
An AI Architecture Based on Message Passing

Deepak Kumar
Department of Computer Science

State University of New York at Buffalo, Buffalo, NY 14260
kumard@cs.buffalo.edu

Abstract

We present an AI architecture used for modeling
computational rational cognitive agents-- agents
that can reason, and act in an environment based
on their representations of beliefs, acts, and inten-
tions. A unified representational formalism is em-
ployed for representation of propositions (beliefs),
goals (desires), actions, and plans. The represen-
tational formalism is described using a conceptual
object-oriented hierarchy. An object-oriented de-
sign facilitates a uniform method (message) pro-
tocol that is naturally amenable to concurrency.
The reasoning and acting behavior of the mod-
eled agent is defined by an actor-like [Agha 1986,
Agha and Hewitt 1987] message passing scheme.
Semantically speaking, messages can be viewed as
meta-level propositional attitudes (corresponding
to ’belief’ and ’intention’) that are sent to/from
propositions and acts in parallel. The message
passing model, called a Rational Engine (as op-
posed to an inference engine), implements a BDI-
architecture1.

1 Motivations

A survey of AI systems would reveal that it is somewhat
awkward to do acting in reasoning (or logic-based) systems
(but it is convenient to talk about representational and rea-
soning issues using them), and it is awkward to study rea-
soning and representational issues in systems designed for
acting/planning. Thus, most "good" planning/acting sys-
tems are "bad" KRR systems and vice versa. For exam-
ple, in a recent symposium on "Implemented KRR Sys-
tems" [Rich 1991b] out of a total of 22 KRR systems pre-
sented only 4 systems had capabilities for representation and
reasoning about actions/plans (RHET [Allen 1991], CYC
[Leant and Guha 1991], CAKE [erich 1991a] and SNePS
[Shapiro 1991]). The work presented in this paper presents
an approach that bridges this "representational/ behavioral
gap." We extend the ontology of an intensional KRR system
to be able to represent and reason about acts and plans. I.e.
a computational cognitive agent modeled using the extended
ontology has representations for beliefs, acts, and plans, and
is able to reason about them. I.e., the agent is able to repre-
sent its beliefs and desires (the ’B’ and the ’D’ of ’BDI’).

In most current AI architectures reasoning is performed by an
inference engine and acting is done under the control of some
acting executive (or a plan/act interpreter). Our approach 
based on the viewpoint that logical reasoning rules implicitly
specify the act of believing. Thus the inference engine can be
viewed as a mental actor. This enables us to establish a closer
relationship between rules of inference and rules of acting (or

1for Beliefs, Desires, and Intentions

planning). Believing is a state of knowledge; acting is the pro-
cess of changing one state into another. A reasoning rule can
be viewed as a rule specifying an act--that of believing some
previously non-believed proposition--but the believe action
is already included in the semantics of the propositional con-
nective. McCarthy (1986) also suggested that inference can
be treated as a mental action. This has lead us to integrate
our models of inference and acting by eliminating the acting
executive (plan/act interpreter). These ideas are used in de-
veloping a computational model-- called a Rational Engine,
that is a unified model of acting and inference and can be
used for modeling rational cognitive agents and their behav-
ior. Acting and reasoning about beliefs, actions, and plans
is performed by a single component-- the Rational Engine.
The rational engine implements the underlying logic as well
as notions of intentionality (the T of ’BDI’).

