likely to be faulty again� and therefore it is often a good idea to investigate

these components �rst when the same device is being diagnosed later� Thus� a diagnostic rule

for this particular component of the device can be repeatedly applied� Furthermore� if we

diagnose a sequential circuit� a diagnostic rule for a component with feedback lines may be

used as many times as clock cycles since the behavior of that component depends not only on

the current input values� but also on the previous output values�

The intuition behind the concept of locality in reasoning is that� since every human expert

is able to react e
ciently for a situation which is very familiar to him� an expert reasoning

system should also solve similar problems quickly�

��� Multi�Level Knowledge Structure

Obtaining better performance from experience relies on the capability of determining and

applying better knowledge among a large amount of available knowledge� In general� it is not

a simple task to establish clear�cut criteria for deciding which knowledge is better than other

knowledge� since it depends on several factors including the application domain� the reasoning

technique� the architecture of the system� the type of questions� the number of answers desired�

and so on�

There are several levels of knowledge in terms of generality or speci�city� This multi�level

knowledge structure is often emphasized to achieve both system e
ciency and generality� In

other words� more speci�c knowledge is applied to known problems for system e
ciency� and

more general knowledge is applied to unfamiliar and di
cult problems for generality�

It is interesting to observe that humans also use multi�level knowledge structure� Suppose

an electrical engineer who has little experience in circuit fault diagnosis tries to locate a faulty

component in a malfunctioning electrical circuit� This novice �rst uses general book knowledge

such as Ohm�s Law E�IR �E�voltage drop� I�current� R�resistance
 that relates the output

current with voltage drop� Ohm�s Law is so general that it can be applied to cases with any

voltage drop� However� in the course of locating a faulty component by using Ohm�s Law� the
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engineer may acquire the Voltage Short Rule as follows �Milne� ������

If one component connects the output and ground�

and the output is zero�

then that component may be shorted�

This rule is more speci�c than Ohm�s Law since it only considers a special case where the

voltage drop is zero �short
� If the engineer encounters a similar situation where the voltage

short causes the device to be faulty� �s
he can simply consult the voltage short rule and not

bother with Ohm�s Law�

There seem to be two di�erent paradigms in organizing multi�level knowledge structure

based on two di�erent de�nitions for knowledge hierarchy� The �rst paradigm focuses on

the depth of knowledge� and is usually called the deep knowledge versus shallow knowledge

distinction� This is an absolute distinction� meaning that a particular level of knowledge is said

to be deep or shallow without necessarily comparing to other levels of knowledge� The second

paradigm considers the generality of knowledge� and is usually called the general knowledge

versus speci�c knowledge distinction� Unlike the �rst distinction� this is a relative concept in

the sense that a particular level of knowledge is said to be more general than or more speci�c

than� and hence must always be compared with other levels of knowledge�

��� Deep Knowledge versus Shallow Knowledge

The deep versus shallow knowledge distinction is �rst made in �Hart� ������ Deep knowledge

has underlying representation of fundamental concepts such as causality or basic physical

principles� In many cases� deep knowledge is represented by a model using information about

structure� function� and behavior of the system �Davis� ����� Davis and Hamscher� �����

Genesereth� ����� Hamscher and Davis� ������ Problem solving by using deep knowledge

is called model�based reasoning� Model�based reasoning solves problems by reasoning about

a model of the behavior of objects in the domain� Modeling provides a di�erent kind of

knowledge for reasoning in many domains� Model�based reasoning is generally slow because of

longer inference chains�
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On the other hand� shallow knowledge directly associates input states with actions� and

mostly it is represented by a set of condition�action rules� Problem solving by using shallow

knowledge is called associational reasoning� Associational reasoning uses heuristics� empirical

associations� or rules of thumb� and has the advantage of e
ciency� It solves common problems

quickly by reducing long chains of inferences in the underlying deep knowledge to shorter

links between data and solutions� However� this reasoning is unable to solve unanticipated�

peripheral� or di
cult problems� because it solves problems by matching the current situation

against a set of predetermined situations�

As an example� look at a household electric buzzer system described in �Chandrasekaran

et al�� ������ Deep knowledge is mainly represented by function and behavior� A function for

�buzzing� can be represented as�

FUNCTION� Buzz� TOMAKE buzzing�buzzer� IF pressed �switch� by

behavior�

Buzz function says that if the switch is pressed� the buzzer goes to a state called buzzing

that is accomplished by a series of behavioral states named behavior�� The representation of

behavior� is�

BEHAVIOR� behavior��

Pressed�switch� BY behavior�

�Clapper electrical connection alternates	

USING
FUNCTION mechanical OF clapper

Repeated
Hit�Clapper�

USING
FUNCTION acoustical OF clapper

Buzzing�Clapper�

Buzzing�Buzzer�

behavior� says that the buzzer� if the switch is pressed� goes to a state where the electrical

connections in the clapper alternately close and open� which results in the state where the

clapper is repeatedly hit� which results in the buzzer being in the state of buzzing� From this

information about the model of the buzzer� some shallow knowledge about how to diagnose

the malfunction of the buzzer can be extracted and described by rules as�
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R�� If switch is pressed� but the clapper is not alternately

electrically connected and disconnected�

problem is in behavior��

R�� If switch is pressed� and

the clapper�s electrical connectivity alternates�

but the clapper doesn�t hit repeatedly�

the cause of buzzer not buzzing is some mechanical

malfunction of the clapper�

A multi�level knowledge system has been suggested to take advantages of both associa�

tional reasoning and model�based reasoning� Koton presented a method for overcoming the

speed limitation of model�based reasoning by remembering a previous similar problem and

making small changes to its solution �Koton� ����� Koton� ����� Koton� ������ This ends up

with a reasoning system that uses associational reasoning for e
ciency and uses model�based

reasoning for robustness that can combine the advantages of both while complementing their

individual limitations� In his system� model�based and associational reasoning is combined

through the use of case�based reasoning� and rather than solving the entire problem solving

using model based reasoning� the system uses the full power of the causal model only when

needed�

Knowledge compilation is another research direction to bridge the gap between the two

endpoints of the generality�e
ciency spectrum� In a broad sense� knowledge compilation is

the process of transforming some of the knowledge structures used by a given reasoning sys�

tem in order to improve the system�s run�time e
ciency �Chandrasekaran and Mittal� �����

Keller� ����� Neves and Anderson� ������ Speci�cally in Anderson�s ACT system �Anderson�

����� Neves and Anderson� ������ knowledge compilation transforms domain�general declara�

tive knowledge to domain�speci�c procedural knowledge� When speed is needed� procedural

knowledge is used� and when analysis or change is needed� declarative knowledge is used�

��� General Knowledge versus Speci�c Knowledge

The paradigm of distinguishing general knowledge from speci�c knowledge has been discussed

mostly in rule�based systems� Since this is a relative distinction� categorizing the general
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level of knowledge is done by de�ning a more general than or more speci�c than relation� An

implementation�independent de�nition for these relations can be described as below �Mitchell�

������

Rule r� is more general than rule r� �or r� is more speci�c than r�
� if in any world

r� can be used to show at least the same results as r��

We have found three di�erent but related approaches to rule generality in which the

de�nition of more general than or more speci�c than relations are dependent upon speci�c

application domains�

The �rst de�nition is used for con	ict resolution in production systems �McDermott and

Forgy� ����� Sauers� ������ Con	ict resolution in production systems is a method by which a

rule based interpreter may select one of a set of applicable rules to be applied in some problem

solving situation� One of the selection strategies for con	ict resolution is the speci�city strategy

which prefers rules that test more speci�c features of the environment over rules which test

more general features� and are meant to recognize special case relationships between rules� To

do this� the relation more speci�c than is de�ned in �McDermott and Forgy� ����� as follows�

Rule r� is more speci�c than rule r� if

��
 the two rules are not equal�

��
 r� has at least as many antecedent clauses as r�� and

��
 for each antecedent clause in r�� with constant elements c�� c�� � � �� cn� there

exists a corresponding antecedent in r�� with constant elements c
�
�� c

�
�� � � �� c

�
m� such

that fc�� c�� � � �� cng is a subset of fc��� c
�
�� � � �� c

�
mg�

For example� A�a� b� z
�B�c� w
�C�x
� G is more speci�c than A�a� b� z
�B�c�w
� G

according to ��
� which is also more speci�c than A�x� b� z
� B�v� w
 � G according to ��
�

where v� w� x� z are variables�

The second de�nition of rule generality is used in concept learning where a general de�

scription of a class of objects is derived from a set of examples and non�examples �Mitchell�

������ In this work� each instance is described by an unordered pair of feature vectors� each
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of which speci�es the size� color� and shape of an object� For example� f�Large Red Square


�Small Yellow Circle
g is an instance� Generalizations of these instances are represented in a

similar way� except that some of the properties are replaced by question marks indicating that

they are unimportant� For example� f�Small � Circle
 �Large � �
g is a generalization repre�

senting the set of all instances containing one small circle and one large object� The matching

predicate M�g�i
 is de�ned for a generalization g and an instance i� Here� g matches i if and

only if there is a mapping from the pair of feature vectors of g onto the pair of feature vectors

of i such that either ��
 the feature restriction in g is identical to the feature value in i� or ��


the feature restriction in g is a question mark� For example� the above example generalization

f�Small � Circle
 �Large � �
g matches the example instance f�Large Red Square
 �Small

Yellow Circle
g� Here� the more speci�c than relation is de�ned as follows�

Given two generalizations� G� and G�� G� is more speci�c than G� if and only if

fi � I j M�G�� i
g � fi � I j M�G�� i
g� where I is the set of all instances� and M

is the matching predicate�

In other words� G� is more speci�c than G� if and only if G� matches a proper subset of

the instances that G� matches� For example� both f�Large Red Circle
 �Large � �
g and f�� �

Circle
 �Large Blue �
g are more speci�c than f�� � Circle
 �Large � �
g� This more speci�c

than relation imposes a partial ordering in the generalization hierarchy� and generalization is

characterized as a search problem�

The third de�nition of rule generality is in the domain of logic programs in which more

general than is equivalent to subsumes� and more speci�c than is equivalent to is subsumed by�

In the ��subsumption theory �Plotkin� ������ clause C is more general than clause D if there

exists a substitution � that satis�es D � C�� In this theory� the subsumption relation between

two clauses is determined without consulting any other clause� For example� Q�x
 � P �x


subsumes Q�x
�R�x
� P �x
 since the former must succeed for any value of x for which the

latter does� In �Buntine� ������ the inadequacy of ��subsumption is discussed� and a generalized

subsumption is suggested�
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Clause C subsumes �or is more general than
 clause D with respect to logic program

P if for any Herbrand interpretation I such that P is true in I� and for any atom

A� C covers A in I whenever D covers A� Here� C is a generalization of D� and D is

a specialization of C�

Here� S�x
 � P �x
 subsumes Q�x
 � R�x
 � P �x
 with respect to Q�x
 � S�x
� In

this method� rules can be organized into a structure called a specialization �generalization


hierarchy� Induction can be achieved by searching through those clauses more general than a

known specialization of a clause� for instance� a ground fact� Alternatively� a search can be

made of those of clauses more speci�c than a known generalization�

We are interested in generating a speci�c rule from a general rule during a deduction�

Some of variables will be replaced by constants� and the speci�city relationship between these

two rules is determined based on this substitution� Therefore� our de�nition of rule generality

is based on a substitution that uni�es two rules�

Rule r� is more speci�c than rule r� if there exists a non�empty substitution � �

fc��v�� c��v�� � � �g such that r� � r� �� Here� v�� v�� � � � are variables� and c�� c��

� � � are constants�

Note that � is non�empty� meaning that two rules should not be the same� This is obvious

since the same rule will never be generated from itself� Also � does not contain a binding v��v�

where both v� and v� are variables� Details are in Chapter ��

��� Knowledge Redundancy

The multi�level knowledge structure is closely related to the issue of knowledge redundancy in

which the existence of both general and speci�c knowledge causes the same conclusion to be

reached by more than one way�

One of the issues that arises in applying knowledge representation� reasoning systems to

real problems is the prevention of performance degradation caused by the addition of a large

amount of redundant knowledge in the course of reasoning� In automated reasoning� redundant
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knowledge has been considered a main culprit of performance degradation �Wos� ����� from

the fact that it increases the search space by providing more alternatives during an inference�

while the same goal can still be reached without it� Hence� research in this paradigm has

focused on preventing redundant knowledge from being asserted during inference �Wos� �����

or eliminating it after inference �Markovitch and Scott� ������

However� we claim that recognizing and avoiding knowledge redundancy is not a sim�

ple task� and often more complicated than doing reasoning itself� There is no easy way of

determining whether a given knowledge base is redundant� since that is known to be unde�

cidable �Greiner� ������ Furthermore� redundant knowledge may become necessary in most

real reasoning systems with limited resources� because there may be a goal that can only be

reached by using redundant knowledge that requires fewer resources �Buntine� ������ From

these observations� instead of attempting to remove redundancy� we tackle the issue of im�

proving deduction e
ciency in a redundant knowledge base by using techniques of extracting

experience information from redundant knowledge and applying it to future problem solving�

Our motivation for improving deduction e
ciency by producing and using redundant

knowledge can be explained by the following two examples�

First� consider an example knowledge base consisting of a rule �x �man�x
 � mortal�x
�

and a fact man�Socrates
� The question p�Socrates
� for variable p� asked to this knowledge base

is answered by deriving a new fact mortal�Socrates
� and the addition of mortal�Socrates
 to

the knowledge base causes fact redundancy� Then� the same question p�Socrates
 asked in a

subsequent deduction can be answered more quickly if we can block the rule from the activation

and directly retrieve mortal�Socrates
� since the rule is not deriving any new result other than

mortal�Socrates
 which is already in the knowledge base� So� even though mortal�Socrates


is redundant� it is certainly useful�

The second example considers rule redundancy� Suppose a knowledge base contains a

generic rule for the transitive relation rg � �r �trans�r
 � �x�y�z �r�x�y
 � r�y�z
 � r�x�z
��

and facts trans�on
� on�a�b
� on�b�c
� and on�c�d
� A natural deduction derivation of on�a�c


from this knowledge base generates a more speci�c transitive rule rs � �x�y�z �on�x�y
 � on�y�z


� on�x�z
� as an intermediate result by applying universal instantiation and modus ponens�
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This speci�c rule creates redundancy since the next query on�b�d
 can now be solved in two

ways� either by using the generic transitive rule rg or by using the speci�c on transitive rule

rs� If the system is intelligent enough to select rs over rg� this particular query on�b�d
 can

be answered more quickly since rs produces fewer inference steps than rg does� On the other

hand� for a more general query r�b�d
 for variable r� rg should be preferred to rs� since the

query is looking for all possible relations between b and d� not restricted to the on relation�

The question now is how to make a choice systematically according to the current situation�

��� Approach

In this section� we describe our approach to achieving system e
ciency in a multi�level knowl�

edge structure by using the general vs� speci�c knowledge paradigm and to avoiding perfor�

mance degradation caused from knowledge redundancy�

Our objective is to develop deductive learning mechanisms to control deductive inference

by using past problem�solving experience and by avoiding duplicate deduction steps for similar

problems� and eventually to improve problem solving time in subsequent inferences� Generally�

we are interested in a system where experience monotonically adds knowledge to the knowledge

base� In this environment� the general issue would be how maximal advantage can be taken

of old partial results in solving new problems and how the regeneration of partial results can

be avoided when solving new problems� We are also concerned with achieving both generality

and system e
ciency by providing systematic decision�making procedures to select the proper

level of knowledge�

Redundant knowledge that is produced during a deduction is treated as a piece of expe�

rience� and the information about how the redundant knowledge was generated is represented

and stored in the expertise base� Learning and deduction are integrated so that the expertise

information produced through learning can be recalled and exploited during future deduction

to solve similar problems more e
ciently�

The task of using experience to allow similar problem to be solved more e
ciently is

tackled at two di�erent levels� one at the rule selection level and the other at the rule activation
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level��

Learning at the rule selection level focuses on developing techniques of deciding the best

possible branch in a deduction tree by choosing an appropriate rule among many applicable

rules� A selection criterion is the speci�city relationship among rules that is obtained from

previous reasoning� Two learning modules� knowledge migration and knowledge shadowing�

are provided for experience�based rule selection �Choi and Shapiro� ����a� Choi and Shapiro�

����b��

Knowledge migration� formally de�ned in Section ���� is a process of acquiring speci�c

knowledge from general knowledge during a deduction� During this process� redundant knowl�

edge is generated� and experiential information is stored in the expertise base� In rule�based

systems� migrated knowledge is a rule that is a partial instantiation of a general rule with one

or more of its variables replaced by ground terms� In the previous transitive rule example� rs

is said to be migrated from rg in the course of answering on�a�c
� Experience is represented

by relative speci�city relationships between the general and the migrated knowledge� and is

important to construct rule selection control knowledge that is used in future deductions�

Knowledge shadowing� formally de�ned in Section ���� recognizes redundancy� recalls the

experiential information from the expertise base and compares it with the current situation�

and blocks those rules that are determined to be unnecessary� Decision�making about which

rule must be blocked and which rule must be used depends on the content of the expertise

base and the nature of the current query� A general rule is activated for a general query� and

a speci�c rule is activated for a speci�c query� In the transitive rule example� rg would be

blocked for the query on�b�d
� while rg would be blocked for the query r�b�d
�

Learning at the rule activation level considers the issue of fast execution of selected rules

by caching and recalling the history of rule activation steps� This also corresponds to the

problem of e
cient implementation of various rules of inference in natural deduction systems�

In real applications� rules are often complicated� containing many antecedents and many shared

�By �rule�� we mean the factual�level rule that is stored in the knowledge base and that consists of antecedents

and consequents� In contrast� a meta�level rule such as modus ponens will be called an �inference rule� or �rule of

inference�� So �rule activation� indicates an attempt to derive the consequent of a factual�level rule by satisfying

its antecedents�
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variables� and as a result activating rules of inference can be as costly as the selection of proper

rules� In most natural deduction systems� activating a rule of inference involves a number of

pattern matchings and a number of testings for resolving binding con	icts of shared variables�

It is also possible that the same rule could be executed several times when similar deductions

are repeated� From this observation� a special data structure named �rule use information�

�RUI
 has been used to exploit the information about rule activation history �Hull� ������ Rule

activation steps are saved in the RUI set structure of each rule and recalled the next time to

reduce the duplicate rule activation jobs� A RUI set has been implemented in the SNePS

knowledge representation and reasoning system by using a single linear list for each rule� but

the processing of this linear RUI set is intractable due to the exponential complexity to process

the set as the number of antecedents in a rule and the number of instances of the antecedents

increase� To achieve real performance enhancements� we propose two algorithms S�indexing

and P�tree that reduce the complexity of processing the RUI set to polynomial time by

distributing information over several places and resolving only necessary instances �Choi� �����

Choi and Shapiro� ������

��	 System Overview

In general� a deductive reasoning system consists of two major components� the knowledge

base containing facts and rules� and the inference engine performing reasoning about knowl�

edge� In our system� called SNIP��� �SNePS Inference Package version ���
� the inference

engine is augmented with a number of learning components that accumulate and make use of

expertise information during a deduction� SNIP��� consists of three components� ��
 storage�

��
 reasoning� and ��
 learning as shown in Figure ����

The storage component includes the knowledge base� the expertise base� and the rule

activation cache� The knowledge base maintains rules and facts� The expertise base stores

deduction expertise generated during reasoning� This experiential information includes the

instance set information and the origin set information that are described in Chapter �� The

rule activation cache contains the history of rule activation steps of each rule that is also a
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Figure ���� Architecture of SNIP���
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part of expertise information�

The reasoning component is a pure logical inference engine that initiates a deduction�

applies a set of rules of inference� and collects all results�

The learning component includes modules of knowledge migration� knowledge shadowing�

S�indexing� and P�tree� Knowledge migration updates both knowledge base and expertise

base by asserting derived knowledge to the knowledge base� and at the same time by storing

deduction expertise information to the expertise base� Knowledge shadowing retrieves infor�

mation from the expertise base to choose the best knowledge to be applied� Both S�indexing

and P�tree retrieve and update the content of the rule activation cache�

Several characteristics of SNIP��� are worth mentioning�

First� SNIP��� is basically a natural deduction system� Rules are represented by not only

standard connectives such as negation� conjunction� and disjunction� but also non�standard

connectives and quanti�ers as described in Chapter �� These non�standard connectives and

quanti�ers represent rules more expressively and more compactly than other logic represen�

tations� The price that we should pay for the compact representation is e
ciency� since in a

natural deduction system each rule is associated with rules of inference that are used to derive

new knowledge from existing knowledge and the complexity of executing rules of inference is

exponential in terms of number of instances of each pattern� The main accomplishment we are

claiming is that by using rule activation algorithms we not only express rules in an expressible

and more human�like way� but also achieve polynomial complexity for the execution of rules

of inference�

Second� there are � directions of reasoning in SNIP���� ��
 backward chaining� ��
 for�

ward chaining� and ��
 bi�directional chaining� Backward chaining is initiated by asking a

question� and requests are directed from consequents of rules to antecedents of rules� When

the antecedents are satis�ed� the information is directed back to the consequents to draw new

conclusions� We call this step forward triggering� So backward chaining is the combination of

backward requesting and forward triggering� Forward chaining is initiated by adding a new

fact� and reports �derived instances
 are directed from antecedents of rules to consequents

of rules� Bi�directional inference is the combination of backward and forward chaining� Bi�



CHAPTER �� INTRODUCTION ��

directional inference is made possible by retaining the information about previous backward

chaining� and using this information in the future forward chaining�

Third� the system adds derived knowledge to the knowledge base monotonically� This as�

sumption can be contrasted with the method of selective assertion or the method of forgetting�

This is discussed in Chapter ��

Fourth� a query with variables expects all possible answers at once� This is di�erent from

most deduction systems that pursue a single answer� or �nd multiple answers but one by one

by a sequence of queries�

��
 Outline of the Dissertation

In Chapter �� a number of speedup learning systems are reviewed and compared with SNIP���

in terms of how experiential information is retracted� retained� and exploited�

In Chapter �� techniques of learning at the rule selection level are presented� The algo�

rithms of knowledge migration and knowledge shadowing are described along with the repre�

sentation of deduction expertise information in the expertise base�

In Chapter �� techniques of learning at the rule activation level are presented� The RUI

data structure is explained� and the algorithms of S�indexing and P�tree are described�

In Chapter �� a number of application problems are tested to show the improvement of

system performance resulted from the learning methods�

In Chapter �� we summarize the dissertation and discuss future work�
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��� Machine Learning

