
- 
STATE UNIVERSITY OF NEW YORKAT BUFFALO 

DEPARTMENT OF COMPUTER SCIENCE 

A KNOWLEDGE REPRESENTATION THEORY 

FOR 

NATURAL LANGUAGE GRAPHICS 

by 

James Geller 

A dissertation submitted to 
the Faculty of the Graduate School of 

the State University of New York at Buffalo 
in partial fulfillment of the requirements for 

the degree of Doctor of Philosophy. 

May 1988 



ABSTRACT 

Natural Language Graphics (NLG) deals with diagram generation driven by natural 

language utterances. This investigation applies the methods of declarative knowledge representa 

tion to NLG systems. Declarative knowledge that can be used for display purposes as well as rea 

soning purposes is termed "Graphical Deep Knowledge" and described by supplying syntax and 

semantics of its constructs. A task domain analysis of Graphical Deep Knowledge is presented 

covering forms, positions, attributes, parts, classes, reference frames, inheritability, etc. 

Part hierarchies are differentiated into three sub-types. The usefulness of inheritance along 

part hierarchies is demonstrated, and criticism of traditional inheritance-based knowledge 

representation formalisms is derived from this finding. The "Linearity Principle of Knowledge 

Representation" is introduced and used to constrain some of the presented knowledge structures. 

The analysis leading to Graphical Deep Knowledge also results in the description of two funda 

mental conjectures about knowledge representation. 

The Gricean maxims of cooperative communication are used as another source of constraints 

for NLG systems. A new maxim for technical languages is introduced, the "Maxim of Unnecessary 

Variation". It is argued that common symbolic representations like circuit board diagrams have 

not yet been described in the literature by explicit feature analysis, and that this is necessary to 

give a system knowledge about the meaning of the diagrams it is displaying. 

Part of the presented theory has been implemented as a generator program that creates pic 

tures from knowledge structures and as an ATN grammar that creates knowledge structures from 

limited natural language input. The function of the picture generation program {"TINA") as a 

user interface for a circuit board maintenance system (VMES) is demonstrated. Finally an older 

version of TINA is described that incorporates a module for "Intelligent Machine Drafting" {IMD), 

a completely new subfield of Al that has been introduced in this research and that relates to Com 

puter Aided Design {CAD). The IMD program does layout and routing for the members of a sim 

ple class of functional circuit diagrams based on a policy of symmetry and equal distribution over 

the available space. This layout/routing is based on cognitive requirements as opposed to physical 

requirements used by CAD systems. 



TABLE OF CONTENTS 

1. INTRODUCTION 1 

1.1. Overview .. . .. .. . . . .. . . . . . .. 1 
1.2. Outline of the Dissertation 2 
1.3. Literature Review 2 

2. A SCENARIO FOR THE USE OF NLG SYSTEMS .. 8 

3. WHAT PHILOSOPHY HAS TO OFFER TO NLG 29 
3.1. Grice's Maxims of Co-operative Communication 29 
3.2. A special Maxim for Technical Languages 36 
3.3. Feature Analysis of Symbolic Graphical Representations 40 

3.3.1. Features Common in Symbolic Representations 42 
3.3.2. Logical Wire Plans 44 
3.3.3. Physical Wire Plans 45 
3.3.4. SNePS Networks 47 
3.3.5. Maps .. 48 
3.3.6. Pie Charts 49 
3.3.7. Bar Graphs................................................................................................. 50 
3.3.8. Euler Circles 50 
3.3.9. Graphs of Functions of one Variable 50 
3.3.10. Flow Charts 51 
3.3.11. Syntax Diagrams 51 

4. GRAPHICAL DEEP KNOWLEDGE AND INTELLIGENT INTERFACES................... 52 

5. GRAPHICAL DEEP KNOWLEDGE AND REASONING FOR NLG 55 
5.1. Knowledge Representation 55 

5.1.1. A Goal Statement for NLG 56 
5.1.1.1. The Reductionist Character of Representations 56 
5.1.1.2. The Need for an Internal Relevance 58 
5.1.1.3. Differentially Adequate Knowledge Representation 60 
5.1.1.4. A Second Fundamental Conjecture about Knowledge Representa- 

tion 62 
5.1.1.5. Definition and Goal of Graphical Deep Knowledge Research 64 
5.1.1.6. Semantic Primitives and Differential Adequacy 65 
5.1.1.7. The Linearity Principle of Knowledge Representation 67 

5.1.2. The SNePS Knowledge Representation System :........................................ 70 
5.1.2.1. Introduction 70 
5.1.2.2. Notational Conventions for SNePS Networks 73 