2 An Object-Oriented Representational
Formalism

The representational formalism is described as a conceptual
object-oriented hierarchy. This is depicted in Figure 1. In
an intensional representational framework, anything a cogni-
tive agent can think about is termed a "mental concept" or
a conceptual entity. More specifically these can be individ-
uals, beliefs (propositions), or acts. In addition to standard
beliefs that an agent is able to represent, we also define a
special class of beliefs called transformers. A transformer
is a propositional representation that accounts for various
notions of inference and acting. A transformer is a repre-
sentation that specifies a belief/act transformation. It has
two parts--((a), (b)), where both Ca) and (b> can specify 
ther beliefs or some act. Transformations can be applied in
forward and/or backward chaining fashion. Using a trans-
former in forward chaining is equivalent to the interpretation
"after the agent believes (or intends to perform) (a), it 
lieves (or intends to perform) (b)." The backward chaining
interpretation of a transformer is, "if the agent wants to be-
lieve (or perform) (b), it must first believe (or perform 
Since both (a) and (b) can be sets of beliefs or an act, we 
four types of transformers-- belief-belief, belief-act, act-belief,
and act-act. Detailed descriptions of transformers and beliefs
can be found in [Kumar 1989, Kumar and Shapiro 1991a,
Kumar and Shapiro 1991b, Kumar 1993]. Specific trans-
formers are depicted in Figure 1 (arrows against transformers
indicate the directions-- forward, backward chaining, they
can be used in). Notice that transformers capture the no-
tions of reasoning rules, act preconditions, effects, plan and
goal decompositions, and reactivity.

Our present model of acting is based upon a state-change
model (see [Kumar and Shapiro 1991a]). We identify three
types of states --external world states, mental states (belief
space), and intentional states (agent’s current intentions).
Accordingly, we identify three classes of actions --physical
actions, mental actions, and control actions that bring about

! / 127

From: AAAI Technical Report SS-93-04. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved. 



I Conceptual EntityI

Intend
i Variable

Physical Act I

Transform!

IBELIEVEI

DISBELIEVE J

Control Act

Figure 1: A Conceptual Object-Oriented KR Hierarchy

128



changes in their respective states. Thus PICKUP is a physi-
cal action, we have BELIEVE and DISBELIEVE as mental ac-
tions whose objects are beliefs, and control actions are de-
scribed below. Physical acts can be primitive or complex
(not shown in the figure). A primitive act has an effectory
procedural component which is executed when the act is per-
formed. Complex acts have to be decomposed into plans.
A plan is a structure of acts. The structuring syntax for
plans is described in terms of control actions. Our repertoire
of control actions includes sequencing, conditional, iterative,
disjunctive, conjunctive, and selective acts (once again, see
[Kumar and Shapiro 1991b, Kumar 1993] for details).

As defined above, the representational formalism is
isomorphic to the SNePS [Shapiro and Rapaport 1987,
Shapiro and Group 1989] formalism. As such the representa-
tional formalism is inherently independent of any logical (or
teleological) commitments. This is an advantage of object-
oriented design. The formalism can be easily extended (by
defining additional representational entities as well as meth-
ods) to accommodate any reasoning or acting theory. Rea-
soning and acting is accomphshed by three methods-- Be-
lieve ?, Believe/, and Intend. The first two implement back-
ward and forward chaining, respectively; and the third im-
plements the modeled agent’s intentions to perform specific
acts. All the methods are inherited down the hierarchy (and
may or may not be specialized further). The main aspect of
this architecture is that it yields a uniform protocol for rea-
soning and acting that makes it amenable for concurrency. In
the absence of a concurrent object-oriented system we have
been experimenting with a parallel message passing imple-
mentation which is described next.

3 The Message Passing Model

We now present a computational model of the rational engine
--the component that uses/interprets the representations re-
sulting in the agent’s reasoning and acting behavior. The ra-
tional engine employs a parallel message passing model that
accounts for various notions of acting and inference. Entities
pass messages to each other which in a SNePS-like formalism
represents a kind of spreading of activation. However, unlike
traditional notions, spreading of activation is governed by the
underlying logic and the nature of entities.

3.1 Channels

Communication (or message passing) between entities takes
place along channels. An entity can send and receive mes-
sages only via channels. We define two types of channels that
may exist between any two entities:

Match channels: the two entities unify.

Transformer channels: the two entities are connected to
each other by a transformer.