The issue of developing experience�based problem solving methodologies has been pursued in

the area of machine learning� In general� learning denotes changes in a system that are adap�

tive in the sense that they enable the system to do the same thing or tasks drawn from the

same population more e
ciently and more e�ectively the next time �Simon� ������ Speci�cally�

learning algorithms attempt to obtain answers more economically� provide more accurate solu�

tions� cover a wider range of problems� or simplify coded knowledge �Forsyth and Rada� ������

The area of machine learning is largely classi�ed into inductive learning �Michalski� ����� and

speedup learning �Laird et al�� ����� Mitchell et al�� ����� depending on whether the system�s

behavior is changed by acquiring more knowledge from external sources �inductive learning


or by re�ning and modifying the current knowledge into a better form �speedup learning
�

Inductive learning produces general rules or procedures from externally supplied exam�

ples� and predicts a result for a new example by using the acquired rules� Inductive learning

is also called empirical learning or similarity�based learning� Inductive learning is further clas�

si�ed into supervised learning and unsupervised learning� In supervised learning� examples

of the form �xi� yi
 are provided� and the system is supposed to learn a function f such that

f�xi
 � yi for all i� In particular� if yi has two values �e�g� �arch� or �no arch� in Winston�s

arch�learning algorithm
� it is called concept learning� Unsupervised learning is to �nd regu�

larities among a given collection of xi values� Clustering and discovery are two examples of

unsupervised learning which is less developed compared to supervised learning�

Speedup learning� also called skill acquisition or deductive learning� improves a system�s

performance by exploiting current knowledge more e�ectively and by reformulating given

knowledge into a better form� Instances of speedup learning include the introduction of macro

operators �Fikes et al�� ����� that compose a sequence of primitive operators into a single

operator to reduce the search depth required to move from the start state to a goal state�

and the introduction of metalevel search control knowledge �Minton� ����� that enables the

selection of proper inference branches� Knowledge compilation �Anderson� ����� Keller� �����

Neves and Anderson� ������ explanation�based learning �EBL
 �DeJong and Mooney� �����

Ellman� ����� Mitchell et al�� ������ chunking �Laird et al�� ������ and case�based reasoning
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�Kolodner et al�� ����� are notable examples of speedup learning�

We are interested in speedup learning methods because our primary concern is to improve

system�s performance through experience� This chapter reviews some of speedup learning sys�

tems and compares them with our approach� The comparison is based on two major issues that

have been used to evaluate the e�ectiveness of learning algorithms �Kolodner and Kolodner�

������

The �rst issue is how to encode or represent experience appropriately� Although each

system has its own terminologies and de�nitions about experience� and hence some details

are di�erent across the systems� one thing that is common to all systems is that experience

should be represented to make future reasoning more e�ective� Experience in speedup learning

is often obtained by the relative relationship between the learned knowledge and the original

knowledge from which it is learned� Thus� a proper representation of experience is related to

the concept of knowledge hierarchy and knowledge redundancy� Some of the questions in this

issue can be raised as follows�

� Is there a distinction between general and speci�c knowledge� How are the relationships

among di�erent levels of generality represented�

� Is knowledge redundancy maintained as a result of adding learned knowledge to the

knowledge base�

� How does experience change the structure of knowledge in memory�

The second issue is how to recognize� recall� and use represented experience in reasoning�

In other words� how to integrate experiential information with the problem�solving process�

Some of the questions in this category are�

� Is there a systematic way of exploiting redundancy�

� How to distinguish between useful knowledge and unnecessary knowledge in problem

solving�

� How to prevent unnecessary knowledge from being used�
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Several speedup learning systems including EBL� knowledge compilation� chunking� and

case�based reasoning are reviewed according to the aforementioned issues� These systems are

compared with SNIP��� in Section ����

��� Explanation�Based Learning �EBL�

����� General Description

EBL �Ellman� ����� Mitchell et al�� ����� is a speedup learning technique that can be applied

to learn macro operators and also to learn search control knowledge� EBL starts from a

description of a target concept that is too abstract to be operational� and a training example

is given along with su
cient domain knowledge to explain why the example is an instance of

the target concept� The explanation structure is similar to a normal deduction derivation tree�

This structure is traversed to learn a new description that is more operational than the target

concept and also more general than the training example�

Inputs of EBL consist of � components� �
 a target concept that is a concept to be learned�

�
 a training example that is an example of the target concept� �
 the domain theory which

is a set of rules and facts to be used in explaining why the training example is an instance

of the target concept� and �
 the operationality criterion that is a description of predicates

over descriptions� specifying the form in which the learned description must be expressed� The

output of EBL is a description that is both a generalization of the training example and a

specialization of the target concept which satis�es the operationality criterion�

For example� an initial domain theory is represented by the following collection of rules

�Mooney� ������ Here� a term with a question mark denotes a variable�

knows��x��y
 � nice�person��y
 � likes��x��y

animate��z
 � knows��z��z

human��u
 � animate��u

friendly��v
 � nice�person��v

happy��w
 � nice�person��w


Assume the target concept is the rule �knows��x��y
 � nice�person��y
 � likes��x��y
��

and the operationality criterion is de�ned by human and happy� This means that the target
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likes(John, John)

likes(?x, ?y)

knows(?x, ?y)

knows(?z, ?z)

animate(?z)

animate(?u)

human(?u)

human(John)

nice-person(?y)

nice-person(?w)

happy(?w)

happy(John)

Figure ���� The explanation structure for solving likes�John� John�

concept should be described by human and happy predicates� Since the initial description of

likes does not satisfy the operationality criterion� a speci�c training example is provided as

follows�

Given human�John� and happy�John�� show that likes�John� John��

Now a deduction derivation of likes�John� John� is performed from the above collection of

rules and the facts human�John� and happy�John�� The explanation structure for this problem�

as shown in Figure ���� is similar to the derivation tree�

One simple rule that might be learned by traversing this explanation structure is

human�John
 � happy�John
 � likes�John�John


Instead� EBL performs the step of generalization during this traversal and a more general

rule than the above rule is actually learned as below�

human��z
 � happy��z
 � likes��z� �z
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This is a generalization of the training example by generalizing the constant John to the

variable �z so that it can be applied to all people� Also� this rule is a specialization of the

target concept since the concept of likes is de�ned by more operational predicates human and

happy�

����� Representing and Using Experience in EBL

Experience in EBL consists of the learned description at the end of learning and the explanation

structure that is similar to the deduction tree�

The relationship between the learned rule and the existing rules can also be found in the

explanation structure� although this relation is not explicitly exploited in later reasoning�

Rule redundancy is created by adding the learned rule to the knowledge base� In the

previous example� the learned rule �human��z
 � happy��z
 � likes��z� �z
� is redundant

because all queries about likes that can be solved by using this rule can also be solved without

using this rule� The speci�city level of the learned rule can be described in two di�erent ways�

I�e� the learned rule is more speci�c than the domain theory rule� but is more general than the

training example�

Redundancy in EBL is formally studied by Greiner and his colleagues �Greiner and

Likuski� ����� Greiner� ������ This work is basically an extension of Smith�s work �Smith�

����� of �nding an optimal strategy for answering a given query to the redundant knowledge

base� According to this study� there are two ways of improving the expected cost of a deriva�

tion� ��
 by determining the best strategy� and ��
 by adding redundancies� Generally� using

��
 without ��
 causes ine
ciency� but Greiner�s work indicates that e
ciency can be achieved

by combining ��
 and ��
�

In fact� Greiner proved that �nding an optimal strategy in a general redundant knowledge

base is NP�complete� He also claimed that leaving in both the learned rule and the original

rule� as most EBL systems do� is never e
cient� Instead� his method of �nding an optimal

strategy removes one of the general rules from the knowledge base to make the knowledge

base irredundant� In the example� �knows��x��y
 � nice�person��y
 � likes��x��y
� might

be deleted from the knowledge base to remove the redundancy� As Greiner pointed out� this
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method is only applicable to solving the same query� and in order to solve di�erent queries�

both rules must be left in the knowledge base� Another limitation is that it can only be applied

to disjunctive knowledge bases in which rules can have at most one antecedent� So even the

likes rule violates this condition�

EBL separates learning from problem solving� Learning is done by traversing the expla�

nation structure to produce a new description� Although the explanation structure implicitly

represents the relationship between the learned rule and existing rules� this information is not

used in future problem solving�

It seems that the EBL community has focused on generating new descriptions� not having

put much emphasis on using these learned descriptions in future problem solving� There is no

systematic decision�making of which rule should be applied in the current situation� Rather�

since the learned rule is more operational than the initial domain theory� a set of learned rules

is tried �rst� and if they fail to solve the current query� the domain theory is applied�

The EBL method is also used in acquiring e�ective control rules �Minton� ����� that pur�

sue the best alternatives at each choice point� Minton is concerned about the genuine e
ciency

improvement in an EBL system by introducing the notion of utility that is a cost�bene�t eval�

uation of acquired knowledge� Utility measures the e�ectiveness of search control rules� and

only those search control knowledge that are determined to be e�ective will be stored� One

disadvantage might be that calculating the utility values is complex�

��� Knowledge Compilation

����� General Description

The main purpose of knowledge compilation is to resolve the problem of representation mis�

match that has been debated mostly in the knowledge acquisition community� Representation

mismatch means that a domain expert provides an initial representation whose form often can�

not be interpreted e�ectively by a target performance system� This is similar to the declarative

vs� procedural knowledge distinction�

We discuss knowledge compilation mainly by considering Anderson�s ACT system �An�



CHAPTER �� BACKGROUND ��

derson� ����� Neves and Anderson� ������ In ACT� knowledge compilation transforms domain�

general declarative knowledge to domain�speci�c procedural knowledge by tracing the activa�

tion of a general production to a particular problem task� Domain�general knowledge that is

not committed to a particular use is stored in a memory called the declarative memory which is

separate from the production memory that consists of compiled productions that are encoded

in a use�speci�c way�

Knowledge compilation is accomplished by two subprocesses� proceduralization and com�

position� Only the proceduralization is discussed here� Proceduralization builds a domain�

speci�c production from a domain�general production� and compiled knowledge by procedu�

ralization is an instance of general knowledge from which it is compiled with some variables

replaced by constant elements� For instance� consider the following production described in

�Anderson� ������

If the goal is to achieve �relation on �arg� and �arg�

and �operation achieves �relation on �term� and �term�

Then use �operation

Here� terms pre�xed by ��� denote variables� This production might apply when the

goal is to insert an element into a list� and there is a LISP function CONS that achieves this

goal� In this case� the goal is �to achieve insertion of arg� into arg��� and our knowledge about

CONS is �CONS achieves insertion of argument� into argument�� both of which are stored in

the working memory� So we get the following variable bindings�

�relation � insertion

�operation � CONS

�arg� � arg�

�arg� � arg�

�term� � argument�

�term� � argument�

Notice that the second condition of the production ��operation achieves �relation on

�term� and �term�� is matched with �CONS achieves insertion of argument� into argu�

ment��� and is eliminated in the generation of proceduralized production� In this case� a

domain�speci�c production produced by the proceduralization is as follows�
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If the goal is to achieve insertion of �arg� into �arg�

Then use CONS�

One characteristic of proceduralization is that it eliminates reference to the declarative

knowledge of the domain� and builds the consequences of the knowledge into domain�speci�c

production rules�

����� Representing and Using Experience in Knowledge Compilation

In knowledge compilation� two separate knowledge bases are maintained for storing di�er�

ent levels of production rules� Domain�general declarative rules are stored in the declarative

memory� and domain�speci�c procedural rules are stored in the production memory� Experi�

ence consists of those rules in the production memory compiled from the general productions�

and the speci�city relationship represented by the instantiation� A rule with more variables

is regarded as more general than the compiled version with some variables instantiated by

constants�

As in EBL� knowledge compilation separates learning from problem solving� Compiled

rules are stored separately in the production memory� but the instance relationship obtained

during the proceduralization is not explicitly maintained� When solving a problem� the system

refers to domain�speci�c rules in the production memory �rst� and then uses domain�general

rules in the declarative memory if the speci�c rules fail to solve the current problem� Occa�

sionally� knowledge compilation contributes to system performance by preferring speci�c rules

and by keeping redundant general rules from being used� as indicated in the following quote

in �Anderson� ������ section ����

�Knowledge compilation in ACT� can actually change the direction of problem

solving because of changes in the con	ict resolution ��� �deleted
 �� compilation is

unsafe in that it is possible that a compiled production will �re in situations when

the production�s
 from which it was compiled would be blocked� This is regarded

as a feature� not a bug� in the theory because this allows the system to favor the

more e
cient rules it has formed��
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In fact� this phenomenon is the motivation of our knowledge shadowing scheme which

favors more speci�c rule by blocking more general rules from the inference� However� the

decision of which productions to block in ACT is not systematic in that a compiled production

is always �red �rst� and if it fails to solve the problem� the production from which it was

compiled will be �red�

A method of using EBL for knowledge compilation is suggested in LSPA �Learning Sys�

tems for Pilot Aiding
 �Levi et al�� ������ In LSPA� the pilot�s initial representation corresponds

to a domain theory of facts and relationships about aircraft tactical maneuvers� and learning

instances can come from records of pilot behavior in a 	ight simulation� Knowledge compila�

tion consists of EBL that creates macro rules that generalize and summarize the explanation

of the learning experience� and the macro translator that converts each macro rule into a plan

that can be directly executed�

��� Chunking

����� General Description

Chunking �Laird et al�� ����� Laird et al�� ����� is a general learning mechanism developed for

the SOAR architecture� SOAR is a general problem solver in which the structure of problem

solving supports learning by determining when new knowledge is needed� what to learn� and

when new knowledge can be acquired� In goal�based problem solving� chunking creates rules

that summarize the processing of a subgoal� so that in the future� it can lead the problem

solver directly to the solution without redoing subgoals�

A chunk is basically a production rule consisting of conditions and actions� As each

subgoal terminates� successfully or unsuccessfully� a chunk is built that tests the relevant

conditions and produces a preference for one of the operators at the choice point�

As an example� consider a macro problem solving in SOAR to an eight puzzle problem�

There are eight tiles in a �x� frame whose position is named A through I as in Figure ����a
�

The initial and goal states are represented in Figure ����b
 and �c
� respectively�

Searches performed for the �rst three operators are shown in Figure ���� The �rst operator



CHAPTER �� BACKGROUND ��

(a) The positions
in the frame

(b) Initial State (c) Goal State

B C D

EAI

H G F

4 2

8

76

13

5

1 2 3

4

567

8

Figure ���� An eight puzzle problem

is to place the blank tile in cell A� the second operator is to place the number � tile in Cell B�

and the last operator is to place the number � tile in Cell C� There are � kinds of search tree in

each operator� The left column shows the search without learning� the middle column shows

the search during learning� and the right column shows search after learning� Here� horizontal

arrows indicating no choice is required cause no chunks to be created� A ��� indicates that a

chunk is created that preferred a given operator� while a ��� indicates that a chunk is created to

avoid an operator� In this example� you can notice that search steps are reduced by applying

chunking�

Extensive comparisons between chunking and EBL are made in �Rosenbloom and Laird�

������ The similarities of the two methods are discussed in terms of mapping EBL to SOAR�

In this mapping� the target concept in EBL corresponds to a goal to be solved in SOAR�

the training example corresponds to the situation that exists when a goal is generated� the

operationality criterion can be expressed in terms of the predicates existing prior to the creation

of the goal� and the domain theory corresponds to a problem space in which the goal can be

attempted� Also the proof in EBL can be thought of as the problem solving in SOAR� and the

explanation structure can be mapped onto the backtracked production traces in SOAR�

����� Representing and Using Experience in Chunking

Chunking is a technique of learning search control knowledge by forming new macro opera�

tors that take big steps in the search space� By contrast� EBL and knowledge compilation
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Figure ���� Searches performed in an eight puzzle problem
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are techniques of learning composite rules that are included in the knowledge base creating

redundancy�

Experience in chunking is represented by a number of chunks created during problem

solving� A chunk is basically a production rule consisting of conditions and actions� The

condition of a chunk consists of those aspect of the situation that existed prior to the goal� and

this corresponds to the working�memory elements that were matched by productions that �red

in the goal� but that existed before the goal was created� The actions of a chunk are based on

the results of the subgoal for which the chunk was created�

The method of chunking is in	uenced by a plan learning method in the STRIPS robot

planning system �Fikes et al�� ������ A process for generalizing a plan is added to STRIPS�

and a triangle table is used to store generalized plans that contain a sequence of operator

applications� These macro operators could be applied to speed up subsequent plan creation�

They also found that problem�solving time and search�tree sizes are all smaller when using

learned macro operators�

Performance in chunking is measured by the number of decisions necessary to perform

a task� but the cost of matching chunks might be huge when a large number of complex

chunks are included� In order to analyze the issue of expensive chunks� a model of matcher

is presented in �Tambe and Newell� ����� Tambe and Rosenbloom� ������ and the claim is

that� although it can be proved that smarter matchers will not eliminate all expensive chunks�

learning performance can be improved with some changes in the matcher�

��� Case�Based Reasoning �CBR�

����� General Description

CBR is the problem solving process which solves problems by analogy to previous or hypo�

thetical cases �Hammond� ����� Kolodner et al�� ����� Simpson� ����� Sycara� ������ CBR can

be used to improve the initial understanding of a problem and the generation of solutions� as

well as the reinterpretation and selection of alternative lines of reasoning in case of misunder�

standing or a failure� CBR is very similar to analogical reasoning� The di�erences between
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these two approaches are mentioned in �Burstein� ����� and �Shavlik and Dietterich� ������

Storing new episodes and comparing them with previously�stored episodes are two main

tasks in CBR� Storing new episodes is not a simple matter� since unrestricted storing might

make it necessary to compare the new problem with all episodes in memory� Therefore� con�

structing an indexed memory structure is an important issue in this technique �Kolodner and

Simpson� ����� Kolodner� ����� Schank� ������ By comparing the new episodes with previous

episodes� the system can infer additional properties of the new episodes� and also generalize

the new episode and one or more stored episodes to produce a more abstract concept�

The CBR process involves �Kolodner et al�� ������ ��
 locate and retrieve potentially

applicable cases from long term memory� ��
 evaluate selected cases to determine the applicable

ones� ��
 transfer knowledge from the old case�s
 to the current one� Problem solving by

consulting previous cases and re�ning them is e�ective especially for ill�de�ned domains without

a good domain theory including medical decision making and modeling judges�

����� Representing and Using Experience in CBR

Experience in CBR is denoted by stored episodes with their indexes� We review some developed

CBR systems to see how episodes are represented�

The MEDIATOR program �Simpson� ����� provides advice about which mediation plans

might be useful in the resolution of disputes encountered on a daily basis� In this system�

experience is represented by generalized episodes �Kolodner� ����� Schank� ����� which have two

components� ��
 the norms which represent the abstracted content of all the cases organized

within that particular episode� and ��
 the indices which connect the generalized episode with

the tree of other generalized episodes and speci�c cases organized below it� For instance�

consider the following two dispute problems�

PROBLEM�� 

DISPUTE�� with

name� orange
dispute

disputant�� sister�

argument�� wants possession of orange�

disputed
object� orange�

disputant�� sister�

argument�� wants possession of orange�
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norms� dispute is over possession of object

object is a kind of physical object

disputants are people

disputant�s goals are physical control goals

precedent case is orange dispute












































indices� � �

goals disputes object

� � �

position window orange

� � �

window dispute orange dispute

Figure ���� Generalized episode for the physical disputes

PROBLEM�� 

DISPUTE�� with

name� window
dispute

disputant�� man�

argument�� wants window� open

disputed
object� window�

disputant�� man�

argument�� wants window� closed

These are similar cases in the sense that the norms of the two cases are the same since

both of these problems are disputes between people about some physical object� Generalized

episodes that di�erentiate these two problems are shown in Figure ����

Here� �goals� and �disputes object� play a role of indices� �position�� �window�� and �orange�

are values of those indices� The combination of an index and a value determines a case such

as �window dispute� or �orange dispute��

In the CHEF system �Hammond� ����� that learns about cooking� each episode is called

a complete plan� Each plan is indexed by � S�G�A �� where S is a starting state� G is a

goal state� and A is a set of additional goals to avoid failures� A is obtained before solving a

planning problem by investigating any potential failures or risks by applying failure�prediction

rules� Each stored plan is also indexed by all known generalizations of S� G� and A� For

example� any plan indexed under beef is also indexed under meat in order to support retrieval
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of similar plans�

In the PROTOS system �Porter et al�� ����� that diagnoses hearing disorders� each case

corresponds to a patient information including symptoms� the associated disease diagnosis�

and an explanation of why the symptoms indicate the diagnosis� Retrieving similar cases for a

new patient is done by comparing the symptoms as well as by examining if the old explanation

can be applied to the new case�

In the CASEY system �Koton� ����� that is applied to medical decision making� each

episode contains information about an individual case including the name of the patient� the

description of the patient� the causal explanation derived for this patient� the diagnosis� therapy

suggestions� and so on� Individual cases are indexed by the features that distinguish them from

other cases� Indexing requires two levels� the �rst level indicates the category of the index and

the second level indicates the values that the feature takes on� The set of indices de�nes a set

of paths through the memory structure�

In the JUDGE system �Bain� ����� that is a model of the behavior of judges who sentence

criminals� each episode corresponds to a legal case of murder� assault� or manslaughter� Cases

stored in memory are indexed by several salient features including the statute that was violated�

who started the �ght� the violative actions and results� and the interpretations assigned to those

actions and results by the JUDGE program�

Since cases are stored by indexes� the main problems in CBR is the proper design of

indexes for organizing case libraries and the development of an e
cient retrieval algorithm for

�nding similar cases� Also general techniques for modifying previous cases must be developed

so that they apply to new problems�

It is interesting to note that CBR integrates learning with problem solving� and hence

the problem solving component is able to utilize what was learned previously� However� its

reasoning process is generally complex with the steps of locating and retrieving potentially

applicable cases� evaluating selected cases� and transferring old cases to the current one�
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��� Discussions

Several speedup learning systems that have been described in previous sections are compared

with SNIP����

In SNIP���� the �rst issue of representing experience is done in the knowledge migration

phase� Experience is stored in the expertise base that contains the relationship among several

redundant rules� Redundancy in knowledge is maintained by adding derived knowledge to the

knowledge base� Knowledge migration changes both the knowledge base and the expertise base�

That is� derived knowledge is put into the knowledge base� and the experiential knowledge is

accumulated in the expertise base�

Knowledge migration is similar to the proceduralization in the ACT system� the oper�

ationalization in EBL� and producing macro search rule in chunking in the sense that some

rules are acquired as a result of a deduction� and these rules are used in future deduction to

improve e
ciency� Also all systems allow knowledge redundancy after problem solving� How�

ever� the di�erence is that knowledge migration not only creates knowledge redundancy� but

also extracts and stores the experiential information about how this redundancy occurred� It

is di�erent from the proceduralization in that we do not store the acquired rule in a separate

memory from the memory containing general rules� It is also di�erent from the operational�

ization in that the form of a learned rule is not restricted by the operationality criterion that

speci�es predicates allowed in expressing the rule� but by the form of the general rule from

which the acquired rule is generated� Unlike chunking� which produces explicit search control

knowledge that is represented as production rules� our learning mechanism employs an implicit

search control scheme that uses the information in the expertise base�

The second issue of using experiential knowledge in problem solving is accomplished in

SNIP��� by knowledge shadowing� A key feature to accomplish this is the integration of

learning and problem solving� In most learning systems where learning and reasoning are

separate� the experiential information obtained during learning may not be fully utilized by

the problem solving component� The integration of deduction and learning components solves

this problem by enabling the deduction component to use information obtained by the learning

process and eventually to decide which knowledge is most e�ective at a certain point when
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several rules at di�erent levels of generality are available� The decision�making proceeds by

remembering the relationships among several rules as stored� and comparing them to the

current situation to choose the most appropriate ones�

Note that case�based reasoning also integrates learning with problem solving� but its

representation of experience consists of entire episode of previous cases� and consequently its

reasoning process is generally complex with the steps of locating and retrieving potentially

applicable cases� evaluating selected cases� and transferring old cases to the current one� Com�

pared to this� we limit the scope of experience to the relationship among redundant knowledge�

which results in a relatively simple process of storing and retrieving expertise information�
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It has been claimed that reasoning by using speci�c knowledge causes less system overload than

by using general knowledge �Hart� ������ and consequently speci�c knowledge signi�cantly

contributes to system e
ciency� On the other hand� general knowledge is also useful for

unfamiliar situations which known speci�c knowledge is unable to handle� Therefore� in order

to achieve both system e
ciency and generality� we want to keep several di�erent levels of

knowledge in a multi�level knowledge structure� and select appropriate knowledge according

to the current situation�

Rule selection has been a critical problem in AI� since unguided selection of rules may

lead to a combinatorial explosion in the number of di�erent inference steps possible �Smith�

������ A selection criterion that we focus on is the speci�city relationship among knowledge

that is obtained from previous reasoning by creating knowledge redundancy�

Two learning schemes� knowledge migration and knowledge shadowing� are presented for

experience�based rule selection� Knowledge migration is a process of generating speci�c rules

from general rules� Knowledge migration also accumulates deduction experience represented

by the speci�city relationship between migrating and migrated knowledge� Knowledge shad�

owing uses deduction experience to shadow or block unnecessary deduction branches to make

subsequent similar deduction faster�

��� Transitive Rule Example

The transitive rule example introduced in Chapter � is discussed in more detail to get a sketch

of the mechanisms of knowledge migration and knowledge shadowing�

A knowledge base for this example is as follows�

�r�
 �r �trans�r
 � �x�y�z �r�x�y
 � r�y�z
 � r�x�z
��
�f�
 trans�on

�f�
 on�a�b

�f�
 on�b�c

�f�
 on�c�d


A query on�a�c
 to this knowledge base leads to the following natural deduction derivation

�Bibel� ������ This derivation is also shown graphically in Figure ����
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�p�
 trans�on
 � �x�y�z �on�x�y
 � on�y�z
 � on�x�z
�

from �r�
 by Universal Instantiation with a substitution fon�rg

�p�
 �x�y�z �on�x�y
 � on�y�z
 � on�x�z
�

from �p�
 and �f�
 by Modus Ponens

�p�
 on�a�b
 � on�b�c
 � on�a�c


from �p�
 by Universal Instantiation with a substitution fa�x� b�y� c�zg

�p�
 on�a�b
 � on�b�c


from �f�
 and �f�
 by And Introduction

�p�
 on�a�c


from �p�
 and �p�
 by Modus Ponens

During this inference� a speci�c rule r� �p� above
 is generated as an intermediate result�

In fact� r� is an instance of r�cq� the consequent of r��

�r�
 �x�y�z �on�x�y
 � on�y�z
 � on�x�z
�
�r�cq
 �x�y�z �r�x�y
 � r�y�z
 � r�x�z
�

We call this process of generating a speci�c rule from a general rule knowledge migration�

In this example� r� is said to be migrated from r� by a migrating substitution fon�rg� By

asserting derived knowledge� the knowledge base is changed to

�r�
 �r �trans�r
 � �x�y�z �r�x�y
 � r�y�z
 � r�x�z
��
�r�
 �x�y�z �on�x�y
 � on�y�z
 � on�x�z
�
�f�
 trans�on

�f�
 on�a�b

�f�
 on�b�c

�f�
 on�c�d

�f�
 on�a�c


The knowledge base becomes rule redundant since the next query on�b�d
 can be answered

in two ways� one by using r� and the other by using r��

First branch�
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�
��

�

�

�
�

�
UI fon�rg

�r��

MP

AI

on�a�c�
on�a�b�

on�b�c�

MP
UI fa�x�b�y�c�zg

trans�on�

UI� Universal Instantiation
MP� Modus Ponens
AI� And Introduction

�r�trans�r���x�y�z�r�x�y��r�y�z��r�x�z���

trans�on���x�y�z�on�x�y��on�y�z��on�x�z��

�x�y�z�on�x�y��on�y�z��on�x�z��

on�a�b��on�b�c��on�a�c�

on�a�b��on�b�c�

Figure ���� A natural deduction derivation of on�a�c
�
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�p�
 trans�on
 � �x�y�z �on�x�y
 � on�y�z
 � on�x�z
�

from �r�
 by Universal Instantiation with a substitution fon�rg

�p�
 �x�y�z �on�x�y
 � on�y�z
 � on�x�z
�

from �p�
 and �f�
 by Modus Ponens

�p�
 on�b�c
 � on�c�d
 � on�b�d


from �p�
 by Universal Instantiation with a substitution fb�x� c�y� d�zg

�p�
 on�b�c
 � on�c�d


from �f�
 and �f�
 by And Introduction

�p�
 on�b�d


from �p�
 and �p�
 by Modus Ponens

Second branch�

�p�
 on�b�c
 � on�c�d
 � on�b�d


from �r�
 by Universal Instantiation with a substitution fb�x� c�y� d�zg

�p�
 on�b�c
 � on�c�d


from �f�
 and �f�
 by And Introduction

�p�
 on�b�d


from �p�
 and �p�
 Modus Ponens

This derivation is graphically shown in Figure ���� The steps in the �rst branch are the same

as those in the derivation of on�a�c
 except for substitutions in universal instantiations� Thus�

it can be recognized that the �rst branch is redundant in the sense that on�b�d
 can be derived

solely by the second branch with fewer steps and also the �rst branch is not producing anything

new� Eventually� we want to block the redundant branch as shown in Figure ���� This process

of blocking unnecessary branches from the inference is called knowledge shadowing� In this

example� the branch activated from r� is said to be shadowed by the branch activated from r��

The major e�ect of knowledge shadowing is that the system can solve a problem more quickly

than the previous similar problem even though the size of the knowledge base was increased
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�

�
�

�

��
�

�

�

�

�

UI fon�rg

MP

UI fb�x�c�y�d�zg

�r��

UI fb�x�c�y�d�zg

on�b�c�

on�c�d�

on�b�d�

MP

AI

MP

�r��

trans�on�

AI� And Introduction
MP� Modus Ponens
UI� Universal Instantiation

�r�trans�r���x�y�z�r�x�y��r�y�z��r�x�z���

�x�y�z�on�x�y��on�y�z��on�x�z��

on�b�c��on�c�d��on�b�d�

on�b�c��on�c�d�

on�b�c��on�c�d��on�b�d�

�x�y�z�on�x�y��on�y�z��on�x�z��

trans�on���x�y�z�on�x�y��on�y�z��on�x�z��

Figure ���� A natural deduction derivation of on�b�d
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�

�
� �

�

�

UI fon�rg

�r��

BLOCKED

�r��

UI fb�x�c�y�d�zg

on�b�c�

on�c�d�

on�b�d�

AI

AI� And Introduction
MP� Modus Ponens
UI� Universal Instantiation

MP

�r�trans�r���x�y�z�r�x�y��r�y�z��r�x�z���

on�b�c��on�c�d�

on�b�c��on�c�d��on�b�d�

�x�y�z�on�x�y��on�y�z��on�x�z��

Figure ���� A natural deduction derivation of on�b�d
 where a redundant deduction branch is
blocked
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and rule redundancy has caused more possible deduction branches�

��� Deduction Expertise

Compared to other rule generating processes including the operationalization in EBL and

the proceduralization in knowledge compilation� a peculiar feature of knowledge migration is

that the instance relationship between the migrating rule and the migrated rule is saved and

exploited in future reasoning� This information is called deduction expertise�

Two types of expertise are considered� The �rst type of expertise is based on substitutions

that are applied during the migration process� An instance set is managed for each rule to

record the information about which substitutions have contributed to the migration of speci�c

rules� The second type of expertise uses the concept of origin sets that have been de�ned in a

truth maintenance system for propositional dependency�

����� Instance Set Log

As we have seen in the transitive rule example� the generation of a speci�c rule from a nested

general rule involves a variable substitution called a migrating substitution that is informally

de�ned below�

De	nition A migrating substitution � is a variable substitution that uni�es all an�

tecedents of a nested rule with facts in the knowledge base�

Each binding in this migrating substitution has the form of c�v� where c is a constant

and v is a variable� Note that c itself cannot be a variable�

In the transitive rule example� � � fon�rg that uni�es trans�r
� which is the antecedent

of r�� with trans�on
� which is a fact in the knowledge base� This migrating substitution causes

the generation of the consequent of a nested rule� For instance� r� is generated from r� by

applying � to the consequent of r�� A migrating substitution creates an instance relationship

between a general �migrating
 rule and a speci�c �migrated
 rule� An instance relationship is

represented by a ��tuple as below�
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De	nition An instance relationship is a ��tuple � s� g� � �� where � is a migrating

substitution by which a speci�c rule s is migrated from a general rule g�

A relationship � s� g� � � satis�es that g� � s� In the transitive rule example� an instance

relationship after the migration will be f� r�� r�cq� fon�rg �g� where r�cq is the consequent

of r��

In order to memorize and reuse instance relationships obtained during deductions� an

instance set Ig is managed for each rule g�

De	nition An instance set Ig � f� s�� �� ��� s�� �� �� � � � � � sl� �l �g� where si is a

speci�c rule that is migrated from a general rule g by a migrating substitution �i �� � i � l
�

Each pair � si� �i � is called a migrated instance�

After the migration from r� occurs during the derivation of on�a�c
� Ir�cq becomes f�

r�� fon�rg �g� Note that an instance relationship � s� g� � � is implemented by adding a

migrated instance � s� � � to Ig�

De	nition An instance set information is a pair � r� Ir �� where r is a rule and Ir is

the instance set of r�

The instance set log denoted by IL is maintained to record all instance set information�

De	nition The instance set log IL is de�ned as a set of instance set information�

IL � f� r�� Ir� ��� r�� Ir� �� � � � � � rn� Irn �g�

����� Origin Set Log

The second type of deduction expertise can be discussed in the context of belief revision sys�

tems� In these systems� each proposition is associated with a record of where each proposition

in the knowledge base came from in order to keep track of and propagate propositional depen�

dencies� This record is called a support� In an assumption based truth maintenance system

�ATMS
 which is a kind of belief revision system� the support of each proposition contains

hypotheses �nonderived propositions
 that produced it� In the SWM system �Martins� �����
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Martins and Shapiro� ������ this support is named an origin set� An origin set of a proposition

contains every hypothesis used in its derivation� Using the origin set� when a contradiction is

detected� we should be able to identify exactly which assumptions were used in the derivation

of the contradictory propositions�

De	nition Op denotes the origin set of a proposition p�

For example� consider the following knowledge base�

�rmp
 �x �man�x
 � person�x
�
�rph
 �x �person�x
� human�x
�
�rhp
 �x �human�x
� person�x
�

Adding man�fred
 to the knowledge base causes the derivation of person�fred
� and in turn�

person�fred
 causes the derivation of human�fred
� So the origin sets of man�fred
� person�fred
�

and human�fred
 are�

Oman�fred� � fman�fred
g
Operson�fred� � fman�fred
� rmpg
Ohuman�fred� � fman�fred
� rmp� rphg

If man�fred
 is no longer believed afterward� person�fred
 and human�fred
 should also be no

longer believed since the origin sets of person�fred
 and human�fred
 contain man�fred
�

From the viewpoint of deductive learning� propositional dependencies represented by an

origin set can be regarded as a type of deduction expertise� Consider the initial knowledge

base of the previous transitive rule example that is now represented with origin sets�

�r�
 �r �trans�r
 � �x�y�z �r�x�y
 � r�y�z
 � r�x�z
�� � Or� � fr�g
�f�
 trans�on
 � Of� � ff�g
�f�
 on�a�b
 � Of� � ff�g
�f�
 on�b�c
 � Of� � ff�g
�f�
 on�c�d
 � Of� � ff�g

r� is derived from r� and f�� resulting in the following support structures�

�r�
 �x�y�z �on�x�y
 � on�y�z
 � on�x�z
� � Or� � fr��f�g

�f�
 on�a�c
 � Of� � fr��f��f��f�g
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De	nition An origin set information is a pair � k� Ok �� where k is a rule or a fact�

and Ok is the origin set of k�

The origin set log denoted by OL is maintained to record all origin set information�

De	nition The origin set log OL is a set of origin set information�

OL � f� k�� Ok� ��� k�� Ok� �� � � � � � km� Okm �g�

The two types of expertise are combined to build the expertise base denoted by EB�

De	nition The expertise base EB is the collection of all instance set information and

origin set information�

EB � � IL�OL �

� � f� r�� Ir� ��� r�� Ir� �� � � � � � rn� Irn �g�

f� k�� Ok� ��� k�� Ok� �� � � � � � km� Okm �g �

��� Knowledge Migration

A formal de�nition of the scheme of knowledge migration is given in this section� Note that

knowledge migration generates a speci�c rule from a general rule� and both the knowledge base

and the expertise base are updated as a result of it�

De	nition The knowledge base KB � � F �R�� where F is a set of facts and R is a set

of rules�

If we de�ne a term as a predicate with arguments� a fact is a term with no variables� A

rule consists of antecedents and consequents� Each antecedent is a term which may contain

variables� Each consequent is either a term or a rule� If it is a term� we call it non�rule

consequent� and if it is a rule� we call it rule consequent� A rule is formally de�ned below�

De	nition A rule r � � ANT�NRCQ�RCQ �� where ANT is a set of antecedents�

NRCQ is a set of non�rule consequents� and RCQ is a set of rule consequents

In this abstraction� every variable in a rule is assumed to be universally quanti�ed� Exis�
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tentially quanti�ed variables are skolemized� The semantics of a rule is that if all antecedents

are satis�ed� then all consequents are derived� Disjunctive rules can be represented by building

a separate rule for each disjunct�

If any consequent of a rule is also a rule� it is called a nested rule or an embedded rule� In

other words� r � � ANT�NRCQ�RCQ� is a nested rule if RCQ is not empty�

For example� a rule

�x�y ��male�x
 � parent�x�y

�

�father�x�y
 � �z �parent�y�z
� grandfather�x�z
�
 �

is a nested rule that is represented recursively by

� fmale�x
� parent�x�y
g� ffather�x�y
g�

f� fparent�y�z
g� fgrandfather�x�z
g� fg�g�

A system state is de�ned as the amalgamation of information in the knowledge base and

in the expertise base�

De	nition A system state S � � KB� EB �� where KB is the knowledge base� and EB

is the expertise base of the system�

Knowledge migration updates the knowledge base by adding migrated knowledge to the

current knowledge base� and also updates the expertise base by adding instance set information

and origin set information� Eventually� knowledge migration transforms a system state into a

new system state�

De	nition Knowledge migration is a function M which changes a system state into a

new system state when ��
 a nested rule

re �� fa�� a�� � � � � alg� fnr��nr�� � � � �nrmg� fr�� r�� � � � � rng �

is activated during a deduction� and ��
 there exists a migrating substitution � such that� for

each antecedent ai �� � i � l
� either ai is uni�ed with a fact fi � F �ai� � fi
� or ai� can be

derived from rule chaining�

More formally�
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M�S
 � S� or

M��� F �R��� IL�OL ��
 � �� F ��R� ��� IL��OL� ���

A system state change caused by knowledge migration is explained for each component

of the system state�

F � F �

F is incremented by the facts derived from non�rule consequents of the nested rule� Hence�

F � � F � Fs� where Fs � fnrs��nrs�� � � � �nrsmg is a set of derived facts� Here� nrsi � nri�

�� � i � m
� F is also incremented by �nal answers to non�rule queries�

R � R�

R is incremented by the migrated rules� Hence�R� � R�Rs� whereRs � frs�� rs�� � � � � rsng

is a set of migrated rules� Here� rsi � ri� �� � i � n
�

IL � IL�

IL is incremented by new instance set information� More speci�cally� the instance set of

ri is incremented by � rsi� � � when a speci�c rule rsi is migrated from ri �� � i � n
� Hence�

IL� � IL 	 ILs

ILs � f� r�� f� rs�� � �g ��� r�� f� rs�� � �g �� � � � � � rn� f� rsn� � �g �g�

Here� the operator 	 makes a union of two sets except collapsing any two pairs � r�A� �

and � r�A� � into � r�A� � A� ��

S� 	 S� � �S� 
 f� r�A� � j � r�A� �� S�� � r�A� �� S�g
 �

�S� 
 f� r�A� � j � r�A� �� S�� � r�A� �� S�g
 �

f� r�A� � A� � j � r�A� �� S�� � r�A� �� S�g

For instance�

S� � f� a� fA�Bg ��� b� fC�Dg��� c� fEg �g

S� � f� a� fFg ��� c� fGg ��� d� fH� Ig�g

S� 	 S� � f� a� fA�B� Fg ��� b� fC�Dg��� c� fE�Gg��� d� fH� Ig�g
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OL � OL�

OL is incremented by new origin set information� Since the migration of speci�c rules

rsi �� � i � n
 involves facts that are uni�ed with antecedent patterns of the nested rule� the

origin set of each migrated rule should contain the origin set of each fact that contributed to

the successful antecedent pattern matchings� So

OL� � OL 	OLs

OLs � f� rs�� O
� �� � � � � � rsn� O

� ��� nrs�� O
� �� � � � � � nrsm� O

� �� g

O� � Ore �Oa�� � Oa�� � � � � � Oal��

As an example� consider the transitive rule knowledge base� The initial system state can

be described as

S � � KB� EB � � �� F �R��� IL�OL ��� where

F � ff��f��f��f�g

R � fr�g

IL � �

OL � f� r�� fr�g ��� f�� ff�g ��� f�� ff�g ��� f�� ff�g ��� f�� ff�g �g

The condition of knowledge migration is satis�ed for a nested rule r� during the processing

of on�a�c
� since a migrating substitution � � fon�rg uni�es the antecedent trans�r
 with the

fact trans�on
� As a result of this migration� r� is migrated and added to R� After the

derivation of on�a�c
� a new system state becomes as below�

S� �� KB�� EB� ���� F ��R� ��� IL��OL� ��� where

F � � ff��f��f��f��f�g

R� � fr��r�g

IL� � f� r�cq� f� r�� fon�rg �g �g

OL� � f� r�� fr�g ��� r�� fr�� f�g ��� f�� ff�g ��� f�� ff�g ��

� f�� ff�g ��� f�� ff�g ��� f�� fr�� f�� f�� f�g �g �
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����� Nested Rule Representation

Notice that nested rule representation is emphasized in the knowledge migration process for

two reasons�

First� we want to take advantage of the semantics of natural nesting in a rule� Natural

nesting appears in many occasions of representing generic types of rules� For example� r� is

a generic rule for all transitive relations� We might represent this rule by simple conjunctions

without using rule nesting as follows�

�r��
 �r�x�y�z �trans�r
 � r�x�y
 � r�y�z
 � r�x�z
 �

In fact� r� and r�� are functionally equivalent� meaning that any knowledge that can be derived

from r� can also be derived from r��� and vice versa� However� the �	at� representation of

r�� achieved by placing the �rst conjunct trans�r
 in the same level with r�x�y
 and r�y�z


makes it hard to capture its real meaning� since it is di
cult to separate the transitive relation

which is �r�x�y
 � r�y�z
 � r�x�z
� from the main body of the rule� We believe that the �rst

conjunct should be interpreted as one level higher than the second and third conjuncts� and

consequently the representation of r� seems to be more natural than r�� as far as semantic

interpretation is concerned�

Second� nested rule representation enables the rule builder to specify which of the possible

specializations of the rule will be most useful� The level of speci�city of a migrated rule depends

on the way the nested rule was represented with quanti�ers� The nested rule de�nition delivers

the intention of a rule builder about which of the possible migrated forms will be most useful�

It is clear that di�erent speci�c rules would have been generated if r� had been expressed

di�erently with di�erent quanti�er declarations such as r�a or r�b �

�r�a
 �r�x �trans�r
� �y�z �r�x�y
 � r�y�z
 � r�x�z
��

�r�b
 �r�x�y �trans�r
 � r�x�y
 � �z �r�y�z
 � r�x�z
��

No matter which de�nition is applied� the system can derive on�a�c
� but di�erent speci�c rules

would be migrated from di�erent rules� I�e�� r�a and r�b might be migrated from r�a and r�b�

respectively�



CHAPTER �� LEARNING AT THE RULE SELECTION LEVEL ��

�r�a
 �y�z �on�a�y
 � on�y�z
 � on�a�z
�

�r�b
 �z �on�b�z
 � on�a�z
�

While the intention of r� is to �nd the on relationship between two arbitrary objects� r�a

is interested in �nding the on relationship between a particular object a and some arbitrary

objects� r�b has two particular objects in mind� since on�a�b
 is already satis�ed during the

migration�

Our point here is that any of these rules may be useful for particular situations in which

the rule builder has some particular objects or relations in mind� r�a focuses on the object a�

and r�b on the objects a and b and also the relation on�a�b
� Note that r�� r�a� and r�b have

di�erent levels of generality� Di�erent rules at di�erent levels of generality can be migrated

from di�erent nestings�

Nested rule representations have not been emphasized in most rule�based reasoning sys�

tems� especially in resolution�based systems �Robinson� ������ Although the de�nition of a

well�formed formula in the resolution�based system allows nested representations� its e�ect

disappears after those rules are translated into clause form before applying resolution� For

instance� in a resolution�based system� r� is translated into


 trans�r
 � 
 r�x�y
 � 
 r�y�z
 � r�x�z


In this mechanism� there will be no di�erence among r�� r�a� and r�b� since all three

rules are uniformly transformed to the same clause form� It may be possible to migrate some

speci�c rules here� but which one is useful for a particular domain of application cannot be

determined�

��� Knowledge Shadowing

Knowledge shadowing is a systematic decision�making process that recognizes unnecessary de�

duction branches and blocks them from activation when several rules at di�erent speci�city

levels are available and applicable� Knowledge shadowing takes advantage of knowledge redun�

dancy created in the knowledge migration process� and also consults the information stored
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in the expertise base to speed up deduction� A sketch of knowledge shadowing was shown in

