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1 Motivations

A survey of AI systems would reveal that it is somewhat
awkward to do acting in reasoning (or logic-based) systems
(but it is convenient to talk about representational and rea-
soning issues using them), and it is awkward to study rea-
soning and representational issues in systems designed for
acting/planning. Thus, most "good" planning/acting sys-
tems are "bad" KRR systems and vice versa. For exam-
ple, in a recent symposium on "Implemented KRR Sys-
tems" [Rich 1991b] out of a total of 22 KRR systems pre-
sented only 4 systems had capabilities for representation and
reasoning about actions/plans (RHET [Allen 1991], CYC
[Lenat and Guha 1991], CAKE [Rich 1991a] and SNePS
[Shapiro 1991]). The work presented in this paper presents
an approach that bridges this "representational/ behavioral
gap." We extend the ontology of an intensional KRR sys-
tem to facilitate representation and reasoning about acts and
plans. I.e. a computational cognitive agent modeled using
the extended ontology has representations for beliefs, acts,
and plans, and is able to reason about them. I.e., the agent
is able to represent its beliefs and desires (the ’B’ and the ’D’
of ’BDI’).

In most current AI architectures reasoning is performed by an
inference engine and acting is done under the control of some
acting executive (or a plan/act interpreter). Our approach 
based on the viewpoint that logical reasoning rules implicitly
specify the act of believing. Thus the inference engine can be
viewed as a mental actor. This enables us to establish a closer
relationship between rules of inference and rules of acting (or
planning). Believing is a state of knowledge; acting is the pro-
cess of changing one state into another. A reasoning rule can
be viewed as a rule specifying an act--that of believing some
previously non-believed proposition--but the believe action
is already included in the semantics of the propositional con-
nective. McCarthy (1986) also suggested that inference can
be treated as a mental action. This suggests that we can
integrate our models of inference and acting by eliminating
the ~cting executive (plan/act interpreter). These ideas are
used in developing a computational model-- called a Ratio-
nal Engine, that is a unified model of acting and inference
and can be used for modeling rational cognitive agents and
their behavior. Acting and reasoning about beliefs, actions,
and plans is performed by a single component-- the Rational
Engine. The rational engine implements the underlying logic
as well as notions of intentionality (the ’I’ of ’BDI’).

The work presented here has evolved from research in-
volved in extending a semantic network-based KRR system,
SNePS (whose rational engine called SNeRE is described in
[Kumar 1993a]), into a BDI architecture. In this paper we use
an object-oriented approach to describe the BDI architecture.
The resulting architecture is independent of, yet isomorphic
to, the SNePS KRR formalism. The resulting BDI architec-
ture enjoys all the advantages of object-oriented design-- the
ontology is easily extendible, as is the underlying logic, and
amenable to a concurrent implementation [Kumar 1993b].

2 A Object-Oriented KR Hierarchy

The representational formalism is described as a conceptual
object-oriented hierarchy. This is depicted in Figure 1. In
an intensional representational framework, anything a cogni-
tive agent can think about is termed a "mental concept" or
a conceptual entity. More specifically these can be individ-
uals, beliefs (propositions), or acts. In addition to standard
beliefs that an agent is able to represent, we also define a
special cltas of beliefs called trans]ormers. A trans/ormer
is a propositional representation that accounts for various
notions of inference and acting. A transformer is a represen-
tation that specifies a belief/act transformation. It has two
parts--((a), (b)), where both (a) and (b) can specify 
beliefs or some act. Transformations can be applied in for-
ward and/or backward chaining fashion. Using a transformer
in forward chainiug is equivalent to the interpretation "after
the agent believes (or intends to perform) (a), it believes 
intends to perform) (b)." The backward chaining interpre-
tation of a transformer is, "if the agent wants to believe (or
perform) (b), it must first believe (or perform) (a)." 
both (a) and (b) can be sets of beliefs or an act, we have 
types of transformers-- belief-belie], belief.act, act-belie/, and
act-act.

Belief-Bellef Transformers: These are standard reason-
ing rules (where (a) is a set of antecedent belief(s) and 
is a set of consequent belief(s)). Such rules can be used
in forward, backward, as well as bidirectional inference to
derive new beliefs. We will call these AntCq transform-
ers. Hereafter we will use the notation (a) ~ (b) to write
them. For example "All blocks are supports" is represented
as HI!: Vx[Isa(x,BLOCK) ---, Isa(x, SUPPORT)]. In addi-
tion to the connective above (which is also called an or-
entailment), our current vocabulary of connectives includes
and-entailment, numerical-entailment, and-or, thresh, and
non-derivable. Other quantifiers include the existential, and
the numerical quantifiers (see [Shapiro and Group 1989]).
Given the object-oriented design of the architecture one can
define any additional classes of connectives depending on
their own logical commitments.