Only the proposition, act, and transformer objects are capa-
ble of processing messages. Channels may also exist between
the user and the agent. These are set up at the time the
user issues a request or a query or when something has to
be reported to the user. Processing a message involves some
book keeping and sending out some messages. The nature
of book keeping and outgoing messages depends on the type
of the entity, the type and content of the incoming message,
and the entity’s agenda. These are summarized in Tables 1,
2, and 3.

3.2 Messages

There are three types of messages--

Believe(p)? where p is a proposition (belief). Also called 
request, it denotes that the sender is asking (requesting)
the receiver about the assertional status of p.

Believe(p)! where p is a proposition and the message indi-
cates that the sender is confirming the assertional status
of p (i.e. the agent, by being informed, or via inference,
now believes p). These messages are also called reports.

Intend(a) where a is an act and the message indicates that
in the current state the act a is being intended to be
performed.

In addition to the descriptions above, each message may also
contain additional information pertaining to variable bind-
ings, quantifier specifications, and some TMS related stuff.
Processing of a message is determined by the type of message
(request, report, or intend), the type of the entity (proposi-
tion, act, or rule), and the entity’s current agenda. This re-
sults in the various notions of inference and acting (forward
chaining, backward chaining, deductive retrieval of precondi-
tions, effects, plan decompositions, and reactivity).

3.3 Agendas

The agenda of an entity determines its role in the acting and
inference process. Different types of entities have different
agendas. Each entity, after receiving a message, depending
on its current agenda, may perform some book keeping ac-
tions and respond by sending out one or more messages. Since
only propositions, acts, and transformers partake in message
passing we have agendas defined for each type of entity along
with its message handling behavior (See Tables 1, 2, 3). Due
to space limitations it will not be possible to present a de-
tailed example. Please see [Kumar 1993] for more details and
examples. Here, we would like to present an actor-based view
of the model.

4 ACTOR Systems

Like actor systems [Agha 1986, Agha and Hewitt 1987] the
Rational Engine model fully exploits message-passing as
the basis of concurrent computation. The model is imple-
mented using MULTI-- A Lisp-based multi-processing sys-
tem [McKay and Shapiro 1980a, McKay and Shapiro 1980b]
with a sequential implementation. Serialization only affects
message processing events-- one message is processed at a
time. Actors in MULTI are called processes which basically
respond to incoming messages. Thus message passing is the
only primitive available in the system. Channels, described
above, help each process determine mail addresses of out-
going messages. Return addresses, as in actor systems, are
included in the message. Messages are propagated during
reasoning and acting to pursue all possible branches in par-
allel. Thus, during inference and acting, this is akin to a
focused spreading of activation. Changing the agenda of an
entity is similar to an actor specifying a replacement behav-
ior in actor systems. In an AI architecture, there are a small
number of different types of entities and thus there are only a
limited types of different messages. Moreover, most entities
of the same type have a similar message processing "script".

129



Incoming Message Agenda Response

1 Believe(p)? ASSERTED Send message Believe(p)! to s.
2 Believe(p)? UNASSERTED Send message Believe(p)? to all match channels and all belief-belief (Cq)

channels (standard backward chaining) and all act-belief transformer
channels (i.e. DoWhen) if any.

3 Believe(m)! any Ifp = m then update its agenda to ASSERTED. Send Believe(m)! to all
requesters, all match channels, all belief-belief (Ant) transformer
channels. (standard forward chaining) and all belief-act transformer channels
(i.e. WhenDo) if any.

Table 1: Message processing by beliefs (p is the receiver, and s the sender)

Incoming Message Agenda Response
1 Believe(p)? any Sent by a node (p) in the consequent position (over a Cq transformer

channel). Change the agenda to ACTIVE. Send a request Believe(Ai)? to all the
antecedent nodes (Ais) over transformer channels.
(standard backward chaining)

2 Believe(m)! NONE Antecedents reporting some belief. Change the agenda to ACTIVE. Send a
Believe(Ai)? to all the remaining antecedents so as to confirm believing
its consequences (starting a forward inference)

3 Believe(m)! ACTIVE Antecedents answering requests. If firing criteria is satisfied send a Believe(CO!
message to all the consequent Cis and change the agenda to NONE.