Section ��� by using the transitive rule example�

Two main criteria for deciding which rule to choose are ��
 the speci�city relation among

rules represented in the expertise base� and ��
 the nature of the query� that is� whether the

query is general or speci�c� More general knowledge is selected for a general query� and more

speci�c knowledge is selected for a speci�c query�

Knowledge shadowing consults both instance set information and origin set information

stored in the expertise base that is updated by the knowledge migration process�

����� Using Instance Sets and Origin Sets

The instance set log IL provides instance relationship among rules� For instance� � rs� � ��

Irg implies that rs is an instance of �or more speci�c than
 rg� In a case when both rg and rs

are applicable during a deduction� the more general rule rg is prevented from being activated�

since the more speci�c rule rs produces fewer inference steps than rg does� However� there

might be some cases where rg could generate more answers than rs could� and in this situation�

we cannot shadow rg� In fact� whether the more general rule can be shadowed depends on the

nature of the query� The generality level of a query is determined by a variable substitution

that uni�es the query and a consequent of a rule�

Our approach is di�erent from previous work such as EBL and knowledge compilation

where a system always tries a speci�c rule �rst� and backtracks to try general rule if the

speci�c rule fails to solve the problem� We provide systematic decision algorithms about when

to use speci�c rules and when to use general rules so that no information is lost as a result of

shadowing�

The information in the origin set log OL provides propositional dependencies of derived

rules and facts� In the transitive rule example� the origin set of r� consists of r� and trans�on
�

since its derivation was dependent upon them� However� if trans�on
 is no longer believed

in subsequent reasoning� which causes r� to be inapplicable� knowledge shadowing should not

�This is applicable to backward chaining� Note that in forward chaining where the inference is driven by an

asserted fact� the shadowing is straightforward� since you can always shadow the more general rule� So� we only

focus on backward chaining�
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block r� even for a query about on relationship� Using only the instance set information would

not work since the instance set of r� �more precisely r�cq
 still contains r�� Therefore� the

main use of origin set information in knowledge shadowing is to examine if an instance in the

instance set of a more general rule is still believed in the current belief space�

Knowledge shadowing by using the instance set information and the origin set information

can be illustrated by the following example�

Example � Consider the transitive rule example� Assume that the derivation of on�a�c


is complete and r� is migrated from r��

�r�cq
 �x�y�z �r�x�y
� r�y�z
 � r�x�z
�

�r�
 �x�y�z �on�x�y
� on�y�z
 � on�x�z
�

As a result of migration� � r�� � �� Ir�cq with � � fon�rg� and Or� � fr�� trans�on
g�

We want to �nd out shadowing conditions under which it is safe to prevent r� from being

activated to solve a query� The shadowing condition in this transitive rule example is whether

or not the query involves the on relation� For example� queries like on�x�y
� on�a�y
� or on�b�d


satisfy this condition� but queries like ancestor�x�y
� supports�a�y
� or r�b�d
 do not� �Here�

x�y� and r are variables�
 The most general uni�er �mgu
 that uni�es the consequent of the

rule and the query can be used to establish this condition� In other words� we can informally

say that r� can be shadowed when the mgu produced by the pattern matching between the

consequent of r� and the query contains the migrating substitution fon�rg�

We now compare two situations when the query is on�b�d
 or r�b�d
� for variable r� The

query on�b�d
 can be interpreted as �check if the on relation is satis�ed between b and d��

The query r�b�d
 can be interpreted as ��nd all relations holding between b and d�� These

two queries make both r� �or r�cq
 and r� applicable�

Consider q � on�b�d
 �rst� Matching of r�x�z
� which is the consequent of r�cq� and q

produces the mgu �� � fon�r� b�x� d�zg� Matching of on�x�z
� which is the consequent of r��

and q produces the mgu �� � fb�x� d�zg� Since �� contains �� we can conclude that r�x�z
��

� on�x�z
��� This implies that everything that can be inferred from r� can also be inferred

from r� for the current query q� In this case� r� can be shadowed� and on�b�d
 can be derived
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by using r� only�

In case of q � r�b�d
� the mgu between r�x�z
 and q is �� � fr�r� b�x� d�zg� and the

mgu between on�x�z
 and q is �� � fon�r� b�x� d�zg� Since �� does not include the migrating

substitution �� it can be inferred that r�x�z
�� �� on�x�z
��� This implies that a solution that is

deducible from r� is not always deducible from r�� For example� ancestor�b�d
 can be derived

from r� if the knowledge base contains trans�ancestor
� ancestor�b�c
� and ancestor�c�d
�

but not from r�� In this case� r� is not shadowed� An interesting question in this situation is

whether or not r� should be shadowed� There are pros and cons� Certainly� r� will produce

everything r� will� so in this case r� is redundant� On the other hand� r� will produce its

results more quickly� In our system� r� is not shadowed� When r� is not shadowed� r� will

not reproduce r� since its instance set already contains information about r��

From this observation� a principle of knowledge shadowing that uses the instance set

information and the origin set information can be given as follows�

Shadowing Principle � Let r be a rule that is applicable to a query q at some point

during a deduction� Also let � be a most general uni�er �mgu
 between a consequent of r and

q� Then� r is shadowed from the inference if there exists � rs� � �� Ir such that � � �� for

some substitution � �i�e�� �i contains �
� and rs is asserted� �

Satisfying the condition that �i contains � indicates that the query is speci�c since it

already contains the information about the migrating substitution �� In this situation� the

more general rule r does not contribute to a new solution� so it can be blocked� If the condition

is not satis�ed� the query is meant to solve more general problems� so the more general rule

cannot be shadowed�

The following theorem proves that there is no loss of information as a result of shadowing

deduction branches according to Shadowing Principle ��

Theorem � For a particular query asked of the knowledge base� any knowledge that can

be derived from the rules that are shadowed by Shadowing Principle � can also be derived from

the rules that are not shadowed�
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Proof Suppose a rule ri is applicable to a query q� and rj is an instance of ri satisfying

� rj � � �� Iri �

Let ri �� ANTi� NRCQi� RCQi � and rj �� ANTj� NRCQj� RCQj �� Here� a new

operator � applies a variable substitution to all members in a set�

A� �
def
� fa�j�a � Ag

Then� ANTi � � � ANTj� NRCQi � � � NRCQj� and RCQi � � � RCQj �

Since ri and rj are applicable to q� there exist consequents cqi of ri and cqj of rj with

cqi� � cqj � Let �i be the mgu between cqi and q� and �j be the mgu between cqj and q� The

key step of this proof is to check if any answer A that is deducible from ri is also deducible

from rj �

If �i contains �� �i � ��j � since the mgus are obtained from the same query� Therefore�

cqi�i � cqi��j � and eventually cqi�i � cqj�j � From ANTi � � � ANTj � we know that for

any anti � ANTi� there exists a unique antj � ANTj such that anti� � antj � which satis�es

anti��j � antj�j � which in turn yields to anti�i � antj�j � Therefore� for any answer A

that can be derived from ri� there exists a substitution 	 that satis�es anti�i	 � F and

cqi�i	 � A� for any anti � ANTi� But� the same substitution 	 also satis�es antj�j	 � F

and cqj�j	 � A� for any antj � ANTj � This implies that A is also deducible from rj� Since

every answer deducible from ri is also deducible from rj � ri can be shadowed without losing

any information�

If �i does not contain �� �i� � �j and cqi�i� � cqj�j � In this case� an answer A that

is deducible from ri may not be deducible from rj � This situation happens when A is derived

from ri by a substitution 	�� i�e�� cqi�i	� � A� where there exists a binding c��v � 	� and a

binding c�v � � such that c� �� c� Certainly� cqj�j	� �� A� and A is not deducible from rj�

Therefore� ri may not be blocked from the fact that this rule might produce a new result that

cannot be produced from rj� �
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Traces in SNIP

We present and compare the traces of the transitive rule example in the old SNIP �SNIP ���


and the new SNIP �SNIP ���
 to see the e�ect of the �rst shadowing principle�

A SNePSLOG representation is given as below� �Details about the SNePSLOG interface

in described in Chapter ��


all�r� �transitive�r� �� �all�x�y�z� ��r�x�y�� r�y�z�	 ��� �r�x�z�	�	�

transitive�on�

on�a�b�

on�b�c�

on�c�d�

on�a�c��

on�b�d��

In SNIP���� the following inference trace is obtained� In this trace� 
I wonder if�

represents a request for satisfying a goal� 
I know� indicates the system found an asserted fact

that is matched with a goal� and 
I infer� indicates the system derives and asserts a new

fact�

� on�a�c��

I wonder if ON�A�C�

I wonder if all�X�Y�Z���ON�X�Y��ON�Y�Z�	 ��� �ON�X�Z�	�

I wonder if TRANSITIVE�ON�

I know TRANSITIVE�ON�

Since all�R��TRANSITIVE�R� �� �all�X�Y�Z���R�X�Y��R�Y�Z�	 ��� �R�X�Z�	���

and TRANSITIVE�ON�

I infer all�X�Y�Z���ON�X�Y��ON�Y�Z�	 ��� �ON�X�Z�	�

I wonder if ON�A�Y�

I wonder if ON�Y�C�

I know ON�A�B�

I know ON�B�C�

Since all�X�Y�Z���ON�X�Y��ON�Y�Z�	 ��� �ON�X�Z�	�

and ON�A�B�

and ON�B�C�

I infer ON�A�C�
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� on�b�d��

I wonder if ON�B�D�

I wonder if all�X�Y�Z���ON�X�Y��ON�Y�Z�	 ��� �ON�X�Z�	�

I wonder if ON�B�Y�

I wonder if ON�Y�D�

I know all�X�Y�Z���ON�X�Y��ON�Y�Z�	 ��� �ON�X�Z�	�

I wonder if ON�Y�D�

I wonder if ON�B�Y�

I know ON�B�C�

I know ON�C�D�

Since all�X�Y�Z���ON�X�Y��ON�Y�Z�	 ��� �ON�X�Z�	�

and ON�B�C�

and ON�C�D�

I infer ON�B�D�

I wonder if TRANSITIVE�ON�

I wonder if ON�Y�Z�

I wonder if ON�X�Y�

I know TRANSITIVE�ON�

Since all�R��TRANSITIVE�R� �� �all�X�Y�Z���R�X�Y��R�Y�Z�	 ��� �R�X�Z�	���

and TRANSITIVE�ON�

I infer all�X�Y�Z���ON�X�Y��ON�Y�Z�	 ��� �ON�X�Z�	�

Since all�X�Y�Z���ON�X�Y��ON�Y�Z�	 ��� �ON�X�Z�	�

and ON�B�C�

and ON�C�D�

I infer ON�B�D�

In SNIP���� the following inference trace is obtained� In fact� the trace for on�a�c� is

the same as in SNIP ���� so we only show the trace for on�b�d� here�

� on�b�d��

I wonder if ON�B�D�

I wonder if ON�B�Y�

I wonder if ON�Y�D�

I know ON�B�C�

I know ON�C�D�
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Since all�X�Y�Z���ON�X�Y��ON�Y�Z�	 ��� �ON�X�Z�	�

and ON�B�C�

and ON�C�D�

I infer ON�B�D�

ON�B�D�

The inference steps for on�a�c�� in both SNIP��� and SNIP��� are the same� but the

inference steps for on�b�d�� in SNIP��� are much shorter than those in SNIP��� by shadowing

the generic transitive rule from the inference�

����� Using Common Instances

Shadowing Principle �� which we have discussed in the previous section focuses on the relative

speci�city relationship among several applicable rules� This section discusses a di�erent kind

of shadowing by using the most general common instance �mgci
 of two patterns de�ned as

below�

De	nition Let � be the mgu between two patterns S and T� and mgciST be the most

general common instance of S and T� Then� mgciST
def
� S�� �Note that S� � T��


For example� matching p�x�b� and p�a�y�� where x and y are variables� produces � � fa�x�

b�yg� and the mgci of these two is p�a�b�� In general� the mgci of two patterns is a ground fact

when � contains all variables of S and T� and contains no binding �t�v� such that both t and

v are variables� We want a shadowing rule that uses the mgci of a query and a consequent of

the rule that are matched during a deduction� An interesting phenomenon is observed when

the mgci of two patterns is ground and already asserted in the knowledge base� An example

of shadowing using the mgci is as follows�

Example � Consider the transitive rule example when the derivation of on�a�c
 is com�

plete and r� and r� coexist�

�r�
 �r �trans�r
 � �x�y�z �r�x�y
 � r�y�z
 � r�x�z
��
�r�
 �x�y�z �on�x�y
 � on�y�z
 � on�x�z
�
�f�
 trans�on

�f�
 on�a�b
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�f�
 on�b�c

�f�
 on�c�d

�f�
 on�a�c


Suppose the next query is ��nd all relations between objects a and c� represented by

r�a�c
� for variable r� The mgci of r�a�c
 and on�x�z
 is on�a�c
 with the mgu � � fon�r� a�x�

c�zg� Since on�a�c
 is a ground instance and already is asserted in the knowledge base� r� will

never produce any new answers for the question of r�a�c
� In this case� we can block the rule

r� and apply only r� to �nd more relations between a and c� Note that the mgci of r�a�c


and r�x�z
 is r�a�c
 with � � fr�r� a�x� c�zg� Since r�a�c
 is not ground� the branch from r�

is not blocked�

Example � Consider a knowledge base with a rule �x �man�x
 � mortal�x
� and a fact

man�socrates
� A query p�socrates
� for a variable p� asked of this knowledge base generates

two answers man�socrates
 and mortal�socrates
� and a new fact mortal�socrates
 is asserted

to the knowledge base� Suppose the same query p�socrates
 is asked in a subsequent deduction�

Since the mgci of mortal�x
 and p�socrates
 is mortal�socrates
� and it is asserted� the rule

is not activated again� Rather� the query is answered by retrieving two facts man�socrates


and mortal�socrates
� The same query can be answered more quickly even though the search

space has more knowledge�

Note that no deduction is needed if the query itself is ground and asserted� An example

is when we ask mortal�socrates
 of the above knowledge base� In this case� the mgci of

mortal�socrates
 and mortal�x
 is mortal�socrates
� and in the same fashion� the rule �x

�man�x
 � mortal�x
� is shadowed from the inference� This special case can also be found in

the transitive rule example when a query on�a�c
 is asked again of the knowledge base where

both r� and r� are applicable� In this case� the mgci of on�a�c
 and r�x�z
 or the mgci of

on�a�c
 and on�x�z
 is on�a�c
� As a result� both rules r� and r� are shadowed� and no chaining

occurs�

From this observation� a shadowing principle using the mgci is as follows�

Shadowing Principle � Let r �� ANT�NRCQ�RCQ � be a rule that is applicable
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to a query q at some point during a deduction� �This implies that there is a consequent

cq � NRCQ or cq � RCQ that is matched with the query q�
 Then� r is shadowed from the

inference if the mgci of q and cq is ground and asserted in the knowledge base� �

Interestingly� if the mgci of a rule consequent and a query is P� and P is asserted� the rule

will be shadowed even if the rule would produce �P� Thus� this shadowing prevents inconsistent

knowledge bases from making their inconsistencies explicit they exhibit a form of cognitive

dissonance� For example� suppose a knowledge base contains two rules �x �man�x
� mortal�x
�

and �x �philosopher�x
� �mortal�x
�� and a fact man�socrates
� A query mortal�socrates


asked of this knowledge base will produce the answer mortal�socrates
 by activating the rule

�x �man�x
� mortal�x
�� Then� suppose we assert a fact philosopher�socrates
� and ask the

same query again� In this case� both rules are shadowed� although the second rule might have

produced �mortal�socrates
 if it had been activated�

The following theorem proves that in a consistent knowledge base there is no loss of

information as a result of shadowing deduction branches according to Shadowing Principle ��

Theorem � For a particular query asked of a consistent knowledge base� any knowledge

that can be derived from the rules that are shadowed by Shadowing Principle � can also be

derived from the rules that are not shadowed�

Proof Let � be the mgu between q and cq� Also let the mgci of q and cq be A which is

equal to q� or cq�� By the assumption of Shadowing Principle �� A is asserted� so A is unique�

and� since the knowledge base is consistent� �A is not derivable� This implies that the only

answer we can derive from r for the query q is A� Since A is already in the knowledge base� r

does not produce any new result� so it can be shadowed without losing any information� �

In an inconsistent knowledge base� the only information that can be lost is the explicit

derivation of �A�

These theorems have proved the completeness of the shadowing principles by showing

that any deduction problem that could be solved without the shadowing methods can also be

solved with them except� possibly� for the explicit production of contradictions�
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Traces in SNIP

This section presents two simple problems to see the e�ect of Shadowing Principle ��

Problem �


The knowledge base for the �rst problem represented in SNePSLOG is �

all�x� �man�x��� mortal�x��

all�x� �greek�x� �� philosopher�x��

man�Socrates�

Then� the following trace is obtained for the query �P�socrates� ��P denotes a variable
�

Note that the same trace is obtained from SNIP ��� and SNIP ����

� �P�socrates��

I wonder if �P�SOCRATES�

I know MAN�SOCRATES�

I wonder if GREEK�SOCRATES�

I wonder if MAN�SOCRATES�

I know MAN�SOCRATES�

Since all�X��MAN�X� �� MORTAL�X��

and MAN�SOCRATES�

I infer MORTAL�SOCRATES�

MAN�SOCRATES�

MORTAL�SOCRATES�

Now we add a new fact greek�socrates� to the knowledge base and ask the query

�P�socrates� again� In SNIP ���� the rule all�x� �man�x��� mortal�x�� is shadowed�

since the mgci of �P�socrates� and mortal�x� is mortal�socrates�� and it is ground and

asserted� As a result� SNIP ��� and SNIP ��� produce di�erent traces� In SNIP ���� the

following trace is obtained�

� �P�socrates��

I wonder if �P�SOCRATES�
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I know MORTAL�SOCRATES�

I know GREEK�SOCRATES�

I know MAN�SOCRATES�

I wonder if GREEK�SOCRATES�

I wonder if MAN�SOCRATES�

I know GREEK�SOCRATES�

Since all�X��GREEK�X� �� PHILOSOPHER�X��

and GREEK�SOCRATES�

I infer PHILOSOPHER�SOCRATES�

I know MAN�SOCRATES�

Since all�X��MAN�X� �� MORTAL�X��

and MAN�SOCRATES�

I infer MORTAL�SOCRATES�

MAN�SOCRATES�

GREEK�SOCRATES�

MORTAL�SOCRATES�

PHILOSOPHER�SOCRATES�

In SNIP ���� the following trace is obtained that has shorter inference steps by shadowing

the rule all�x� �man�x��� mortal�x���

� �P�socrates��

I wonder if �P�SOCRATES�

I know MORTAL�SOCRATES�

I know GREEK�SOCRATES�

I know MAN�SOCRATES�

I wonder if GREEK�SOCRATES�

I know GREEK�SOCRATES�

Since all�X��GREEK�X� �� PHILOSOPHER�X��

and GREEK�SOCRATES�

I infer PHILOSOPHER�SOCRATES�

MAN�SOCRATES�

PHILOSOPHER�SOCRATES�

GREEK�SOCRATES�

MORTAL�SOCRATES�
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Problem �

The knowledge base of the second problem is�

all�x� �cousin�x�john� �� cousin�x�pete��

cousin�chris�john�

cousin�chris�pete�

In SNIP ���� the rule all�x� �cousin�x�john� �� cousin�x�pete�� is not activated

at all if the query is cousin�chris��y�� y being a variable� The reason is that the mgci of

cousin�chris��y� and cousin�x�pete� is cousin�chris�pete�� but it is already asserted

in the knowledge base�

A trace in SNIP ��� is as follows�

� cousin�chris��y��

I wonder if COUSIN�CHRIS��Y�

I know COUSIN�CHRIS�PETE�

I know COUSIN�CHRIS�JOHN�

I wonder if COUSIN�CHRIS�JOHN�

I know COUSIN�CHRIS�JOHN�

Since all�X��COUSIN�X�JOHN� �� COUSIN�X�PETE��

and COUSIN�CHRIS�JOHN�

I infer COUSIN�CHRIS�PETE�

COUSIN�CHRIS�JOHN�

COUSIN�CHRIS�PETE�

In contrast� the trace in SNIP ��� is as follows�

� cousin�chris��y��

I wonder if COUSIN�CHRIS��Y�

I know COUSIN�CHRIS�PETE�

I know COUSIN�CHRIS�JOHN�

COUSIN�CHRIS�JOHN�

COUSIN�CHRIS�PETE�
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��� Analysis of Knowledge Migration and Knowledge Shad�

owing

In this section� we analyze the space and time complexity of the knowledge migration and

the knowledge shadowing schemes� and also discuss the performance enhancement resulting

from applying the shadowing principles� From these analyses� we will show how e
cient these

learning methods are and under what circumstances they will be e�ective�

����� Space Complexity

System space is mainly a�ected by the knowledge migration process that expands both the

knowledge base and the expertise base�

One of the assumptions in our system regarding knowledge base management was that

derived knowledge is monotonically and unconditionally asserted to the knowledge base� This

might bring up the issue of unconditional versus selective assertion of derived knowledge�

The main advantage of unconditional assertion is the simplicity and the speed of the

assertion mechanism because it does not involve any testing for the usefulness of newly derived

knowledge� However� this unconditional assertion causes not only a space problem by mono�

tonically expanding the knowledge base� but also an increased search time due to additional

branching factors in the search space that slows down the system�

Alternatively� selective assertion asserts derived knowledge only when it is determined

to be useful� Although it might be e�ective in reducing the data space and also the search

space� it is generally very di
cult to build a decision procedure for selective assertion� and

consequently its application is limited� In most cases� predicting the usefulness of new knowl�

edge in future reasoning is impossible� Therefore� instead of spending time to determine which

knowledge is useful� we decided to compensate for the de�ciency of unconditional assertion by

providing systematic ways of selecting appropriate knowledge in the search process� Knowledge

shadowing was developed for this purpose�

Another factor that a�ects space complexity is the storage of deduction expertise in the

expertise base� Knowledge migration enlarges the expertise base by expanding instance sets
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and origin sets with migration information� However� we expect the inclusion of the expertise

base does not cause a serious space problem since the size of each unit in the instance set or

the origin set is relatively small and the cardinality of each set is proportional to the number

of rules in the knowledge base�

����� Time Complexity

In knowledge shadowing� a major portion of time is spent retrieving information from the ex�

pertise base and comparing it with the current situation� The cost of retrieving and comparing

the expertise information is denoted by CEB�

Conceptually� an instance set is a �mathematical
 set� and the cost of checking if an

instance is in the instance set of a rule has a linear time complexity in terms of average number

of instances in an instance set� This linear set might cause a speed problem as the size of an

instance set increases� Note that each instance in a set has a unique migrating substitution�

and from this fact� we can implement the process of storing and retrieving instance information

by using an indexing mechanism that has constant time complexity regardless of the size of

the instance set� �See the S�indexing algorithm in Chapter ��


����� Analysis of Performance Enhancement

This section discusses the performance enhancement that results from the combination of

knowledge migration and the knowledge shadowing methods� We also try to predict some

conditions under which knowledge shadowing will be e�ective�

It is generally di
cult to calculate the cost of a rule execution in a natural deduction

system� since it depends on several factors including the content of the knowledge base and

the speci�c implementation of inference rules� especially whether it is sequential or parallel�

We try to estimate the cost of a rule execution approximately by two metrics� ��
 the cost of

satisfying each antecedent in a rule and ��
 the cost of resolving binding con	icts of shared

variables among all antecedents� Satisfying an antecedent is normally done by pattern matching

to see if there is any asserted fact that matches the antecedent� and if there is� a substitution

that uni�es the pattern with the fact will be returned� If no fact is matched with the current
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antecedent pattern� it initiates a rule chaining by checking if the current antecedent is matched

with a consequent of a rule� Otherwise� the antecedent is not satis�ed� So the average cost of

satisfying an antecedent pattern A denoted by CPAT �A
 will be

CPAT �A
 � CMATCH�A
 � Pfact�A
 � CRET�A
 � Ppat�A
 � CRC�A


where CMATCH�A
 is the cost of pattern matching for A� Pfact�A
 is the probability that there

exists a fact that is matched with A� CRET�A
 is the cost of retrieving all facts matched with

A� Ppat�A
 is the probability that there exists a rule whose consequent is matched with A� and

CRC�A
 is the cost of rule chaining to satisfy A� Here� �
Pfact�A

Ppat�A
 is the probability

that A is not satis�ed by the current knowledge base�

After satisfying all antecedent patterns� we then have to �nd a substitution� if any� that

satis�es all antecedents in the rule� This process is called binding con	ict resolution� and the

cost of this process is denoted by CBCR�r
 for a rule r� In a naive method� CBCR�r
 has the

complexity of O�m� � �n
 on average� where m is the average number of instances for each

antecedent pattern� and n is the average number of antecedent patterns in a rule� �Details are

in Chapter ��


For example� consider the following nested rule rg�

�rg
 A� �A� � � � � �Am � �B� � B� � � � � � Bn � C


So the total cost to execute rg denoted by CRULE�rg
 can be approximately estimated as

below�

CRULE�rg
 � CPAT �A�
 � CPAT �A�
 � � � �� CPAT �Am
 � CBCR�rg


� CPAT �B�
 � CPAT �B�
 � � � �� CPAT �Bn
 � CBCR��rg
cq


Here� �rg
cq is the consequent of rg� Satisfying all antecedents of rg results in the gener�

ation of a speci�c rule rs by the knowledge migration process�

�rs
 B�� � B�� � � � � �Bn� � C�

Here� � is a migrating substitution such that Ai� �� � i � m
 is satis�able� The cost to

execute rs is
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CRULE�rs
 � CPAT �B��
 � CPAT �B��
 � � � �� CPAT �Bn�
 � CBCR�rs


Now consider a situation where both rg and rs are applicable�

In a sequential environment� the total cost is approximately CRULE�rg
 � CRULE�rs


without shadowing because both rules are executed in sequence� With the shadowing method�

this cost is reduced to CRULE�rs
 � CEB when rg is shadowed� CEB refers to the cost of

retrieving the expertise information and comparing it with the current situation� as mentioned

before� Therefore� shadowing will be e�ective when CEB is much smaller than CRULE�rg
�

In a parallel environment where rg and rs are executed concurrently� the total cost without

shadowing is approximately CRULE�rg
� since CRULE�rg
 is generally greater than CRULE�rs
�

With shadowing� if rg is shadowed� the total cost becomes CRULE�rs
�CEB and you can save

approximately CPAT �A�
 � CPAT �A�
 � � � �� CPAT �Am
 � CBCR�rg
�

In general� we can predict from the above discussion that the shadowing method will

be e�ective in situations where a nested rule has a large number of antecedent patterns� or

satisfying antecedents in the rule is complex with long rule chainings and a large number of

pattern matchings�



Chapter �

Learning at the Rule Activation

Level

��
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Besides proper rule selection in a redundant knowledge base discussed in the previous chap�

ter� another issue in improving deduction performance will be how to e
ciently execute each

selected rule itself� In rule�based systems� a rule is activated when newly added data matches

an antecedent of a rule �forward chaining
� or when the query matches a consequent of a

rule �backward chaining
� When all antecedents of the rule are satis�ed� the rule triggers

and may �re� In natural deduction systems� this rule �ring corresponds to the execution of a

rule of inference� E
cient rule execution is particularly important in a situation where a rule

contains a large number of antecedent patterns �with possibly many shared variables among

antecedents
� and each antecedent is matched with a large number of instances� In these situ�

ations� the execution of the rule of inference on a rule might nullify the e
ciency obtained by

the rule selection procedure due to a combinatorial number of rule activation steps including

binding con	ict resolution of shared variables�

A solution to this problem is to cache previous rule activation steps and reuse them when

the same rule is reactivated in subsequent deductions� For this purpose� a data structure named

�rule use information� �RUI
 has been de�ned and used in the SNePS knowledge representation

and reasoning system �Hull� ������ A set of RUIs is maintained for each rule not only in order

to store instances of antecedents� but also to resolve binding con	icts of shared variables among

antecedents and combine those RUIs that have consistent substitutions� The design of RUIs

was originally motivated by several reasoning purposes in SNePS including the implementation

of non�standard connectives and quanti�ers �Shapiro� ����c�� the prevention of in�nite loops

with recursive rules �McKay and Shapiro� ������ and the e
cient manipulation of bi�directional

inference �Shapiro et al�� ������ In this dissertation� the information stored in the RUI structure

is regarded as a type of experience� and will be used in subsequent reasoning for performance

enhancement�

One of the problems in the implementation of the RUI set in SNIP��� is the lack of ef�

�ciency caused by the linear set implementation of accumulating rule activation steps� This

linear implementation has an exponential complexity with a combinatorial number of sub�

stitution compatibility checks between RUIs� which may cause a bottleneck in reasoning as

the problem size increases� In SNIP���� new algorithms are designed and implemented that
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distribute the information of rule activation steps to reduce the processing complexity to poly�

nomial�

This chapter is organized as follows� First� we review the concept of non�standard connec�

tives and quanti�ers that has motivated the use of the RUI structure� Second� we review the

RUI structure in detail and explain how it is used in saving instances of antecedents and resolv�

ing binding con	icts of shared variables� Third� we present two new algorithms� S�indexing

and P�tree� for e
cient processing of the RUI structure� Formal complexity analyses are done

for both mechanisms�

��� Non�Standard Connectives and Quanti�ers

Non�standard connectives and quanti�ers are generalizations of the common connectives and

quanti�ers such as conjunction� disjunction� negation� implication� universal quanti�er� and

existential quanti�er �Shapiro� ����c�� They are designed to provide closeness to human rea�

soning� structural simplicity� and expressibility in the areas of natural language understand�

ing� knowledge representation� and reasoning �Martins and Shapiro� ����� Shapiro� ����a�

Shapiro� ����b�� Some of the connectives and quanti�ers are brie	y introduced below�

And�or is symbolized as n
WVj
i � and the formula n

WVj
i �A�� A�� � � � � An
 is true when at least

i and at most j of the n arguments are true� And�or generalizes conjunction� disjunction�

negation� exclusive�or� nor� nand� etc� For instance� �
WV�
��A�B
 denotes A AND B� �

WV�
��A�B


denotes A OR B� �
WV�
��A
 denotes NOT A� and �

WV�
��A�B
 denotes A XOR B� Two possible

inference rules for the and�or connective are� ��
 if it is known that exactly j of the arguments

are true� then the remaining n
 j arguments must be false� and ��
 if it is known that exactly

n
 i of the arguments are false� then the remaining i arguments must be true�

Thresh denoted by n!
j
i is the dual of and�or� and the formula n!

j
i �A�� A�� � � � � An
 is

true when either fewer than i or more than j of the n arguments are true� If j is omitted� j is

automatically set to n
�� Thresh is mainly used to represent the equivalence relation denoted

by n!� �A�� A�� � � � � An
 which indicates that the arguments are either all true or all false�
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Or�entailment ���
 and and�entailment �"�
 are the generalizations of implication

��
� The formula �A�� A�� � � � � An
 ���C�� C�� � � � � Cm
 means that the disjunction of the

antecedents implies the conjunction of the consequents� and the formula �A�� A�� � � � � An


"��C�� C�� � � � � Cm
 means that the conjunction of the antecedents implies the conjunction

of the consequents� These two entailments may be combined into one by using numerical

entailment �
i
�
� The formula �A�� A�� � � � � An


i
��C�� C�� � � � � Cm
 means that if any i of the

antecedents are true� so are all of the consequents�

Numerical quanti�er represented by n�
j
i generalizes the universal and existential quanti�

�ers� The formula n�
j
i �#x
�P��#x
� � � � � Pk�#x
 � Q�#x

� where #x is a sequence of variables� means

that of the n individuals that satisfy P��#x
 � � � � � Pk�#x
� at least i and at most j of these will

also satisfy Q�#x
� For instance� ��
�
��w� �Woman�w�� Isa�w� Teacher�� says that there are �ve

women� and exactly two of them are teachers� This kind of rule is especially used for reasoning

by exclusion� i�e� if it is already known that two women are teachers� it is inferred that the

remaining three women are not teachers�

Introduction and elimination inference rules for these connectives and quanti�ers are

explained in �Martins and Shapiro� ������

As mentioned above� the main advantages of using non�standard connectives and quan�

ti�ers for the representation of rules are expressibility and closeness to human reasoning� As

an example� consider the representation of the following two statements in the Freeman puzzle

described in �Summers� ������

There are �ve women� Ada� Bea� Cyd� Deb� and Eve�

The women are in two age brackets� three women are under �� and two women are

over ���

With standard connectives such as negation �

� conjunction ��
� and disjunction ��
�

the phrase three women are under �	 would have to be expressed in the following way�

��age�Ada�u��� � �age�Bea�u��� � age�Cyd�u��� � age�Deb�u��� � age�Eve�u����

� ��age�Ada�u��� � age�Bea�u��� � �age�Cyd�u��� � age�Deb�u��� � age�Eve�u����

� ��age�Ada�u��� � age�Bea�u��� � age�Cyd�u��� � �age�Deb�u��� � age�Eve�u����

� ��age�Ada�u��� � age�Bea�u��� � age�Cyd�u��� � age�Deb�u��� � �age�Eve�u����
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� �age�Ada�u��� � �age�Bea�u��� � �age�Cyd�u��� � age�Deb�u��� � age�Eve�u����

� �age�Ada�u��� � �age�Bea�u��� � age�Cyd�u��� � �age�Deb�u��� � age�Eve�u����

� �age�Ada�u��� � �age�Bea�u��� � age�Cyd�u��� � age�Deb�u��� � �age�Eve�u����

� �age�Ada�u��� � age�Bea�u��� � �age�Cyd�u��� � �age�Deb�u��� � age�Eve�u����

� �age�Ada�u��� � age�Bea�u��� � �age�Cyd�u��� � age�Deb�u��� � �age�Eve�u����

� �age�Ada�u��� � age�Bea�u��� � age�Cyd�u��� � �age�Deb�u��� � �age�Eve�u����

Compared to this representation� we can obtain a simpler and more readable expression by

using a non�standard connective and�or as follows�

�
WV�
� �age�Ada�u��
� age�Bea�u��
� age�Cyd�u��
� age�Deb�u��
� age�Eve�u��



With numerical quanti�er� this is represented more compactly as follows�

���� �x
 �woman�x
� age�x�u��



These expressions with non�standard connectives and quanti�ers are certainly readable

and naturally expressible compared to those with standard connectives� However� the system

may be slowed down in order to directly activate these non�standard rules� since the manipu�

lation of their rules of inference is complicated� Our general objective is to develop a method

that can e
ciently process the rules of inference of non�standard connectives and quanti�ers�

and consequently to achieve both expressibility and performance�

In fact� each of the non�standard connectives and quanti�ers has di�erent rules of inference

depending on how many antecedents must be consistently instantiated �by positive or negative

instances
 to draw conclusions� For instance� and�entailment requires all the antecedents of

a rule be instantiated to deduce its consequents� but or�entailment requires at least one of

them be instantiated� Also� the and�or connective n

WVj
i has many di�erent rules of inference

depending on the values of the parameters n� i� and j� A uniform way of manipulating

these various kinds of rules of inference can be achieved by using the RUI set structure that

represents each rule activation step and maintains the instance information including variable

substitutions and the number of antecedents satis�ed by positive or negative instances�
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��� Rule Use Information �RUI�

The RUI structure has been proposed and implemented in SNePS �Hull� ����� McKay and

Shapiro� ����� Shapiro� ����� to save instance information of the antecedents of a rule including

variable substitutions and the number of positive and negative instantiations� and also to

combine those instances that have consistent bindings for shared variables� A rule is associated

with a set of RUIs called a �RUI set� that traces the history of instance handling� The current

implementation in SNIP��� maintains a linear RUI set for each rule�

����� Data Structure of RUI

A RUI consists of � elements as below�

�RUI� ��� � �sbst� �pcount� �ncount� �fns� �

where �sbst� denotes variable substitutions from instances of antecedents� �pcount� denotes

the number of antecedents known to be true� �ncount� denotes the number of antecedents

known to be false� and a 	agged node set �fns� indicates which antecedents are known to be

true or false�

As an example� consider a knowledge base for reasoning about kinship facts� It might have

an and�entailment deduction rule such as rhusband for recognizing the husband relationship�

�rhusband
 �x�y �man�x
� woman�y
� married�x�y
 "�husband�x�y
�

rhusband says that if there is a man x and a woman y� and they are married� x is the husband

of y� Suppose we want to derive all of the husband relationships from the following set of facts

through backward chaining�

man�john

man�fred

man�bob

man�steve

woman�mary

woman�jane

woman�deb

woman�ada
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woman�sue

married�steve� sue


A query husband�x�y
 asked to this knowledge base invokes pattern matching procedures to

�nd instances of antecedent patterns� In this case� the pattern man�x
 has � instances� woman�y


has � instances� and married�x�y
 has � instance� Initially� the RUI set of a rule is empty� and

is dynamically augmented as new instances of antecedents are processed� Figure ��� shows

a resulting RUI set of the rule rhusband after processing all the above instances� �P�� P��

and P� denote man�x
� woman�y
� and married�x�y
� respectively
� Here� r� is created from

the instance man�john
� r� is created from the instance man�fred
� and r� is created from the

instance woman�mary
� and so on� Note that the same RUI set� except for the order of RUIs�

will result no matter which antecedent is processed �rst�

����� Resolving Binding Con�icts by Using RUI

One peculiar characteristic of the RUI set is that it not only accumulates the instances of each

antecedent� but it also maintains combined RUIs by merging any two RUIs that have no binding

con	icts� Resolving binding con	icts of shared variables is done by checking substitution

compatibility between RUIs� Two RUIs are said to be compatible when the substitutions of

the two RUIs are consistent� meaning that a shared variable in both substitutions is bound

to the same value� For example� r� in Figure ��� is compatible with r��� but not compatible

with r�� Note that those RUIs with no shared variables are always compatible� for instance�

r� and r� are compatible�

Any two RUIs in a RUI set that have compatible substitutions and disjoint �fns� are

combined to create a merged RUI� Suppose �fns� of a RUI ra is fa� and �fns� of a RUI rb is

fb� These two RUIs can be combined to create a new merged RUI rm when ��
 ra and rb are

compatible� and ��
 the node set of fa is disjoint with the node set of fb� As a result� �pcount�

of rm is the sum of �pcount� of ra and �pcount� of rb� and �ncount� of rm is the sum of

�ncount� of ra and �ncount� of rb� Also� �sbst� of rm is a union of �sbst� of ra and �sbst�

of rb� and �fns� of rm is the union of fa and fb� For instance� r� and r� are combined to

produce r�� and r�� and r�� are merged to get r��� Eventually� husband�steve�sue
 is derived
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�
r� � fjohn�xg � � fP��trueg 

r� � ffred�xg � � fP��trueg 

r� � fbob�xg � � fP��trueg 

r� � fsteve�xg � � fP��trueg 

r� � fmary�yg � � fP��trueg 

r� � fjohn�x� mary�yg � � fP��true� P��trueg 

r� � ffred�x� mary�yg � � fP��true� P��trueg 

r� � fbob�x� mary�yg � � fP��true� P��trueg 

r� � fsteve�x� mary�yg � � fP��true� P��trueg 

r�� � fjane�yg � � fP��trueg 

r�� � fjohn�x� jane�yg � � fP��true� P��trueg 

r�� � ffred�x� jane�yg � � fP��true� P��trueg 

r�� � fbob�x� jane�yg � � fP��true� P��trueg 

r�� � fsteve�x� jane�yg � � fP��true� P��trueg 

r�� � fdeb�yg � � fP��trueg 

r�� � fjohn�x� deb�yg � � fP��true� P��trueg 

r�� � ffred�x� deb�yg � � fP��true� P��trueg 

r�� � fbob�x� deb�yg � � fP��true� P��trueg 

r�� � fsteve�x� deb�yg � � fP��true� P��trueg 

r�� � fada�yg � � fP��trueg 

r�� � fjohn�x� ada�yg � � fP��true� P��trueg 

r�� � ffred�x� ada�yg � � fP��true� P��trueg 

r�� � fbob�x� ada�yg � � fP��true� P��trueg 

r�� � fsteve�x� ada�yg � � fP��true� P��trueg 

r�� � fsue�yg � � fP��trueg 

r�� � fjohn�x� sue�yg � � fP��true� P��trueg 

r�� � ffred�x� sue�yg � � fP��true� P��trueg 

r�� � fbob�x� sue�yg � � fP��true� P��trueg 

r�� � fsteve�x� sue�yg � � fP��true� P��trueg 

r�� � fsteve�x� sue�yg � � fP��trueg 

r�� � fsteve�x� sue�yg � � fP��true� P��trueg 

r�� � fsteve�x� sue�yg � � fP��true� P��trueg 

r�� � fsteve�x� sue�yg � � fP��true�P��true�P��trueg





Figure ���� A RUI set of the rule rhusband



CHAPTER �� LEARNING AT THE RULE ACTIVATION LEVEL ��

from r�� whose �pcount� is the same as the number of antecedents of the rule� according to

the rule of inference for and�entailment�

����� Advantages of the RUI Structure

The advantages of employing the RUI set structure in deductive problem solving can be de�

scribed in � ways�

First� non�standard rules of inference can be uniformly implemented� Uniformity in ma�

nipulating various kinds of rules of inference can be achieved by exploiting �pcount�� �ncount��

and �fns� �elds of the RUI structure� For example� an and�entailment rule can deduce a con�

sequent if there is a RUI whose �pcount� value equals the number of antecedents in the rule�

Also� two rules of inference for the and�or rule n

WVj
i �A�� A�� � � � � An
 can be stated as� ��
 if

there is a RUI whose �pcount� value is equal to j� the �sbst� instances of those arguments

that are not in its �fns� �eld are proved to be false� and ��
 if there is a RUI whose �ncount�

value is equal to n 
 i� the �sbst� instances of those arguments not in its �fns� �elds are

proved to be true� In the same fashion� expressions like exactly two of n arguments� not all of

n arguments� or at least � of n arguments can also be expressed easily�

Second� we can reuse the previous history of rule activation steps saved in the RUI set

for subsequent deductions on the same rule� Duplicate rule activation steps� including pattern

matchings and binding con	ict resolutions� are avoided� This reusability can contribute to

better performance for future deductions� which is the main purpose of speedup learning�

For example� suppose a new fact married�john�mary
 is added to the knowledge base to �nd

more husband relationships� If the system does not maintain any mechanism for remembering

instances� all the rule execution steps must be repeated� This includes pattern matchings for

man�x
� woman�y
� and married�x�y
� even though we have already obtained most of instances

in the previous inference� Also the same steps of binding con	icts resolution must be done

again with little additional information� and most steps are repetitions of previous steps�

Duplicate pattern matching can be avoided if the instances of each antecedent pattern are

saved separately� but substitution compatibility tests must still be done to get consistent

combinations of instances� Using the RUI set� all these duplicate rule deduction steps are
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avoided� In the above case� all we have to do now is to create a new RUI r�� for the instance

married�john�mary
� and check substitution compatibility between r�� and each of the RUIs

in the RUI set of rhusband to produce the following merged RUIs�

r�� �fjohn�x� mary�yg � � fP��trueg

r�� �fjohn�x� mary�yg � � fP��true�P��trueg

r�� �fjohn�x� mary�yg � � fP��true�P��trueg

r�� �fjohn�x� mary�yg � � fP��true�P��true�P��trueg


r�� is combined with r�� r�� and r� to generate r��� r��� and r��� respectively� r��

contributes to the derivation of husband�john�mary
�

Third� the RUI set structure facilitates complete AND�parallelism� A major issue in the

AND�parallel computation of a conjunctive rule is the overhead of resolving binding con	icts

of shared variables� since it is almost impossible to execute two patterns with shared variables

concurrently� This problem mainly results from trying to resolve the con	icts at the pattern

level� By maintaining a separate process for a rule that maintains a RUI set structure� the only

thing that each antecedent pattern process should do is save instances that are matched and

send them to the rule process without worrying about the compatibility of shared variables�

This step of checking the substitution compatibility is performed by the rule process that re�

ceives instance information from all antecedent processes� There is no need to order antecedent

patterns according to variable speci�cations �Conery and Kibler� ������ and no need to have

complex communication mechanisms among antecedents�

Fourth� the RUI set structure is used to facilitate the implementation of bi�directional

inference which combines backward and forward chaining �Shapiro et al�� ������ In fact� we have

already witnessed a case of bi�directional inference in the husband rule example� In other words�

the �rst query husband�x�y
 is processed by backward chaining� and the second deduction is

carried out by adding a new fact married�john�mary
 that initiates forward chaining to �nd

more husband relationships� Also the RUI set is used to implement recursive rule inference

without causing in�nite loops �McKay and Shapiro� ������
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����� E�ciency Issues