Bellef-Act Transformers: These are transformers where
(a) is a set of belief(s) and (b) is a set acts. Used 
backward chaining, these can be propositions specifying pre-
conditions of actions, i.e. (a) is a precondition of some act
(b). We will call it a PrecondifionAct transformer and write
it as a predicate PreconditionAct((a).(b)). For example, 
sentence "Before picking up A it must be clear" may be rep-
resented as M26!: PreconditionAct(C[ear(A),PlCKUP(A)).

Used during forward chaining, these transformers can be
propositions specifying the agent’s desires to react to cer-
tain situations, i.e. the agent, upon coming to believe (a)
will form an intention to perform (b). We will call these
WhenDo transformers and denote them as WhenDo((a),(b))
predicates.
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Figure 1: An Object-Oriented KR Formalism
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Act-Belief Transformersz These are the propositions
specifying effects of actions as well as those specifying plans
for achieving goals. They will be denoted ActEtfect and Plan-
Goal transformers respectively. The ActEffect transformer
will be used in forward chaining to accomplish believing
the effects of act (a). For example, the sentence, "After
picking up A it is no longer clear" is represented as M30!:
ActEffect(PICKOP(A),-,Clear(A)). It can also be used in 
ward chaining during the plan generation process (classical
planning). The PlanGosl transformer is used during backward
chaining to decompose the achieving of a goal (b) into a plan
(a). For example, "A plan to achieve that A is held is to pick
it up" is represented as M56!: PlanGoaI(PICKUP(A),Held(A)).

Another backward chaining interpretation that can be de-
rived from this transformer is, "if the agent wants to believe
(b), it must perform (a)," which is represented as a DoWhen
transformer. For example, "Look at A to find out its color"
can be represented as DoWhen(LOOKAT(A),Color(A)). 
example, using this transformer, one can represent general
desires like, "if something is broken, fix it," as the belief
M43!: V [WhenDo(Broken(x),Fix(x)].

Act-Act Transformers: These are propositions specify-
ing plan decompositions for complex actions (called PlanAct
transformers), where (b) is a complex act and (a) is a 
that decomposes it into simpler acts. For example, in the
sentence, "To pile A on B first put B on the table and then
put A on B" (where piling involves creating a pile of two
blocks on a table), piling is a complex act and the plan that
decomposes it is expressed in the proposition M/l!: Plan-
Act(SNSEQUENCE(PUT(B,TABLE),PUT(A,B)),PILE(A,B)).

Our present model of acting is based upon a state-change
model (see [Kumax and Shapiro 1991]). We identify three
types of states --external world states, mental states (belief
space), and intentional states (agent’s current intentions).
Accordingly, we identify three classes of actions --physical
actions, mental actions, a~nd control actions that bring about
changes in their respective states. Thus PICKUP is a physical
action, we have BELIEVE and DISBELIEVE as mental actions
whose objects are beliefs, and control actions are described
below. Acts can be primitive or complex (not shown in the
figure). A primitive act has an effectory procedural compo-
nent which is executed when the act is performed. Complex
acts have to be decomposed into plans.

Plans, in our ontology, axe also conceptual entities. How-
ever, like acts, we do not define a separate class for them as
they are also acts-- albeit control acts. Control acts, when
performed, change the agent’s intentions about carrying out
acts. Our repertoire of control actions includes sequencing
(for representing linear plans), conditional, iterative, disjunc-
tive (equivalent to the OR-splits of the Procedural Net for-
mafism [Sacerdoti 1977, Wilkins 1988]), conjunctive (AND-
splits), selective, and achieve acts (for goal-based plan invo-
cation). These axe summarized in Table 1. These control
acts are capable of representing most of the existing plan
structures found in traditional planning systems (and more).
We should emphasize, once again, that since plans are also
conceptual entities (and represented in the same formaiism)
they can be represented, reasoned about, discussed, as well
as followed by an agent modeled in this architecture.