II 

5.1.3. Representational Constructs of Graphical Deep Knowledge ·············:··········· 75 
5.1.3.1. Form Knowledge 75 

5.1.3.1.1. Individual Form 81 
5.1.3.1.. The Problem of Display Modalities 84 
5.1.3.1.3. Modalities versus Partitions 86 
5.1.3.1.4. Form with n Step Inheritance 88 

5.1.3.2. Positions 91 
5.1.3.2.1. Requirements for Position Representations................................ 91 
5.1.3.2.2. Reference Frames 93 

5.1.3.2.2.1. Concrete Units in Reference Frames 101 
5.1.3.2.2.2. Fuzzy Units in Reference Frames 101 
5.1.3.2.2. Modalities Revisited 102 

5.1.3.2.3. The Representation of Positions 103 
5.1.3.2.4. Concrete versus Fuzzy 2-d Descriptions 107 
5.1.3.2.5. Polar Coordinates 109 
5.1.3.2.6. Absolute versus Relative Positions llO 

5.1.3.2.6.1. Fuzzy Absolute Positions lll 
5.1.3.2.7. Explicit versus Deduced Reference Objects ll4 
5.1.3.2.8. Own versus Inherited Relative Positions ll6 
5.1.3.2.9. Coordinate Unit Types ll7 

5.1.3.2.9.1. Fuzzy Coordinate Unit Types 120 
5.1.3.2.10. Screen, Plane and World Coordinates 121 
5.1.3.2.11. 2 1/2 Dimensional Representation 122 

5.1.3.3. The Representation in Attributes of Graphical Deep Knowledge 123 
5.1.3.3.1. Types of Attributes . .. . . . 123 
5.1.3.3.2. Simple Attribute Representations 126 
5.1.3.3.3. Attribute Mappings 131 
5.1.3.3.4. Unmapped Attributes 135 
5.1.3.3.5. lnheritability of Attributes ,..................................... 137 
5.1.3.3.6. The Representation of Superlatives and Comparatives 138 

5.1.3.4. Part Hierarchies 139 
5.1.3.4.1. The Definition of Parts 140 
5.1.3.4.2. A General Purpose Part Representation 142 
5.1.3.4.3. Real Parts 142 
5.1.3.4.4. Assemblies 144 

I 
5.1.3.4.5. Clusters 146 
5.1.3.4.6. A Comparison of Taxonomies 150 
5.1.3.4.7. Are there more Graphically Interesting Part Relations? 151 
5.1.3.4.8. Modalities and Parts 152 
5.1.3.4.9. The Inheritability of Attributes in a Part Hierarchy 153 

5.1.3.5. The Class Hierarchy 155 
5.1.3.5.1. The Class Inheritance Mechanism 155 
5.1.3.5.2. Class Constructs and Categorization Theory 157 

5.1.3.6. Periodicity......................................................................................... 160 



iii 

5.1.3.7. Angle 163 
5.1.3.8. Pragmatic Hierarchies 164 

5.1.4. Knowledge Compilation 165 
5.2. Reasoning 168 

5.2.1. Logical Reasoning about GDK Structures 168 

6. IMPLEMENTATION 173 
6.1. The TINA Display Program 174 
6.2. Example Runs 180 
6.3. Readform, the Graphics Editor .. 254 
6.4. TINA used as Maintenance Interface 255 
6.5. Limitations of the Implementation 257 

7. INTELLIGENT MACHINE DRAFTING 260 
7.1. The Representations of Ports and Connections 260 
7 .2. Layout and Routing as Intelligent Activities 263 
7 .3. Intelligent Machine Drafting 264 
7.4. The IMD Grammar 273 

8. FUTURE WORE: 276 

9. CONCLUSIONS 278 



ACKNOWLEDGEMENT 

I would like to thank G'd that he has made me see this day, and that he has given me the 

energy to do all the work that was necessary for it. 

I thank Stuart C. Shapiro, my advisor. Even if I could do something for him every day from 

now till 2088, I could never pay back what he has done for me. He has listened to me patiently for 

hours and hours; his door was always open, literally and metaphorically. At a time when many 

people see teaching as a job of eliminating the students that do not already know, he has taken me 

as a challenge, to show that he can explain anything and everything. He has translated my 

"writings" from what I thought is English to real English. His grant :j: has paid my rent and some 

of my conference trips, and he even took me with him on his Sabbatical. Since my father's {of 

blessed memory) death he has been the nearest to a replacement for him. Stuart Shapiro's high 

personal and academic integrity is known to anybody that has ever dealt with him, his academic 

rank is well known in the field. I have been very lucky to find such an advisor. 

I want to thank Sargur N. Srihari my "co-advisor" for lots of support and help that he has 

given me through the years, and for saying the right words at the right time. He is certainly. a 

shining example of what one can achieve in a short time if one just knows how to do it and is 

willing to work hard for it. On top of all he has always been a good sport, more of a fellow 

graduate student than a faculty member. 