One major problem in maintaining the RUI structure is e
ciency� In general� reasoning by

maintaining a linear RUI set for each rule is intractable due to the combinatorial number of

substitution compatibility checks between RUIs� The number of RUIs in a set also become large

as the application problem size increases� Furthermore� many unnecessary RUIs are merged

between patterns that share no common variables� such as man�x
 and woman�y
� because the

compatibility checks between RUIs of these patterns always succeed� It is recognized that

updating a linear RUI set has an exponential complexity� in average� in terms of the number

of antecedents in a rule� �Details are in Section ���
�

In this dissertation� techniques for distributing RUIs are presented for fast reasoning with

deduction rules� especially with non�standard connectives and quanti�ers� Two algorithms are

designed for e
cient RUI handling in this distributed RUI set scheme�

The �rst algorithm� called S�indexing �S stands for substitution
� is designed for rules

in which all antecedent patterns or all arguments have the same set of variables� for example�

n

WVj
i �A�x� y
� B�x� y
� C�x� y

� In S�indexing� RUIs are indexed and distributed by bound

values for variables� A single RUI is built for each variable substitution�

The second algorithm� called P�tree �P stands for pattern
� is designed for conjunctive

rules whose antecedent patterns have di�erent sets of variables� A conjunctive rule has two or

more antecedents which must be satis�ed simultaneously with consistent variable bindings to

derive the consequents� Rules with the and�entailment connective often belong to this category�

In this method� a P�tree is built from the set of antecedent patterns of a conjunctive rule so

that those patterns with common variables can be arranged to be adjacent in the tree� RUIs

are distributed over the nodes of the P�tree�

One exception is that rules with the numerical quanti�er are handled by the P�tree

method even if all antecedents have the same set of variables� The main reason for this is that

numerical quanti�er expressions have the characteristics of both conjunctiveness and non�

conjunctiveness� and therefore S�indexing may not handle the rule of inference for numerical

quanti�er expressions correctly�

In summary� the S�indexing method is applied to those rules� except numerical quanti�er
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rules� in which the antecedents �or arguments
 have the same set of variables� whereas the P�

tree method is applied to all numerical quanti�er rules and those and�entailment rules whose

antecedents have di�erent sets of variables� The linear method is applied to those rules that

do not belong to the above categories�

Complexity analyses presented in Section ��� show that these schemes of RUI set distri�

bution keep the complexity of the RUI set handling to polynomial in terms of the number of

RUIs and the number of substitution compatibility tests�

��� S�indexing Algorithm

S�indexing is designed for rules in which all antecedent patterns or all arguments have the

same set of variables� For instance� an expression a person is either a man or a woman can be

represented by �x �person�x
 ���
WV�
� �man�x
� woman�x

��

S�indexing distributes RUIs by bound values for a �xed set of variables in a rule� An

index key is represented by � b�� � � � � bm �� generated from a substitution fb��v�� � � � � bm�vmg�

Here� m is the number of variables in each antecedent pattern�

For each rule to which S�indexing is applied� an index key table is managed so that a

RUI can be accessed and modi�ed by the corresponding index key in the table� Since every

argument has the same set of variables� two instances with identical variable bindings will

have the same index key� and eventually will access the same RUI� When a new instance is

processed� the system retrieves the corresponding RUI via its index key� changes the values of

�pcount�� �ncount�� and �fns� properly� and replaces the old RUI by the new one� The main

bene�t we get from indexing is that there is no need for checking binding con	icts between

RUIs� since di�erent bindings lead to di�erent RUIs� As a result� it is su
cient to maintain a

single RUI for each di�erent variable substitution� A schematic of the S�indexing mechanism

is given in Figure ����

As an example� consider an and�or rule

�
WV�

� f P��x� y
� P��x� y
� P��x� y
� P��x� y
g

and facts
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instance with sbst =
{b1/v1, ..., bn/vn}

generator

index key index key

<b1, ..., bn>

index key table

.

.

.

RUI
RUI
RUI

RUI

Figure ���� Overview of S�indexing mechanism

P��a� b
 P��a� b
 
P��b� c
 P��b� c



P��c� d
 
P��b� c
 
P��a� d
 P��a� d


Here� we use 
 as the negation symbol abbreviating �
WV�
�� There are two variables in the rule� so

an index key will have the form of � b�� b� �� where b� is a bound value for x and b� is a bound

value for y� When this and�or rule is activated� facts that are matched with its arguments

provide information about variable substitutions and whether they are positive or negative

instances� A successful matching of P��x� y
 and P��a� b
 builds a new RUI and creates a new

index key � a� b � in the table as below�

index table RUIs

� a� b � 
� �� � fP��trueg


Note that we removed the �sbst� �eld in the RUI representation because it is no longer

needed� The next instance P��a� b
 that is matched with P��x� y
 produces the same index

key� so the previous RUI is updated as shown�

� a� b � 
� �� � fP��true� P��trueg
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The next instance 
P��b� c
 produces a new index key � b� c � that is added to the index

table� and creates a new RUI�

� a� b � 
� �� � fP��true� P��trueg


� b� c � 
� �� � fP��falseg


The next instance P��b� c
 that is matched with P��x� y
 produces an index key � b� c �

that is already built in the table� so the corresponding RUI is replaced by an updated RUI�

� a� b � 
� �� � fP��true� P��trueg


� b� c � 
� �� � fP��false� P��trueg


The other instances are processed in the same fashion� and the following RUI distribution

is made after 
P��c� d
� 
P��b� c
� 
P��a� d
� and P��a� d
 are processed�

� a� b � 
� �� � fP��true�P��trueg


� b� c � 
� �� � fP��false� P��false� P��trueg


� c� d � 
� �� � fP��falseg


� a� d � 
� �� � fP��false�P��trueg


As soon as 
P��b� c
 is processed� the rule of inference of and�or is applied to infer P��b� c


for the index of � b� c �� since the and�or rule says at least � of � arguments should be true�

but � arguments are already known to be false ��ncount� is �
� So the �nal RUI distribution

looks like

� a� b � 
� �� � fP��true�P��trueg


� b� c � 
� �� � fP��true� P��false�P��false� P��trueg


� c� d � 
� �� � fP��falseg


� a� d � 
� �� � fP��false�P��trueg


In the S�indexing method� there is no need for substitution compatibility tests because

a di�erent variable substitution refers to a di�erent RUI� Instead� this method requires some

extra time to �nd the corresponding index key in the table� The complexity of this table

lookup depends on the particular implementation� for instance� we can achieve constant time



CHAPTER �� LEARNING AT THE RULE ACTIVATION LEVEL ��

complexity by using a hash table�

The number of RUIs in this method is equal to the number of di�erent variable substi�

tutions obtained from instances� and consequently is also equal to the size of the index table�

Therefore� the number of RUIs depends on how many di�erent variable substitutions exist�

��� P�tree Algorithm

The P�tree algorithm is designed for deduction rules using and�entailment or numerical quan�

ti�er� More precisely� this algorithms handles all numerical quanti�er rules and those and�

entailment rules whose antecedents have di�erent sets of variables�

A binary pattern tree called a P�tree is compiled from the set of antecedents of a rule�

and RUIs are distributed over the nodes of the P�tree� A P�tree of a rule is de�ned as a

binary tree in which� ��
 a leaf node corresponds to an antecedent pattern� ��
 a parent node

is a conjunction of its children� and ��
 the root node represents the whole conjunction of the

rule premise�

����� P�tree Compilation

A P�tree is compiled from a collection of antecedent patterns by considering the variables

in each pattern� The algorithm takes a list of pattern�variable speci�cations as its input and

produces a tree of patterns as its output�

As an example� consider an and�entailment rule

�v��v��v��v��v� �A�v��v�
� B�v��v�
� C�v��v�
� D�v��v�
� E�v��v�
� F�v��v�
� G�v��v�


"� H�v��v��v��v��v�
�

The pattern�variable speci�cation of a pattern P�x�� � � �� xn
 is de�ned as a list �P x� � � �

xn
� So� the pattern�variable list of the above rule will be

��A v� v�
 �B v� v�
 �C v� v�
 �D v� v�
 �E v� v�
 �F v� v�
 �G v� v�



The compilation algorithm is divided into � procedures�

PatVar
to
VarPat converts a pattern�variable list into a variable�pattern list�
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A variable�pattern speci�cation has the form of �v P� � � � Pm
� where v is a variable and

each Pi is an antecedent pattern that contains v� PatVar
to
VarPat generates the following

variable�pattern list from the above pattern�variable list�

��v� A D G
 �v� A E F
 �v� B C D F
 �v� B G
 �v� C E



The second procedure VarPat
to
PatSeq builds a linear sequence of patterns from a

variable�pattern list�

The basic idea in this procedure is to arrange those patterns that have shared variables

to be close in the sequence� From the above variable�pattern list� VarPat
to
PatSeq works

as follows� Initially� the pattern sequence is set to �A D G
 since the �rst variable�pattern pair

is �v� A D G
� and then v� is marked as processed� The union of variables of these patterns

is �v� v� v� v�
� Now v� is the �rst unprocessed variable in this union list� so �A E F
 is

the next candidate to be included in the sequence� but only E and F are inserted since A is

already in the sequence� The resulting sequence is �A D G E F
 with �v� v� v� v� v�
 as its

union of variables� Now v� is the next unprocessed variable� so �B C D F
 is the candidate

to be included in the sequence� and B and C are inserted to make the �nal pattern sequence

�A D G E F B C
� Note that the order of the sequence is important�

The third procedure PatSeq
to
PTree builds a P�tree from a pattern sequence�

A main step of this procedure is to extract the �rst two patterns from the sequence to

make them adjacent in the tree if they share a common variable� Otherwise the �rst pattern

is appended to the intermediate tree built so far� For example� from the pattern sequence

�A D G E F B C
 obtained in the previous procedure� A and D are combined since they share a

variable v�� Next two patterns G and E have no common variable� so G is appended to �A D
 to

make ��A D
 G
� Since E and F share a variable v�� and B and C share a variable v�� we can obtain

the �rst intermediate tree ��A D
 G �E F
 �B C

� Now the procedure is called recursively� The

�rst sequence �A D
 has variables �v� v� v�
� so it is combined with G� Also� the third sequence

�E F
 which has variables �v� v� v�
 is combined with the fourth sequence �B C
 which has

variables �v� v� v�
� This results in the second intermediate tree ���A D
 G
 ��E F
 �B C


�

Eventually� the �nal P�tree becomes ����A D
 G
 ��E F
 �B C



� Figure ��� depicts a resulting
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E(v2,v5)^F(v2,v3)^B(v3,v4)^C(v3,v5)

A(v1,v2) D(v1,v3) E(v2,v5) F(v2,v3) B(v3,v4) C(v3,v5)

B(v3,v4)^ C(v3,v5)E(v2,v5)^ F(v2,v3)A(v1,v2)^ D(v1,v3)

A(v1,v2) ^D(v1,v3) ^G(v1,v4) ^E(v2,v5) ^F(v2,v3) ^B(v3,v4) ^C(v3,v5)

A(v1,v2) ^D(v1,v3) ^G(v1,v4)

G(v1,v4)

Figure ���� A P�tree for an example rule

P�tree for the example rule graphically�

Note that the P�tree algorithm must deal with the situation in which there are several

groups of antecedent patterns in a rule that have disjoint variable unions� For example� consider

the following rule�

�v��v��v��v��v��v� �A��v��v�
� A��v��v�
� A��v��v�
� A��v��v�
� A��v��v�
� A��v��v�


"� B�v��v��v��v��v��v�
�

The union of variables for a group �A� A� A�
 is �v� v� v�
� and it is disjoint from

the union of variables for �A� A� A�
 which is �v� v� v�
� In this case� the procedure

VarPat
to
PatSeq builds a pattern sequence ��A� A� A�
 �A� A� A�

� Also� the procedure

PatSeq
to
PTree builds a P�tree for each pattern group and combines them to make a �nal

P
tree ����A� A�
 A�
 ��A� A�
 A�


�

The P�tree algorithm has reasonable complexity� Suppose p is the number of an�

tecedent patterns in a rule and v is the average number of variables in a pattern� Then�

PatVar
to
VarPat has the complexity of O�p � v
� VarPat
to
PatSeq has O�v
 complexity�

and PatSeq
to
PTree has O�p
 complexity� The overall P�tree algorithm has O�p � v
 com�

plexity�
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It is possible that several P�trees can be built from the same set of antecedent patterns�

For example� we can obtain at least three P�trees from the above example rule as shown

below� including t� that is compiled by our algorithm�

�t�
 ����A D
 G
 ��E F
 �B C





�t�
 ����A D
 �G B

 ��E F
 C




�t�
 �����A D
 G
 �E F

 �B C




In fact� it is di
cult to decide which P�tree is better� since the complexity of processing

P�tree RUI sets depends on several factors including the shape of the P�tree� the number of

instances for each pattern� and the number of successfully combined instances by substitution

compatibility tests� If we assume each pattern has the same number of instances and combined

instances are produced in the same rate for each non�leaf node� the optimality of the P�tree

can be determined by the average length of a path from a leaf node to the root node that is

the same as the average number of propagations of combined instances to the parent node�

In the above P�trees� the average path length of t� or t� is ��������������
�� � �����

and the average path length of t� is ��������������
�� � �� In this sense� we can claim

that our P�tree algorithm produces near optimal P�trees� since it always tries to make a tree

balanced�

����� Distributing RUIs over P�tree Nodes

RUIs are distributed by assigning a RUI set to each node in the P�tree� The RUI set of a

leaf node consists of those RUIs that are directly built from the instances of the corresponding

antecedent pattern� The RUI set of a non�leaf node consists of those RUIs that are successfully

combined from RUIs of its children nodes through binding con	ict resolution� The RUIs in the

RUI set of the root node contribute to drawing new conclusions when the value of �pcount�

is equal to the number of antecedents� For example� a P�tree for the rule rhusband is drawn

in Figure ����a
� and the distribution of RUIs over the nodes of this P�tree is shown in

Figure ����b
�

The distributed RUI set scheme using P�trees signi�cantly reduces the overall number
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({john/x} 1 0 {P1:true})
({fred/x} 1 0 {P1:true})
({bob/x} 1 0 {P1:true})
({steve/x} 1 0 {P1:true})

({mary/y} 1 0 {P2:true})
({jane/y} 1 0 {P2:true})
({deb/y} 1 0 {P2:true})
({ada/y} 1 0 {P2:true})
({sue/y} 1 0 {P2:true})

({steve/x, sue/y} 1 0 {P3:true})

({steve/x, sue/y} 2 0 {P1:true, P3:true})

({steve/x, sue/y} 3 0 {P1:true, P2:true, P3:true})

man(x) married(x,y) woman(y)

(a)  A P-tree for the husband rule

(b) Distribution of RUIs over P-tree nodes

man(x)  ^ married(x,y)

man(x) ^ married(x,y) ^ woman(y)

Figure ���� A P�tree distribution for the rule rhusband
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of substitution compatibility tests as well as the total number of RUIs� since substitution com�

patibility is only tested between RUIs of adjacent nodes� In the husband relation example� ��

RUIs and �� compatibility tests are made in the linear RUI set method as shown in Figure ����

whereas the P�tree RUI set method produces only �� RUIs and � compatibility tests� The

di�erences of these measures will be signi�cant as the problem size increases�

����� Comparisons with the RETE Algorithm

The P�tree algorithm can be compared with the RETE algorithm �Forgy� ����� Gupta et al��

����� Miranker� ����� Nayak et al�� ����� developed to reduce the overhead of pattern matching

when many patterns and objects are in the system�

Similarities include that both methods build a tree �or network
 structure from the an�

tecedents of a rule �or a set of productions
� and each node of the structure saves its instances

as a way of avoiding duplicate processing� Also� after a network is built� instances �or working

memory elements
 are fed to the structure to produce combined instance information that

has consistent variable bindings� In production systems� this combined instance information

results in a �con	ict set�� Substitution compatibility tests are performed for shared variables

between two adjacent nodes �in RETE� this process is called �join�
�

The main di�erence between the two methods is in how a tree or a network is built

from patterns� The pattern compiler in the RETE algorithm builds a network by linking

together nodes which test elements for intra�element features and inter�element features� Intra�

element features are the ones that involve only one working memory element� and inter�element

features results from having shared variables in two patterns� One problem in this network

compilation is that several antecedent patterns in a production rule with shared variables may

cause a long chain of join nodes� As a result� the cost of propagating combined instances may

increase� Compared to this� the P�tree compilation algorithm tries to make a tree balanced

so that the average number of propagations of combined instances can be minimized� For

example� the following RETE network may be built from the example rule discussed in the

previous section� In this network� the average path length from the root to a terminal node

is ��������������
�� � ����� which is much larger than the average path length in our
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P�tree which is �����

G E F B CA D

The other di�erence is in how the test is performed in a join node� In the RETE algorithm�

the length of a join node depends on the number of value pairs tested by the node� In other

words� if two patterns with many shared variables are joined� the compatibility test in this node

will be complicated since a test is made on each shared variable� In the processing of P�tree

RUI sets� the compatibility test in a merge node is performed more e
ciently by comparing

the �sbst� �elds of two RUIs�

We now provide a set of rules to see how the RETE algorithm and the P�tree algorithm

produce di�erent outputs�

�w�x�y�z �male�x
� parent�z�x
� grandp�z�y
� parent�w�y
 "� uncle�x�y
�

�w�x�y�z �female�x
� parent�z�x
� grandp�z�y
� parent�w�y
 "� aunt�x�y
�

�x�y�z �male�x
� female�y
� married�x�y
� father�z�y
 "� father
in
law�z�x
�

�x�y�z �male�x
� female�y
� married�x�y
� mother�z�y
 "� mother
in
law�z�x
�

Figure ����� shows the RETE network compiled from this set of rules� and Figure �����

shows a set of P�trees compiled from the same set of rules� The average length of a path

from the root node to a terminal node in the RETE network �����
 is slightly higher than the

average length of a path from a leaf node to the root node in the P�tree ����
� The di�erences

of these measures will be more signi�cant as the number of patterns in a rule increases�

��� Complexity of Processing RUI Sets

This section compares the complexity of processing RUI sets for the linear set method� the S�

indexing method� and the P�tree method� Two main metrics in these performance measures

are� ��
 the number of total RUIs in the rule �space complexity
� and ��
 the number of
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Figure ���� A RETE network for the kinship example
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Figure ���� A set of P�trees for the kinship example
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substitution compatibility tests between RUIs during rule activation �time complexity
� We

assume that there are� on average� n antecedents in a rule and that each antecedent has m

instances� In this analysis� a best case occurs when the two metrics have the minimum values�

and a worst case occurs when the two metrics have the maximum values�

����� Complexity of Processing Linear RUI Sets

A best case in processing linear RUI sets happens when all the compatibility tests fail because

of the contents of the knowledge base� For instance� a rule saying a person who is an actor� a

singer� and also very famous is rich

�x �actor�x
� singer�x
� famous�x
 "�rich�x
�

with the following facts in the knowledge base

actor�wayne

actor�taylor

singer�queen

singer�simon

famous�jim

famous�john


would not produce any merged RUIs since all the compatibility tests fail� In this case� the

number of RUIs is m �n which has the complexity of O�m �n
� and the number of compatibility

tests is

m� �
Pn��

i�� i � m� � �n� 
 n
��

which has the complexity of O�m� � n�
�

A worst case happens when all compatibility tests succeed� especially when there is no

shared variables among all antecedents� An example rule saying all americans and canadians

are friendly is de�ned by

�x�y �american�x
� canadian�y
 "�friendly�x�y
�

In this case� the number of RUIs is
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m �
Pn

i���m� �

i�� � �m� �
n 
 �

and the number of compatibility tests is

m �
Pn

i���m� �

i�� 
m � n � �m� �
n 
m � n
 �

Note that both have the complexity of O�mn
�

In order to estimate the complexity of an average case� we assume that compatibility

tests between two RUI sets of the size m are successful in m out of m� cases� In fact� this

assumption is based on empirical statistics� Then� the number of RUIs is computed as

m �
Pn	�

i�� �
i�� � m � ��n	� 
 �


which is O�m � �n
� and the number of compatibility tests is

m� �
Pn��

i�� ��
i 
 �
 � m� � ��n 
 n
 �


which is O�m� � �n
�

����� Complexity of Processing S�indexing RUI Sets

In the S�indexing method� the number of substitution compatibility tests is constant because

a di�erent variable substitution refers to a di�erent RUI� Instead� this method requires some

extra time to �nd the corresponding index key in the table for a variable substitution� The

complexity of this table lookup depends on a particular implementation of the index key table�

More speci�cally� it has a linear time complexity for a sequential table� and a constant time

complexity for a hash table�

The number of RUIs in this method is equal to the number of di�erent variable substi�

tutions obtained from instances� and consequently is also equal to the size of the index table�

Therefore� the number of RUIs relies on how many di�erent variable substitutions exist�

Since each antecedent has m instances on average� a best case happens when there are

only m di�erent variable substitutions� The example rule we have seen in the previous section

�x �actor�x
� singer�x
� famous�x
 "�rich�x
�

with the following facts in the knowledge base



CHAPTER �� LEARNING AT THE RULE ACTIVATION LEVEL ��

actor�wayne

actor�taylor

singer�wayne

singer�taylor

famous�wayne

famous�taylor


has � di�erent substitutions fwayne�xg and ftaylor�xg� In this case� the number of RUIs has

O�m
 complexity�

A worst case is when all instances have di�erent substitutions� Since there are n an�

tecedents� the complexity will be O�m �n
� For example� the following facts result in � di�erent

substitutions�

actor�wayne

actor�taylor

singer�queen

singer�simon

famous�jim

famous�john


An average case happens when half ofm�n instances have the same variable substitutions�

so the complexity will be O�m � n
� For example� the following facts result in � di�erent

substitutions�

actor�wayne

actor�taylor

singer�queen

singer�wayne

famous�taylor

famous�queen


����� Complexity of Processing P�tree RUI Sets

A best case in processing P�tree RUI sets is the same as a best case in the linear set method

where all compatibility tests fail regardless of the shape of the P�tree� The number of RUIs is

m �n which is the same as that of the linear set method� Compatibility tests are only performed

for adjacent nodes� so the number of compatibility tests ism��n�� whose complexity is O�m��n
�

A worst case is the same as a worst case in the linear set method when all substitution
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compatibility tests succeed� In particular� for a rule in which there is no shared variables

among all antecedents� the P�tree compilation algorithm produces a skewed binary tree� For

example� a P�tree for a rule

�v��v��v��v� �A�v�
� B�v�
� C�v�
� D�v�
 "�E�v��v��v��v�
�

looks like

A(v1) B(v2) C(v3) D(v4)

In this case� the number of RUIs is

n �m�
Pn��

i�� m
i	� � n �m�m� � �mn�� 
 �
��m
 �


and the number of compatibility tests is

Pn��
i�� m

i	� � m� � �mn�� 
 �
��m
 �


both of which have the complexity of O�mn
�

Average case analysis is done with three assumptions� ��
 there are n antecedents with n �

�k for some non�negative integer k� ��
 a P�tree is a full binary tree� and ��
 the compatibility

tests between two RUI sets with the size of m are successful in m out of m� cases� The depth

of a full binary P�tree with �k patterns is k� and the number of nodes in the tree is �k	� 
 ��

In this case� the number of RUIs is

m �
Pk	�

i�� �
i�� � m � ��k	� 
 �
 � m � �� � n
 �


which is O�m � n
� The number of compatibility tests is

m� �
Pk

i�� �
i�� � m� � ��k 
 �
 � m� � �n
 �


which is O�m� � n
�

Complexity comparisons are summarized in the following table� Here� n denotes the

average number of antecedents in a rule� and m denotes the average number of instances for

each antecedent�
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linear P�tree S�indexing

RUI set handling RUI set handling RUI set handling

Cases $ of RUIs $ of tests $ of RUIs $ of tests $ of RUIs $ of tests

Best O�m � n
 O�m� � n�
 O�m � n
 O�m� � n
 O�m
 O��


Worst O�mn
 O�mn
 O�mn
 O�mn
 O�m � n
 O��


Average O�m � �n
 O�m� � �n
 O�m � n
 O�m� � n
 O�m � n
 O��


Notice in this table that the S�indexing method is more e
cient than the P�treemethod

in both metrics� but there is a restriction in applying S�indexing that all patterns must have

the same set of variables� For this reason� S�indexing is preferred to P�tree for an and�

entailment rule whose antecedents have the same set of variables�
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The schemes of knowledge migration� knowledge shadowing� P�tree� and S�indexing have

been implemented in the SNePS Inference Package �SNIP
 �Hull� ����� Shapiro and Rapaport�

����a� Shapiro and Rapaport� ����b�� which is a semantic�network based natural deduction

system� SNIP treats inference as an activation of the network� and employs an object�oriented

execution model with a number of processes and message passing among processes �Hull� ������

A process is allocated to each node in the network when the node is involved in inference�

and each process has a set of registers that are maintained to keep the information used in

communications between processes� The expertise base and the RUI set are implemented by

these registers�

We show the e�ectiveness of our speedup learning methods by presenting several applica�

tion problems� We ran the original SNIP �SNIP���
 and the modi�ed SNIP �SNIP���
 on each

application problem to compare their results� Test runs are performed on a SUN SPARC sta�

tion with a COMMON LISP environment� Performance measures are based on several metrics

including the CPU execution time� the number of matches� the number of RUIs� the number of

substitution compatibility tests for binding con	ict resolution� and the number of activations

of inference rules�

��� SNePSLOG Interface

In these test runs� knowledge bases are represented by SNePSLOG �a logical interface to

SNePS
 �Shapiro et al�� ������ The following is a summary of SNePSLOG expressions for

non�standard connectives and quanti�ers�

��
 And�or denoted by n

WVj
i is represented by andor�i�j�� and the negation �

WV�
� is abbreviated

by �� For example�

�
WV�
� �isa�Cyd�teacher
� isa�Deb�teacher



is represented by

andor����� �isa�Cyd�teacher�� isa�Deb�teacher��

��
 Thresh denoted by n!
j
i is represented by thresh�i�j�� n!i is represented by thresh�i��
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and the equivalence relation n!� is abbreviated by ���� For example�

�!� �isa�Bea�teacher
� isa�Eve�teacher



can be represented by any one of the following�

thresh��� �isa�Bea�teacher�� isa�Eve�teacher��

isa�Bea�teacher� ��� isa�eve�teacher�

��
 There are three kinds of connectives for entailments� �� is used when there is only one

antecedent� v�� is used for or�entailment with more than one antecedent� and ��� is used for

and�entailment� For example�

�x �man�x
 ��mortal�x



�x�y�z �on�x�y
� on�y�z
 "�on�x�z



are represented� respectively� by

all�x� �man�x� �� mortal�x��

all�x�y�z� ��on�x�y�� on�y�z�	 ��� �on�x�z�	�

��
 Numerical quanti�er denoted by n�
j
i is represented by nexists�i�j�n�� For example� v

��
�
��w
 �woman�w
� isa�w�Teacher



is represented by

nexists������� �w� ��woman�w�	 � �isa�w�Teacher�	�

��� The Jobs Puzzle

The jobs puzzle problem is described in �Wos et al�� ����� pp ������ as follows�

� There are four people� Roberta� Thelma� Steve� and Pete� Among them� they hold

eight di�erent jobs� Each holds exactly two jobs� The jobs are� chef� guard� nurse� telephone

operator� police o
cer �gender not implied
� teacher� actor� and boxer� The job of nurse is held
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by a male� The husband of the chef is the telephone operator� Roberta is not a boxer� Pete

has no education past the ninth grade� Roberta� the chef� and the police o
cer went gol�ng

together� Now the question� Who holds which jobs��

As you might have noticed� there is some hidden information in this puzzle description as

mentioned below that should be represented explicitly in the knowledge base to do reasoning

correctly� Details of this hidden information are mentioned in �Wos et al�� ����� pp �������

��
 The sex of the people may be determined by the name� so Roberta and Thelma are

female� and Steve and Pete are male�

��
 General linguistic knowledge recognizes an actor as a male from its su
x 
or�

��
 From two sentences �among them �the four people�� they hold eight di�erent jobs� and

�each holds exactly two jobs�� we infer that �no job is held by more than one person��

��
 From the sentence �the husband of the chef is the telephone operator� and the implicit

fact that husbands are male� the chef must be female� and the telephone operator must be

male�

��
 Pete can be neither the teacher� the police o
cer� nor the nurse� since those jobs

require more than a ninth�grade education�

��
 From the phrase �Roberta� the chef� and the police o
cer�� we know that Roberta is

neither the chef nor the police o
cer� Since they went gol�ng together� we also know that the

chef and the police o
cer are not the same person�

����� Knowledge Base

A knowledge base for the jobs puzzle is represented by SNePSLOG� �Rules and facts are

described in typewriter style� Statements in italics denote natural language descriptions� All

hidden information is included�


There are four people� Roberta� Thelma� Steve� and Pete

The jobs are� chef� guard� nurse� telephone operator� police o
cer� teacher� actor� and boxer

Person��Roberta�Thelma�Steve�Pete	�

Female��Roberta�Thelma	�
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Male��Steve�Pete	�

Job��chef�guard�nurse�operator�police�teacher�actor�boxer	�

Among them� they hold eight di�erent jobs� each holds exactly two jobs

all�p��Person�p� �� nexists��������j���Job�j�	� �Is�p�j�	��

all�j��Job�j� �� nexists��������p���Person�p�	� �Is�p�j�	��

The job of nurse is held by a male

The husband of the chef is the telephone operator

all�w��Female�w���andor������Is�w�nurse��Is�w�actor��Is�w�operator�	�

all�m��Male�m� �� �Is�m�chef��

Roberta is not a boxer

Pete has no education past the ninth grade

�Is�Roberta�boxer�

andor������Is�Pete�nurse��Is�Pete�teacher��Is�Pete�police�	

Roberta� the chef� and the police o
cer went gol�ng together

andor����� �Is�Roberta�chef�� Is�Roberta�police�	

all�p��Person�p� �� andor������Is�p�chef�� Is�p�police�	�

Now the question� Who holds which jobs�

Is��p��j��

In this representation� we have used the concept of set argument �Shapiro� ����� for

the representation of Person� Job� Female� and Male propositions� Note that we can infer

Male�Steve� and Male�Pete� from Male�fSteve� Peteg�� and so forth� The answer to this

puzzle for the query who holds which jobs is given below�

Is�Roberta� teacher�

Is�Roberta� guard�

Is�Thelma� chef�
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CPU time No� of No� of Subst� Compat� Inference Rule
queries �seconds
 Matches RUIs Tests Firings

SNIP ���

Is��p��j
 �� �� ��� ����� ���

SNIP ���

Is��p��j
 �� �� ��� ���� ��

Table ���� Statistics comparisons for the jobs puzzle

Is�Thelma� boxer�

Is�Steve� nurse�

Is�Steve� police�

Is�Pete� actor�

Is�Pete� operator�

Statistics comparisons for the query Is��p��j� are given in Table ����

����� E	ect of Knowledge Shadowing

In order to see the e�ectiveness of knowledge shadowing� instead of asking who holds which

jobs�� we ask a sequence of � questions that are more speci�c than the above question� which

job does Roberta hold� �Is�Roberta��j�
� which job does Thelma hold� �Is�Thelma��j�
�

which job does Steve hold� �Is�Steve��j�
� and which job does Pete hold� �Is�Pete��j�
�

We focus on the following two rules both of which are nested rules with numerical quan�

ti�er rule consequents�

all�p��Person�p� �� nexists��������j���Job�j�	� �Is�p�j�	��

all�j��Job�j� �� nexists��������p���Person�p�	� �Is�p�j�	��
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We name the consequent of the �rst rule rp� and the consequent of the second rule rj �

�rp
 nexists��������j��Job�j��Is�p�j��

�rj
 nexists��������p��Person�p��Is�p�j��

These rules are activated by the �rst query Is�Roberta��j�� since the pattern Is�p�j� is

matched with the query� Backward chaining with inference rules of or�entailment and numer�

ical quanti�ers initiates the knowledge migration process to eventually generate the following

speci�c rules�

�rp�
 nexists��������j��Job�j��Is�Roberta�j��

�rp�
 nexists��������j��Job�j��Is�Thelma�j��

�rp�
 nexists��������j��Job�j��Is�Steve�j��

�rp�
 nexists��������j��Job�j��Is�Pete�j��

�rj�
 nexists��������p��Person�p��Is�p�chef��

�rj�
 nexists��������p��Person�p��Is�p�guard��

�rj�
 nexists��������p��Person�p��Is�p�nurse��

�rj�
 nexists��������p��Person�p��Is�p�operator��

�rj�
 nexists��������p��Person�p��Is�p�police��

�rj

 nexists��������p��Person�p��Is�p�teacher��

�rj�
 nexists��������p��Person�p��Is�p�boxer��

�rj�
 nexists��������p��Person�p��Is�p�actor��

As a result� the instance set of rp denoted by Irp � and the instance set of rj denoted by

Irj become as below�

Irp � f� rp�� fRoberta�pg ��� rp�� fThelma�pg ��
� rp�� fSteve�pg ��� rp�� fPete�pg �g

Irj � f� rj�� fchef�jg ��� rj�� fguard�jg ��
� rj�� fnurse�jg ��� rj�� foperator�jg ��
� rj�� fpolice�jg ��� rj
� fteacher�jg ��
� rj�� fboxer�jg ��� rj�� factor�jg �g

This information is used for Shadowing Principle � when processing the next queries

Is�Thelma��j�� Is�Steve��j�� and Is�Pete��j�� The general rules rp and rj are shadowed

from the inference for a request that contains one of migrating substitutions in the rule�s

instance set� which satis�es Shadowing Principle �� Statistics comparisons for the sequence of

four queries to the jobs puzzle given in Table ��� show the e�ect of knowledge shadowing�
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CPU time No� of No� of Subst� Compat� Inference Rule
queries �seconds
 Matches RUIs Tests Firings

SNIP ���

Is�Roberta��j
 �� �� ��� ���� ���

Is�Thelma��j
 �� �� ��� ���� ��

Is�Steve��j
 �� �� ��� ����� ���

Is�Pete��j
 ��� �� ��� ����� ���

SNIP ���

Is�Roberta��j
 �� �� ��� ���� ��

Is�Thelma��j
 �� �� ��� ��� ��

Is�Steve��j
 �� �� ��� ��� ��

Is�Pete��j
 � � �� ��� ��

Table ���� Statistics comparisons for the jobs puzzle with a sequence of four queries

��� 
The Woman Freeman Will Marry� Puzzle

The Freeman puzzle problem is described in �Summers� ����� as follows�

� Freeman knows �ve women� Ada� Bea� Cyd� Deb and Eve� The women are in two age

brackets� three women are under �� and two women are over ��� Two women are teachers and

the other three women are secretaries� Ada and Cyd are in the same age bracket� Deb and

Eve are in di�erent age brackets� Bea and Eve have the same occupation� Cyd and Deb have

di�erent occupations� Of the �ve women� Freeman will marry the teacher over ��� Who will

Freeman marry��

We present a SNePS representation of this puzzle using and�or� thresh� and numerical

quanti�er� �The SNePS representation in �Martins and Shapiro� ����� only uses the and�or

and thresh connectives�
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����� Knowledge Base

The SNePSLOG representation of the knowledge base is as follows�

Freeman knows �ve women� Ada� Bea� Cyd� Deb and Eve�

Woman��Ada� Bea� Cyd� Deb� Eve	�

The women are in two age brackets� three women are under �	 and two women are over �	�

AgeBracket��Under��� Over��	�

all�w��Woman�w� �� nexists��������a���AgeBracket�a�	� �Age�w�a�	��

nexists��������w���Woman�w�	� �Age�w� Under���	�

Two women are teachers and the other three women are secretaries�

Job��Teacher� Secretary	�

all�w��Woman�w� �� nexists��������j���Job�j�	� �Isa�w�j�	��

nexists��������w���Woman�w�	� �Isa�w� Teacher�	�

Ada and Cyd are in the same age bracket�

all�a��AgeBracket�a� �� thresh����Age�Ada�a�� Age�Cyd�a�	�

Deb and Eve are in di�erent age brackets�

all�a��AgeBracket�a� �� andor������Age�Deb�a�� Age�Eve�a�	�

Bea and Eve have the same occupation�

all�j��Job�j� �� thresh����Isa�Bea�j�� Isa�Eve�j�	�

Cyd and Deb have di�erent occupations�

all�j��Job�j� �� andor������Isa�Cyd�j�� Isa�Deb�j�	�

Of the �ve women� Freeman will marry the teacher over �	�

nexists��������w���Woman�w�	� �andor������Isa�w� Teacher�� Age�w�Over���		�

all�w���Isa�w� Teacher�� Age�w�Over���	 ��� �FreemanWillMarry�w�	�
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����� A Problem Solving Strategy

Note that the initial knowledge base does not include any information about the age or the

occupation of a particular woman� so in order to �gure out which category �either over �� or

under ��� and either a teacher or a secretary
 each woman belongs to� we have to raise some

hypotheses� reason from them� and if a contradiction is detected� mark the current hypothesis

invalid and resume the reasoning with a di�erent hypothesis�

The following is a sequence of hypotheses we made to solve this puzzle� For each hypoth�

esis� we describe what kinds of rules and facts are derived� and if contradiction occurs� why it

happened�

��
 Assume �Ada is over ��� � Age�Ada�Over���

Since Ada and Cyd are in the same age bracket� Cyd is also over ��� From the rule that

only two women are over ��� it is now inferred that Bea� Deb� and Eve should be under ���

But Deb and Eve should be in di�erent age brackets� Therefore� this hypothesis leads to a

contradiction� Any derived knowledge that was dependent upon the initial hypothesis will be

removed from the current belief space� Now we resume reasoning by an alternative�

��
 Assume �Ada is under ��� � Age�Ada�Under���

Cyd is also under ��� and no contradiction occurs� Still� the ages of Bea� Deb� and Eve

are not yet determined�

��
 Assume �Bea is over ��� � Age�Bea�Over���

No contradiction�

��
 Assume �Deb is over ��� � Age�Deb�Over���

Since Deb and Eve are in di�erent age brackets� Eve is under ��� and no contradiction

occurs� At this point� the ages of all �ve women are determined without any contradiction as

follows�

Age�Ada�Under���

Age�Bea�Over���

Age�Cyd�Under���

Age�Deb�Over���
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Age�Eve�Under���

We now want to �nd out the occupations of �ve women�

��
 Assume �Ada is a teacher� � Isa�Ada�Teacher�

No contradiction occurs�

��
 Assume �Bea is a teacher� � Isa�Bea�Teacher�

Since Bea and Eve have the same occupation� Eve is also a teacher� Now we know that

Ada� Bea� and Eve are teachers� But this leads to a contradiction since only two women can

be teachers� Any knowledge derived from this hypothesis is removed� and we resume reasoning

by an alternative�

��
 Assume �Bea is a secretary� � Isa�Bea�Secretary�

Bea and Eve have the same occupation� so Eve is also a secretary� Note that there should

exist exactly one woman who is a teacher over ��� and we know that Ada� Bea� Cyd� and Eve

cannot satisfy both properties� �Ada is under ��� Bea is a secretary� Cyd is under ��� and

Eve is under ���
 This implies that Deb should be the woman who is a teacher over ��� Now

Ada and Deb are teachers� and since there should be exactly two teachers� Cyd and Eve are

secretaries�

At this point� the occupations of all �ve women are determined without contradiction as

follows�

Isa�Ada�Teacher�

Isa�Bea�Secretary�

Isa�Cyd�Secretary�

Isa�Deb�Teacher�

Isa�Eve�Secretary�

As a result� Freeman will marry Deb�

����� E	ect of Knowledge Shadowing

During the �rst chaining initiated by the hypothesis �Ada is over ���� a number of speci�c

rules are generated from general rules as follows� Here� general rules are presented with a mark

�%
 followed by their instances�
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��� all�w��Woman�w� �� �nexists��������a���AgeBracket�a�	��Age�w�a�	���

nexists��������a���AgeBracket�a�	��Age�Ada�a�	�

nexists��������a���AgeBracket�a�	��Age�Bea�a�	�

nexists��������a���AgeBracket�a�	��Age�Cyd�a�	�

nexists��������a���AgeBracket�a�	��Age�Deb�a�	�

nexists��������a���AgeBracket�a�	��Age�Eve�a�	�

��� all�w��Woman�w� �� �nexists��������j���Job�j�	��Isa�w�j�	���

nexists��������j���Job�j�	��Isa�Ada�j�	�

nexists��������j���Job�j�	��Isa�Bea�j�	�

nexists��������j���Job�j�	��Isa�Cyd�j�	�

nexists��������j���Job�j�	��Isa�Deb�j�	�

nexists��������j���Job�j�	��Isa�Eve�j�	�

��� all�j��Job�j� �� �Isa�Bea�j� ��� Isa�Eve�j���

Isa�Eve�Teacher� ��� Isa�Bea�Teacher�

Isa�Bea�Secretary� ��� Isa�Eve�Secretary�

��� all�j��JOB�j� �� �andor������Isa�Cyd�j��Isa�Deb�j�	��

andor������Isa�Deb�Teacher��Isa�Cyd�Teacher�	

andor������Isa�Cyd�Secretary��Isa�Deb�Secretary�	

��� all�a��AgeBracket�a� �� �Age�Ada�a� ��� Age�Cyd�a���

Age�Cyd�Under��� ��� Age�Ada�Under���

Age�Ada�Over��� ��� Age�Cyd�Over���

��� all�a��AgeBracket�a� �� �andor������Age�Deb�a��Age�Eve�a�	��

andor������Age�Eve�Under����Age�Deb�Under���	

andor������Age�Eve�Over����Age�Deb�Over���	

These speci�c rules are used to prevent general rules from being activated in subsequent

reasoning� Statistics comparisons for the Freeeman puzzle are shown in Table ����

��� Streamroller Problem

In ����� Schubert posed the following challenge problem� called the streamroller problem� for

automated theorem provers�

� Wolves� foxes� birds� caterpillars� and snails are animals� and there are some of each of them�

Also there are some grains� and grains are plants� Every animal either likes to eat all plants



CHAPTER �� TEST RESULTS ���

CPU time No� of Subst� Compat� Inference Rule
queries �seconds
 Matches Tests Firings

SNIP ���

Age�Ada�Over��
& ����� �� ��� ��

Age�Ada�Under��
& ����� �� ��� ��

Age�Bea�Over��
& ���� � �� �

Age�Deb�Over��
& ���� � ��� �

Isa�Ada�Teacher
& ���� � �� �

Isa�Bea�Teacher
& ���� � �� �

Isa�Bea�Secretary
& ����� �� ���� ���

FreemanWillMarry��w
� ���� � ��� �

SNIP ���

Age�Ada�Over��
& ����� �� �� ��

Age�Ada�Under��
& ����� �� ��� ��

Age�Bea�Over��
& ���� � � �

Age�Deb�Over��
& ���� � ��� �

Isa�Ada�Teacher
& ���� � � �

Isa�Bea�Teacher
& ���� � �� �

Isa�Bea�Secretary
& ����� �� ��� ��

FreemanWillMarry��w
� ���� � � �

Table ���� Statistics comparisons for the Freeman puzzle
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or all animals much smaller than itself that like to eat some plants� Caterpillars and snails are

much smaller than birds� which are much smaller than foxes� which in turn are much smaller

than wolves� Wolves do not like to eat foxes or grains� while birds like to eat caterpillars but

not snails� Caterpillars and snails like to eat some plants� Therefore there is an animal that

likes to eat a grain�eating animal� �

This problem is known to be very hard to solve using resolution because the search space

is simply too big� Some advanced resolution techniques have been developed to overcome the

di
culty� such as many�sorted resolution �Cohn� ����� Walther� ����� and theory resolution

�Stickel� ������ In SNIP� which is based on natural deduction� a �rst�order axiomatization

of the puzzle can be directly executed without being converted into clausal form� which is

required for the resolution method� Consequently� SNIP does not cause as serious a search

space problem for this puzzle as resolution�based methods do�

����� Knowledge Base

We present a natural deduction representation for the streamroller problem with SNePS� and

discuss how some of the learning algorithms are used to improve the e
ciency� �The SNePS

representation of the streamroller problem was �rst formalized by Carlos Pinto�Ferreira of

Instituto Superior Tecnico at Lisbon� Portugal� and revised by the author�


A knowledge base for this problem is given in SNePSLOG� For each statement of the

puzzle� we discuss some representation issues with respect to claims made in �Stickel� ������

and provide SNePSLOG expressions�

First of all� the meaning of each predicate is de�ned here�

A�x� � x is an animal
W�x� � x is a wolf
F�x� � x is a fox
B�x� � x is a bird
C�x� � x is a caterpillar
S�x� � x is a snail
G�x� � x is a grain
P�x� � x is a plant
E�x�y� � x eats y
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M�x�y� � x is much smaller than y
GE�x� � x is an grain�eating animal