Table 2: Message processing by belief-belief transformers.

Incoming Message Agenda
1 Intend(a) START

2 Intend(a) FIND-
PRECONDITIONS

3 Intend(a) TEST-
PRECONDITIONS

4 Intend(a) FIND-EFFECTS

5 Intend(a) EXECUTE

6 Intend(a) FIND-PLANS

7 Believe(m)! FIND-
PRECONDITIONS

8 Believe(m)! TEST-
PRECONDITIONS

9 Believe(m)! FIND-EFFECTS

10 Believe(m)! EXECUTE

11 Believe(m)! FIND-PLANS

Response
Change agenda to FIND-PRECONDITIONS.
Send request Believe(PreconditionAct(p, a))?
Change agenda to FIND-EFFECTS.
Send request Believe(ActEffect(a,p))?
Change agenda to START.
Send message Intend(d) to the act (d) of achieving all the
preconditions of a.
Change agenda to EXECUTE.
Send message Belleve(Primitive(a))?
Change agenda to FIND-PLANS.
Send request Believe(PlanAct(a,p) 
No plan decompositions for a are known.
Perform classical planning (not implemented).
m is a PteconditionAct(a,p) proposition.
Change agenda to TEST-PRECONDITIONS.
Send message Believe(p)?
Some precondition (m) of a is satisfied.
If all preconditions are satisfied, change agenda to FIND-EFFECTS.
Send message Believe(ActEffect(a,p))?
(m) is an ActEffect(a, e) proposition.
Change agenda to EXECUTE.
Send message Believe(Primitive(a))?
The act (a) is primitive.
Execute its effector component.
Send Intend(d) to d, the act of believing a’s effects.
m is a PlanAct(a,p) proposition.
Change the agenda to DONE. Send message
Intend(d) to d the act of doing one of the plans (p).

Table 3: Message passing by acts

130



This implies that behavior can be inherited. This, unlike ac-
tor systems, is a desireable trait of such an architecture--
best of both worlds. This implies that in some actor mod-
els, it is possible to have inheritance. This also implies that
such a representational and behavioral view could be easily
programmed using an actor language, thus, fulfilling one of
the long term goals of actor systems-- building actor-based
AI architectures. Notice that the actor-view of an AI archi-
tecture presented here arises out of considerations involved
in making some representational as well as some behavioral
commitments. Only the latter being similar (or conforming)
to the actor view of computation. Details of different types
of transformers are not presented here but one important
consideration that transformers help capture is the overall
embedded nature of the architecture. The belief-act trans-
formers WhenD0 and the backward chaining act-belief trans-
former DoWhen model reactivity of the agent and the agent’s
ability to perform actions in order believe something. These,
too, form desireable traits of actor systems (in lieu of open
systems).

5 Concluding Remarks

We have outlined an object-oriented design of a BDI architec-
ture. The conceptual object-oriented hierarchy helps identify
specific methods required to implement reasoning and act-
ing processes. In order to facilitate concurrent processing
we view methods as parallel messages rather than function
invocations. Parallelism is easily facilitated by the message
passing model. Message passing entities in such an archi-
tecture can be construed as actors in the ACTOR formal-
ism. Thus, while we started out by designing an architecture
as an object-oriented system, we ended up with a compu-
tational model very similar to that of the actor formalism.
Other than Carl Hewitt’s original motivations that lead to
the evolution of ACTOR systems not much work has been
done to explore the actor paradigm for implementing intelli-
gent architectures. We hope that the architecture presented
here serves as a candidate. We are willing to pursue further
research in this direction.