3 The Rational Engine

Next, we will outline details of the integrated reasoning and
acting module-- called a Rational Engine (as opposed to an

inference engine that only performs inference). A Rational
Engine is the ’operational’ component of the axdfitecture (the
interpreter) that is responsible for producing the modeled
agent’s reasoning and acting (and reacting) behavior. It 
specified by three types of methods (or messages)--

Believe- A method that can be applied to beliefs for asser-
tional or querying purposes. Consequently there axe two
versions--

Believe(p)!- where p is a belief, the method denotes
the process of asserting the belief, p, in the agent’s
belief space. It returns all the beliefs that can be
derived via forward chaining inference/acting.

Believe(p)?- where p is a belief, it denotes the process
of querying the assertional status of p. It returns
all the beliefs that unify with p and axe believed by
the modeled agent either explicitly or via backward
chaining inference/acting.

Intend- that takes an act as its argument (Intend(a)) and
denotes the modeled agent’s intention to perform the
act, a.

Transform- These methods enable various transforma-
tions when applied to transformers. Corresponding to
backward and forward chaining interpretations there axe
two versions-- Transform? and Transform!, respec-
tively.

Notice that the first two also correspond to the proposi-
tional attitudes of belief and intention. The methods Believe
and Intend can be invoked by a user interacting with the
agent. New beliefs about the external world can be added
to the agent’s belief space by using Believe! and queries re-
garding agent’s beliefs axe generated using Believe?. These
methods, when used in conjunction with transformers lead
to chaining via the semantics of the transformers defined
above. The architecture also inherently provides capabili-
ties for consistency maintenance. Each specific object that
is a belief can have slots for its underlying support. The
support is updated and maintained by the Believe meth-
ods as well as the mental actions BELIEVE and DISBELIEVE
(together they form the TMS). The effectory procedures for
BELIEVE and DISBELIEVE axe implemented as belief revision
procedures. We have found that such an integrated TMS fa-
cility simplifies several action and plan representations (see
[Kumar and Shapiro 1993] for details). The Intend method
is used to specify the fulfillment of agent’s intentions by per-
forming acts. All these methods can be specified (and spe-
cialized) for the hierarchy as well as inherited. Thus, domain
specific acts (physical acts) will inherit the standard method
for the agent to accomplish its intentions (i.e. the specific
theory of intentionality employed), where as specializations
of the Intend method can be defined for mental and control
acts (to implement the semantics of respective acts).

Thus, an object-oriented design not only provides a uni-
form representational formalism, it also facilitates an ex-
tendible ontology. The semantics of representations is de-
scribed by reasoning and acting methods that can be ei-
ther individually specified or inherited and further special-
ized, as the case may be. Further, we would also like to
claim that the representational formalism is ’canonical’ in
that its user interface (which is mainly defined via ’print
methods’) is also extendible. For example, the same object
(say, a belief proposition) can be displayed as a frame, a pred-
icate, a semantic network, or some other communicational
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Control Action [ Desmriptlon

SEQUENCE(al,a2)

DoON E(al ..... an)

DoALL(aI ..... an)

IF((P1, a1) ..... (Pn, an))

ITE RATE((P1, a1) ..... (Pn, an))

ACHIEVE(p)

WITH ON E(x, y, ...)(p(x, y, ...), a(x, y, 

WITHALL(x, y, ...)(p(x, y, ...), a(x, y, 

The acts 11 and a2 are performed i= sequence.
Example: SEQUENCE(PI4~KUP(A),PUT(A,TABLE)) is the act of 
pickin~ up A and then putting it oa the table.
One olthe acts al,... ,an is performed.
Example: DoONE(PICKDP(A),PtCKUP(B)) is the act of picking 
or pickin~ up B.
All of the acts a1,... , an are performed in some order.
Example: DoALL(PICKUP(A),PICKUP(B)) 
the act of picking up A and picidn~ up B.
Some act Iii whose p[ is believed is performed.
Example: IF((Clew(A),P|CKUP(A)),(CISir(B),PICKUP(B))) theact of
either picking up A (if A is dear) or picking up B (if B is clear).
Some act in ai whose corresponding Pi is believedis performedand the act
is repeated.
Example: ITERATE((Clear(A),PICKUP(A)),(Clear(B),PICKUP(B)))
the act of pickinl$ up A (if A is clear) and pickin~ up B (if B is clear).
The act of achieving the proposition p.
Example: ACHIEVE~Clear(A)) is the act of achieving that A is clear.
Find some x, y, etc that satisfy p and perform the act a on them.
Example: WITHONE(x)(Held(x), PUT(x, TABLE)) is the act
of putting on the table something that is being held.
Find all x, y, etc that satisfy p and perform the act a on them.
Example: WITHALL(x)(HeId(x), PUT(x, TABLE)) is 
of putting on the table everything that is being held