Wolves� foxes� birds� caterpillars� and snails are animals

Using or�entailment� this statement can be represented by one SNePSLOG expression�

all�x� ��W�x�� F�x�� B�x�� C�x�� S�x�	 v�� �A�x�	�

There are some of each of them

There are some grains

Existential quanti�ers are implemented in SNePS using skolem constants and skolem

functions�

W�w�

F�f�

B�b�

C�c�

S�s�

G�g�

Grains are plants

This statement is expressed by an or�entailment rule� Since there is only one antecedent�

we use �� instead of v���

all�x� �G�x� �� P�x��

Every animal either likes to eat all plants or all animals much smaller than itself that like to

eat some plants

Recognizing this as an ordinary disjunctive expression� we can obtain � separate state�

ments�

�� if an animal x does not like to eat some plants� it must be the case that x likes to eat all

animals much smaller than itself that like to eat some plants
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�� if an animal x does not like to eat some animals much smaller than itself that like to

each some plants� it must be the case that x does not like to each all plants

�� if an animal x does not like to eat some plants� and x does not likes to eat an animal y

which is much smaller than itself� it must be the case that y does not like to eat some

plants

In fact� ��
 is obtained from ��
� SNePSLOG expressions for the above three statements

are given�

all�x�y� ��A�x�� P�y�� �E�x�y�	 ���

�all�z�v� ��A�z�� P�v�� M�z�x�� E�z�v�	 ��� �E�x�z�	�	�

all�x�y�z� ��A�x�� P�y�� A�z�� M�z�x�� E�z�y�� �E�x�z�	 ���

�all�v� �P�v� �� E�x�v��	�

all �x�y� ��A�x�� P�y�� �E�x�y�	 ���

�all �z�v� ��A�z�� P�v�� M�z�x�� �E�x�z�	 ��� ��E�z�v�	�	�

Caterpillars and snails are much smaller than birds� which are much smaller than foxes�

which in turn are much smaller than wolves

all�x� ��C�x�� S�x�	 v�� �all�y� �B�y� �� M�x�y��	�

all�x�y� ��B�x�� F�y�	 ��� �M�x�y�	�

all�x�y� ��F�x�� W�y�	 ��� �M�x�y�	�

Wolves do not like to eat foxes or grains

all�x� ��F�x�� G�x�	 v�� �all�y� �W�y� �� �E�y�x��	�

Birds like to eat caterpillars but not snails

all�x�y� ��B�x�� C�y�	 ��� �E�x�y�	�

all�x�y� ��B�x�� S�y�	 ��� ��E�x�y�	�

Caterpillars and snails like to eat some plants

Since the existential quanti�ers are in the consequent position� we use a skolemized func�

tion�
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all�x� ��C�x�� S�x�	 v�� �P�f�x��� E�x�f�x��	�

There is an animal that likes to eat a grain eating animal

Since we are doing backward chaining� we introduce a new predicate GE in the consequent

position to initiate chaining by the query GE��x��y��

all�x�y�z� ��A�x�� A�y�� G�z�� E�x�y�� E�y�z�	 ��� �GE�x�y�	�

����� E	ect of P�tree

The P�tree algorithm is e�ective for the following and�entailment rule with � antecedent

patterns�

all�x�y�z� ��A�x�� P�y�� A�z�� M�z�x�� E�z�y�� �E�x�z�	 ���

�all�v� �P�v� �� E�x�v��	�

A P�tree for this rule is

A(x) M(z,x) ~E(x,z) A(z) E(z,y) P(y)

Statistics comparisons for the query GE��x��y� are shown in Table ����

There have been a number of attempts to solve this puzzle� and the approaches can

largely be divided into two categories� unsorted logic and sorted logic �Cohn� ����� Walther�

������ In �Stickel� ������ statistics comparisons for various solutions are described� Table ���

summarizes the statistics for unsorted logic including our system� and Table ��� for sorted

logic� Note that there are several di�erent interpretations for the phrase �grain�eating animal��

and this is re	ected by the column named �Problem� in the tables� In �%
� the phrase means an

animal that eats some grains� and in �%%
� the phrase means an animal that eats every grain�

The approach �%%%
 is a slight variation of �%%
� Details of these interpretations are discussed

in �Stickel� ������

According to these tables� our solution produces fewer uni�cations� and is faster than

most unsorted logic solutions� On the other hand� all sorted logic solutions outperform our
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CPU time Derived No� of Successful No� of No� of Inference
queries �seconds
 Knowledge Matches Uni�cations RUIs Tests Rule Firings

SNIP ���

GE��x��y
 �� �� �� ��� ���� ����� ���

SNIP ���

GE��x��y
 �� �� �� ��� ��� ��� ��

Table ���� Statistics comparisons for the streamroller problem

solution� Nevertheless� our contribution is that we could represent the streamroller problem

in �rst�order rules� and do reasoning directly from them by natural deduction without having

the step of converting rules into clausal form� As a result� the search space problem in SNIP

is minimal�

��� Digital Circuit Analysis�Validation

Digital circuit validation is a process of testing whether a digital circuit functions according

to its speci�cation� Validation is complicated for most digital circuits� since it is not easy to

extract a simple input�output function from a circuit speci�cation� Model�based reasoning

has been proposed to deal with this situation by constructing a model that uses structural

or functional characteristics of components in the circuit �Chandrasekaran and Milne� �����

Davis� ������

There are several ways of representing a digital circuit� In �Clocksin� ������ methods of

applying techniques of logic programming to problems in digital circuit analysis are presented�

In this system� each digital circuit is represented by the de�nitional method in which each
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Problem CPU time Derived Successful
Researcher�Strategy �seconds
 clauses uni�cations

Stickel�CG�SOS �%
 ���� ���� ������
Stickel�CG�SOS�TR �%
 �� ��� ����
Stickel�CG �%
 � �� ���
Stickel�CG�TR �%
 �� �� ���
Stickel�CG�SOS�TR �%%
 ��� ��� �����
Stickel�CG �%%
 �� ��� ����
Stickel�CG�TR �%%
 �� ��� ����
Stickel�CG�SOS�TR �%%%
 ��� ��� ����
Stickel�CG �%%%
 �� ��� ����
Stickel�CG�TR �%%%
 �� �� ���
McCune�UR �%
 ��� �� ����
McCune�LUR �%
 �� �� ����
McCune�UR �%%
 ��� �� ����
McCune�LUR �%%
 �� �� ����
Lusk " Overbeek�UR �%%%
 ��� ��� ����
Lusk " Overbeek�QUR �%%%
 ��� ��� �����
McCune�UR �%%%
 ��� ��� �����
McCune�LUR �%%%
 ��� �� ����
Plaisted�LOCK �%%%
 � ��� �
Walther�MKPR �%%%
 ��� �� �
Choi " Shapiro�natural deduction � �� �� ���

Table ���� Comparisons of unsorted logic solutions of the streamroller problem in �Stickel�
����� pp ������ with a natural deduction solution in SNIP ���
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Problem CPU time Derived Successful
Researcher�Strategy �seconds
 clauses uni�cations

McCune�UR �%
 � � ��
Stickel�CG�SOS �%
 � �� ���
Stickel�CG �%
 � �� ��
Stickel�PTTP �%
 ��� �� ��
McCune�UR �%%
 � � ��
Stickel�CG�SOS �%%
 � �� ���
Stickel�CG �%%
 � �� ��
Stickel�PTTP �%%
 ��� �� ��
Walther�MKPR �%%
 � �� ��

Table ���� Sorted logic solutions of the streamroller problem �Stickel� ����� page ���

module with n ports is represented as n�ary predicate symbol� and shared ports among several

modules are represented by shared variables� For example� the following digital circuit

lf
g

i

j
m
n

BA

AB

is represented by

A�f�g�i�j� � B�i�j�l�m�n� � AB�f�g�l�m�n�

Hierarchical de�nition is possible in the de�nitional method� which results in a concise

representation for a complex circuit by grouping a number of logically�related components into

a higher�level component�

We now want to represent an M�A� circuit using the de�nitional method� This circuit has

three inputs and two outputs� and consists of three multipliers and two adders satisfying the

following input�output equations�

out� � in� � in� � in� � in�
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out1

out2

M3A2

Figure ���� M�A� with ��bit inputs and ��bit outputs

out� � in� � in� � in� � in�

Figure ��� shows a bit�level schematic of the M�A� circuit in which inputs consist of � bits

and outputs consist of � bits� In this circuit� in� is represented by i� and i�� where i� is a

higher�order bit� So� if i��� and i���� in� has the value of �� Here� constants � and � stand

for logic high and logic low� respectively� In a similar way� out� is represented by o� through

o�� where o� is the highest�order bit�

From this speci�cation� the M�A� circuit is represented by the de�nitional method as

MULT �i�� i�� i�� i��m��m�� m��m�
�

MULT �i�� i�� i�� i��m��m�� m�� m�
�

MULT �i�� i�� i�� i��m��m�� m���m��
�

�ADDER�m�� m�� m��m��m��m��m��m�� o�� o�� o�� o�� o�
�

ADDER�m�� m��m��m��m��m��m���m��� o�� o�� o�� o�� o�
�

M�A��i�� i�� i�� i�� i�� i�� o�� o�� o�� o�� o�� o�� o�� o�� o�� o�
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The reason a nested rule is used in this case is to give the order of antecedent processing

in a parallel environment� That is� ADDER patterns are processed only afterMULT patterns

are instantiated so that the ADDER patterns will use instantiated values for the variables m�

through m�� from the MULT patterns�

ADDER is a ��bit full adder constructed from � ��bit full adders �as shown in Fig�

ure ����c

� and is represented as

FA�a�� b�� �� s�� t�
�

FA�a�� b�� t�� s�� t�
�

FA�a�� b�� t�� s�� t�
�

FA�a�� b�� t�� s�� s�
�

ADDER�a�� a�� a�� a�� b�� b�� b�� b�� s�� s�� s�� s�� s�


MULT is a ��bit multiplier that as shown in Figure ����d
� and is represented as

ANDG�a�� b�� c�
� ANDG�a�� b�� t�
�

ANDG�a�� b�� t�
� ANDG�a�� b�� t�
�

HA�t�� t�� c�� t�
�HA�t�� t�� c�� c�
�

MULT �a�� a�� b�� b�� c�� c�� c�� c�


FA is a ��bit full adder constructed from � half adders as shown in Figure ����b
�

HA�a� b� t�� t�
�HA�t�� ci� s� t�
� ORG�t�� t�� co
�

FA�a� b� ci� s� co


HA is a half adder circuit constructed from an XOR gate and an AND gate as shown in

Figure ����a
�

XORG�a� b� s
� ANDG�a� b� c
� HA�a� b� s� c


The primitive level of the de�nitional method is the gate level� Therefore� de�nitions of

logical gates are given by facts which are similar to the standard truth tables� For example�

an AND gate is represented by

ANDG��� �� �
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(b) a 1-bit full adder using 2 half adders

(c) a 4-bit full adder using 4 1-bit full adders

(a) a half adder circuit

HA

HA HA
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HA HA
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c s c s
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(d)  a 2 by 2 multiplier

Figure ���� Hierarchical representation of adders and a multiplier
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ANDG��� �� �


ANDG��� �� �


ANDG��� �� �


Here� ANDG��� �� �
 indicates that if the �rst input is � and the second input is �� the

output is �� Other logic gates are similarly represented�

This completes a hierarchical representation of the M�A� circuit with � bit inputs and �

bit outputs� In general� the steps of a validation process are� ��
 provide test input values

�e�g�� in�� in�� and in� values of M�A�
� ��
 measure the actual output values generated from

the given input values �e�g�� out� and out� values of M�A�
� and ��
 feed the input and the

measured output values to the rule of the circuit to check if the measured output values are

correct according to the model of the circuit�

We are particularly interested in an exhaustive simulation that tests output values for

all possible combinations of input values� Since there are three inputs with � bits each� there

are total �� �� inputs % � bits � � bits� and �
 � ��
 cases of simulation� Each simulation is

performed by a query with the form of

M�A��i�� i�� i�� i�� i�� i�� o�� o�� o�� o�� o�� o�� o�� o�� o�� o�


where i� and i� denote in�� i� and i� denote in�� i� and i� denote in�� o� through o�

denote out�� and o� through o� denote out�� For example�

M�A���� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �
 �q��


asks if the measured outputs �out� � �� out� � �
 are correct for given input values �in�

� �� in� � �� in� � �
�

query no� query �in�� in�� in�� out�� out��

q� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� �� ��
q� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� �� ��
q� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� �� ��
q� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� �� ��
q� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� �� ��
q� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� �� ��
q� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� �� ��
q� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� �� ��
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q� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� �� ��
q�	 M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� �� ��
q�� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� 	� ��
q�� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� 
� ��
q�� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� �� ��
q�� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� �� ��
q�� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� 
� ��
q�� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� �� ��
q�� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� �� ��
q�� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� �� ��
q�� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� �� ��
q�	 M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� �� ��
q�� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� �� ��
q�� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� �� ��
q�� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� 	� ��
q�� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� 
� 	�
q�� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� �� ��
q�� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� �� ��
q�� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� 
� 	�
q�� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� �� ��
q�� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� �� ��
q�	 M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� 	� 	�
q�� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� 
� ��
q�� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� ��� 
�
q�� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� �� ��
q�� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� �� ��
q�� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� 	� 	�
q�� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� 
� 
�
q�� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� �� ��
q�� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� �� 	�
q�� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� 
� 
�
q�	 M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� �� 
�
q�� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� �� 	�
q�� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� 	� 
�
q�� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� 
� 
�
q�� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� ��� ���
q�� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� �� 
�
q�� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� �� 
�
q�� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� ��� ���
q�� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� ��� ���
q�� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� �� ��
q�	 M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� �� ��
q�� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� 
� 
�
q�� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� �� ��
q�� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� �� ��
q�� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� 	� 
�
q�� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� 
� ��
q�� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� ��� ���
q�� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� �� 
�
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q�� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� �� ��
q�� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� ��� ��
q�	 M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� ��� ���
q�� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� �� ��
q�� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� 
� ���
q�� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� �
� �
�
q�� M�A���� �� �� �� �������� �� �������� �� ����� ��� �� �� ��� ���

An interesting phenomenon in this simulation is that a large number of associational

facts for the adders and the multiplier are derived as intermediate results� For example� during

processing q�� the system derives and asserts the following fact saying that � � � � ��

ADDER��� �� �� �� �� �� �� �� �� �� �� �� �
 �a


This fact is an instance of the consequent pattern of the ��bit adder rule

ADDER�a�� a�� a�� a�� b�� b�� b�� b�� s�� s�� s�� s�� s�
 �b


Not surprisingly� some of subsequent queries also try to derive �a
 from the ��bit adder

rule whenever either in� or in� is �� But this is a redundant step� since the only fact you can

derive in this situation is �a
� We can avoid this duplicate and redundant step by applying

Shadowing Principle � that uses the most common general instance �mgci
� The mgci of �a


and �b
 is always �a
� and as a result� Shadowing Principle � blocks the ��bit adder rule from

being used since the mgci is ground and asserted� This shadowing can be applied for any

ADDER fact that is used again in subsequent queries�

Figure ��� compares the CPU time results graphically� As you can observe in the graph�

the CPU times are increasing steadily in SNIP��� because of the knowledge base expansion

that produced more pattern matchings and more deduction branches� Compared to this� the

CPU time in SNIP��� drops signi�cantly in many cases� e�g� q��� q��� q��� q��� q��� and

so on� This happens when Shadowing Principle � is able to to exploit already derived facts

and hence avoid the activation of rules� However� those queries that ask unknown facts caused

a signi�cant increase of CPU time� which is obvious�
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��� Summary

We have presented schemes that allow deductive reasoning systems to learn from and exploit

previous experience� and consequently to make future reasoning more e
cient and more e�ec�

tive� Both the wide applicability of general knowledge and the speed of speci�c knowledge are

achieved by managing a multi�level knowledge structure and developing techniques of migrat�

ing general knowledge to speci�c knowledge and preventing general knowledge from being used

when speci�c knowledge migrated from it is available and applicable� By these techniques� the

system is able to decide the best possible branch in a deduction tree by choosing an appropri�

ate rule among many applicable rules� Experience is represented by the instance relationship

between the general knowledge and the speci�c knowledge migrated from it� and stored in the

expertise base� This information about instances contributes to the selection of the best pos�

sible deduction branch� Learning and reasoning are integrated by managing learning modules

as subcomponents of the inference engine in a reasoning system�

Two learning modules� knowledge migration and knowledge shadowing� are provided for

experience�based rule selection� Knowledge migration migrates general knowledge to speci�c

knowledge during reasoning� which causes knowledge redundancy by storing migrated knowl�

edge in the knowledge base� Experiential information is obtained during knowledge migration�

Knowledge shadowing recognizes redundancy� recalls the experiential information from the

expertise base and compares it with the current situation� and prevents those rules that are

determined to be unnecessary from being used� Decision�making about which rule must be

blocked and which rule must be used depends on the content of the expertise base and the

nature of the current query�

We have also presented techniques of implementing e
cient rules of inference in natural

deduction systems by caching and recalling the history of rule activation steps that alleviate

duplicate pattern matchings and binding con	ict resolutions� To reduce the complexity of

manipulating rule activation steps from exponential to polynomial� methods of distributing the

information about rule activation steps were developed that minimize the number of activation

steps and the number of substitution compatibility tests among shared variables� S�indexing

distributes rule activation information by using the variable substitution of the instances� and
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is applied to the rules whose antecedents have the same set of variables� P�tree is applied to

conjunctive rules� and distributes rule activation information over the nodes of a P�tree that

is compiled from the set of antecedents of the rule�

��� Contributions

Contributions of this research are summarized as below�

��
 This work is a formal approach to the integration of automated reasoning and machine

learning�

Many machine learning algorithms have dealt with some kind of experience information

to improve overall performance� but not many of them have mentioned a concrete form of

experience� We have formally de�ned deduction experience as the amalgamation of instance

set information and origin set information� Then� we also have formalizations of how this

experience can be accumulated and how it can be utilized� The accumulation of experience

has been achieved by knowledge migration that is de�ned as a system state change function

where a system state includes the contents of the knowledge base and the expertise base� The

utilization of experience has been achieved by two knowledge shadowing principles� and the

completeness of these principles have been proved�

��
 We employ inexpensive� but very e�ective learning components�

The ultimate goal of speedup learning is system e
ciency� and more speci�cally� faster

processing of similar problems� Hence� to evaluate the overall quality of a learning algorithm�

the performance metric should include not only the problem solving costs but also the amount

of e�ort consumed by the learning process� In this sense� we prefer simple learning algorithms

with low complexity that are strong enough to make a large di�erence in system behavior� Our

view of EBL and other learning methods is that those systems spend a considerable amount

of time to learn or apply problem solving experience� For instance� it is costly to traverse the

explanation structure to build a new description in EBL� or to match a number of complex

chunks in the chunking method� Our system employs a rather simple learning component that
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is incorporated within a general deductive inference engine� and as a result� the cost of learning

and the cost of applying learned knowledge to subsequent problem solving can be negligible

compared to the overall process�

��
 Knowledge redundancy is well exploited�

One of the main problems in speedup learning systems is performance degradation caused

by the increased computation cost of matching the patterns of the learned rules in addition to

matching the original rules� In fact� the learned rules in speedup learning systems belong to the

system�s deductive closure� and hence the addition of the learned rules to the knowledge base

causes knowledge redundancy� To avoid system slowdown caused by knowledge redundancy�

knowledge migration and knowledge shadowing provide a simple but clever indexing mechanism

linked with heuristics for managing learned knowledge� The control of knowledge redundancy

is done by relating learned rules with the original rules in a principled fashion� A simple

indexing mechanism also reduces the cost of applying experience to future problem solving�

��
 We bridge the gap between performance and expressibility in deductive reasoning systems�

especially in natural deduction systems�

Normally� these two properties seldom come together� Representations that are express�

ible are slow� and representations that are fast to execute are not expressible� For instance� the

logic programming community based on Horn clause representations is more concerned with

performance� Hence� logic programs are usually very fast to execute� However� Horn�clause

representations for most natural language expressions require a large number of clauses that

are unreadable and far from what humans might represent� On the other hand� expressibility

is more emphasized in most systems based on human reasoning including natural deduction

systems� semantic network representation�reasoning� conceptual graphs� and so on� Also the

introduction of non�standard connectives and quanti�ers and the exploitation of nested rule

representations lead to representation that is expressible� readable� and closer to the mode

of human reasoning� However� the implementation of rules of inference for these connectives

has intrinsically exponential complexity� Even if we emphasize the expressibility� this seems

to be intolerable� Therefore� in order to have expressible representations as well as reasonable



CHAPTER �� CONCLUSIONS ���

reasoning performance� S�indexing and P�tree are developed to implement the rules of infer�

ence of the various connectives and quanti�ers in polynomial time� In addition� these methods

can be used in backward chaining� forward chaining� and also bi�directional chaining� so they

provide more 	exibility�

��� Future Work

Some issues to be considered in the future are�

��
 The origin set information can be more extensively used�

Although the origin set information is a part of deduction experience� its usage in knowl�

edge shadowing has been minimal� Compared to the instance set information which only

provides the instance relationship between a general rule and a speci�c rule� the origin set

information provides more 	exible information about which knowledge was used to derive new

knowledge� In this sense� we can trace more than one level of inference chaining by using the

origin set information� As a result� if a rule is more deeply nested� it is possible to shadow

more than one general rule� In order to do that� we might have to use the subset�superset

relationship among several origin sets� But� we still have to use the instance set information

in order to di�erentiate between a speci�c query and a general query� Note that Shadowing

Principle � is e�ective as long as the level of rule nesting is limited to one� since it can achieve

the same functionality without employing origin set information�

��
 Tests are to be done in parallel environments�

Performance measurements for the evaluation of several learning techniques are done

mainly in a sequential processing environment� As we have discussed in Chapter �� the e�ect

of shadowing is di�erent in a parallel environment� since both general rule and speci�c rule

can be executed concurrently�

For example� suppose a general rule rg and a speci�c rule rs are applicable� In a sequen�

tial environment� the total cost is approximately CRULE�rg
 � CRULE�rs
 without shadowing

because both rules are triggered and executed� With the shadowing method� this cost is re�
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duced to CRULE�rs
 � CEB when rg is shadowed� C�ExpRet
 refers to the cost of retrieving

the expertise information� Therefore� shadowing will be e�ective when CEB is much smaller

than CRULE�rg
�

In a parallel environment where rg and rs are executed concurrently� the total cost without

shadowing is approximately CRULE�rg
� since CRULE�rg
 is generally greater than CRULE�rs
�

With shadowing� if rg is shadowed� the total cost becomes CRULE�rs
 � CEB� Therefore� if

CEB is small� the shadowing methods are also e�ective in parallel environments�
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