References

[Agha and Hewitt 1987] Gul Agha and Carl Hewitt. Concur-
rent programming using actors. In Akinori Yonezawa and
Mario Tokoro, editors, Object-Oriented Concurrent Pro-
gramming, pages 37-53. the MIT Press, 1987.

[Agha 1986] Gul Agha. An overview of actor laguages. A CM
SIGPLAN Notices, 21(10):58-67, October 1986.

[Allen 1991] James Allen. The RHET System. In Charles
Rich (Guest Editor), editor, SIGART BULLETIN Special
Issue on Implemented KRR Systems, pages 1-7, June 1991.

[Kumar and Shapiro 1991a] Deepak Kumar and Stuart C.
Shapiro. Architecture of an intelligent agent in SNePS.
SIGART Bulletin, 2(4):89-92, August 1991.

[Kumar and Shapiro 1991b] Deepak Kumar and Stuart C.
Shapiro. Modeling a rational cognitive agent in SNePS.
In P. Barahona, L. Moniz Pereira, and A. Porto, editors,
EPIA 91: 5th Portugese Conference on Artificial Intelli-
gence, Lecture Notes in Artificial Intelligence 541, pages
120-134. Springer-Verlag, Heidelberg, 1991.

[Kumar 1989] D. Kumar. An integrated model of acting and
inference. In D. Kumar, editor, Current Trends in SNePS-
Semantic Network Processing System: Proceedings of the

First Annual SNePS Workshop, pages 55-65, BuffMo, NY,
1989. Springer-Verlag.

[Kumar 1993] Deepak Kumar. A Unified Model of Acting
and Inference. In Proceedings of the Twenty-Sixth Hawaii
International Conference on System Sciences. IEEE Com-
puter Society Press, Los Alamitos, CA, 1993.

[Lenat and Guha 1991]
Douglas B. Lenat and Ramanathan V. Guha. The Evo-
lution of CYCL, The CYC Representation Language. In
Charles Rich (Guest Editor), editor, SIGART BULLETIN
Special Issue on Implemented KRR Systems, pages 84-87,
June 1991.

[McCarthy 1986] John McCarthy. Mental situation calculus.
In Joseph Y. Halpern, editor, Theoretical Aspects of Rea-
soning about Knowledge--Proceedings of the 1986 Confer-
ence, page 307, 1986.

[McKay and Shapiro 1980a] * D. P. McKay and S. C.
Shapiro. MULTI: A LISP based multiprocessing system.
Technical Report 164, Department of Computer Science,
SUNY at Buffalo, 1980. (Contains appendices not in item
15).

[McKay and Shapiro 1980b] D. P. McKay and S. C. Shapiro.
MULTI- a LISP based multiprocessing system. In Pro-
ceedings of the 1980 LISP Conference, pages 29-37. Stan-
ford University, Stanford, CA, 1980.

[Rich 1991a] Charles Rich. CAKE: An Implemented Hy-
brid KR and Limited Reasoning System. In Charles
Rich (Guest Editor), editor, SIGART BULLETIN Special
Issue on Implemented KRR Systems, pages 120-127, June
1991.

[Rich 1991b] Charles Rich. Special Issue on Implemented
Knowledge Representation and Reasoning Systems--
Letter from the Guest Editor. SIGART Bulletin, 2(3),
June 1991.

[Shapiro and Group 1989] S. C. Shapiro and The SNePS Im-
plementation Group. SNePS-2 User’s Manual. Depart-
ment of Computer Science, SUN¥ at Buffalo, 1989.

[Shapiro and Rapaport 1987] S. C. Shapiro and W. J. Rapa-
port. SNePS considered as a fully intensional propositional
semantic network. In N. Cercone and G. McCalla, editors,
The Knowledge Frontier, pages 263-315. Springer-Verlag,
New York, 1987.

[Shapiro 1991] Stuart C. Shapiro. Case studies of SNePS.
SIGART Bulletin, 2(3):128-134, June 1991.

131