Table 1: Summary of control actions

entity (ala KIF). At present, these ideas axe implemented
using SNePS (for Semantic Network Processing System)
[Shapiro and Rxpaport 1987, Shapiro and Group 1989] --an
intensionM, propositional, semantic network system used for
modeling cognitive agents. SNePS-based cognitive agents
have network representations for individuals, propositions,
deduction rules, actions, acts, and plans. Acting and reason-
ing about beliefs, actions, and plans, is performed by a single
component, SNeRE-- the SNePS Rational Engine.

4 Related Work

Our use of the term ’BDI Architecture’ comes from
[Georgeff 1987] that mentions the challenges of designing ra.
tional agents capable of goal-directed as well as reactive be-
havior based on the attitudes of beliefs, desires, and inten-
tions. Georgeff specifically mentions that, ’the problem that
then arises is specifying properties we expect of these atti-
tudes, the way they interrelate, and the ways they determine
rational behavior in a situated agent.’ As explained in Sec-
tion 1, we have taken the task of designing BDI architectures
by defining a unified intensional representational formalism;
identifying the semantic interrelationships between beliefs,
desires, and intentions; capturing these into the idea of trans-
formers; and finally designing a rational engine that brings
about rational behavior based on these entities.

There has been work describing formal BDI models
[Cohen and Levesque 1990, Ra~ and Georgeff 1991]. There
are also architectures that have been proposed that ad-
dress various issues relating to rational agency. For in-
stance [Bratman et al. 1988, Pollack 1991] describe a high-
level BDI architecture that specifically focuses on issues re-
lating to resource boundedness of rational agent behavior.
Their work explores the hypothesis that plans, once commit-
ted, in addition to guiding the agent’s actions, also constrain
the agent’s reasoning behavior. [Rao and Georgeff 1991,
Ra~ and Georgeff 1992] have also studied formally the aa-

ture of intention and commitment in the context of ra-
tional agent behavior. The architecture reported in
[Rao and Georgeff 1992] provides a very simplistic represen-
tation of beliefs (thus suffering from some of the concerns
mentioned in Section 1) together with a transition network-
like formalism for plans. It is a (limited, though success-
ful) attempt towards bridging the their earlier work on
PRS [Georgeff et aL 1985, Georgeff and Lansky 1987] and
their later work on formal foundations of rational agents
[Rao and Georgeff 1991]. The work presented here comple-
ments these models. It provides a general representational
framework which these models lack. At the same time, it
can facilitate easy incorporation of their ideas by virtue of
the extendibility of the design.

We have taken a unified approach to representations.
[Drummond 1987] expresses the need for a single unified for-
malism for representing beliefs, acts, and plans. This facil-
itates a single reasoning module to be able to reason about
beliefs, acts, and plans. We have taken this approach a step
further by explicitly identifying the semantic relationship be-
tween inference and acting so that a single module, a ratio-
nal engine, in addition to reasoning, is also responsible for
caxrying out physical acts and plans. In our formalism, act
representations axe different from standard operator-based
representations of classical planning/acting systems. Else-
where [Kumax and Shapiro 1993], we have also shown how
even simple act representations can benefit from an inte-
grated TMS. In the presence of a TMS the even the sim-
plest acting model (that of adding and deleting the act’s ef-
fects) implements the extended STRIPS assumption. As 
result, ours is a deductive approach to acting. While this
leads to tractability concerns, we feel that it provides con-
sistency in the modeled agent’s belief space and forms basis
for rational behavior. This also facilitates a deductive ap-
proach to hieraxchical plan decomposition (specific PlanAct
and Plan~oal propositions can be deduced in order to find
plan decompositions). Search during reasoning/acting/plan
decomposition is focused by means of some KR principles,
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the Uniqueness Principle being one (there is a one-to-vise
correspondence between instances and intensional entities)
[Kumar 1993a]. The Uniqueness Principle helps focus the
chaining (method/message propagation) through a restricted
set of entities.

The object-oriented approach provides 8 promising approactk
to building BDI architectures. It can be used to implement
a unified representational formalism that bridges the gap be-
tween classical approaches to representation/acting/planning
and the emerging paradigms for designing and implementing
integrated intelligent architectures.
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