I want to thank my third committee member, Deborah K. W. Walters, whose mind is sharp 

as a razor blade, and who has taught me what the word "scholarship" really means. She has 

shown me th~t science means a fight for the truth in which every word counts. Maybe I repeat 

+ This work was supported -i n part by the Air Force Systems Command, Rome Air Development Center, Griffiss Air 
Force Base, New York 13441-5700, and the Air Force Office or Scientific Research, Bolling AFB DC 20332 under Contract 
No. F30602-85-C-0008, which supports t.he Northeast Artificial Intelligence Consortium (NAIC). 

iv 



V 

myself now, but I have been lucky to have met her, and I am happy to have asked her to be on my 

committee. 

I would like to thank Norman Sondheimer, my outside reader, for supporting me for a year 

at ISi, which is certainly the most beautiful place in the world to do research at. His comments on 

my work are deeply appreciated, and so are his jokes. 

Next to be thanked is Helene Kershner. I could give a million reasons why, but it is not 

necessary, because Helene is one of the preciously few people whom you thank just for being as 

they are. Helene can say things about life that are fit for printing without thinking a second. If 

she ever decides to run for governor then my sympathy to her opponents. I love you, Helene. 

I would also like to thank Harry Delano who is one of those "miracles take 24 hours people". 

I have never been anywhere where software services were as fast and reliable as in the SUNY CS 

department, and it is the only place in the world I know, where the word "user" is not a four 

letter word. 

I want to thank Ellie Benzel, secretary, who has, in her own words, taken it upon herself to 

mother me poor foreign student away from home, and Gloria Koontz and Lynda Spahr who have 

tried to compete with her. I have to say that in all my life I have never received that much 

(undeserved) love from so many people as in the CS department in Buffalo. Buffalo might be a 

cold city, but there is a lot of warmth in the hearts of many people. I will never forget anyone of 

you. 

There are lots and lots of other people who really deserve more than a brief mentioning, like 

Jeff Zucker, John Case, Bill Rapaport and Pat Eberlein among the faculty; Mingruey Taie my 

project mate; An Tzu Chin my long time office mate; Joao Martins, Ernesto Morgado, Jeannette 

Neal, and Terry Nutter, my seniors in the SNePS research group; I am sorry, but I will never 

reach their level of achievement; Jon Hull and Radmilo Bozinovics, who helped me make the first 

steps in Buffalo; Scott Campbell, Keith Bettinger, Amy Melcher and many other class mates with 

whom I share great memories of organizing two conferences; Michael Almeida, Jan Wiebe, 



vi 

Hanyong Yuhan, Sandy Peters and other members of the SNePS research group who have 

contributed interesting ideas to my work; Bill Eggers, my student, whose program I have been 

using for several years, and many many other students some of whom, like Lynda Kingsbury, have 

given me the greatest compliment possible, they have taken every class I taught. 

I want to thank the members of the II project team at ISi, Larry Miller, Yigal Arens, and 

Ray Bates, for having taught me many valuable things, and Paul Raveling for the screen dump 

routine that I have been using constantly. Also Tom "W" should be mentioned, who keeps the 

software running at ISi. 

Finally I want to thank my mother who has given me as much love as one person can 

possibly give, Abraham Chaim Wertzberger for having taught me Torah, and S. C. who has 

shared my crazy life in joy and in frustration, and in long nights in the computer room. 



CHAPTER 1 

INTRODUCTION 

And the Lord spoke unto Moses saying. "Speak unto Aaron, and say unto 
him: When you lightest the lamps, the seven lamps shall give light in 
front of the candlestick." And Aaron did so: he lighted the lamps thereof 
so as to give light in front of the candlestick, as the Lord commanded 
Moses. And this was the work of the candlestick, beaten work of gold; 
unto the base thereof, and unto the flowers thereof, it was beaten work; 
according unto the pattern which the Lord had shown Moses, so he made 
the candlestick. 

Numbers, 8:1-4 

1.1. Overview 

This dissertation deals with the problem of generating diagrams in reaction to natural 

language utterances, a task that has been classified scientifically as Natural Language Graphics. 

Our approach to Natural Language Graphics is based on a declarative knowledge base, 

implemented using a propositional semantic network. The theory developed is domain indepen 

dent, but the underlying task domain has been a graphical user interface to a circuit board 

maintenance system. 

In the course of this investigation the following questions will be addressed. 

(1) What are the knowledge structures that are necessary (and ideally also sufficient) to cover 
the generation of a wide range of diagrams? 

(2) What can knowledge representation (KR) research learn by rigorously applying its methods 
to a domain which is different from the one for which KR was initially designed, namely 
language understanding and generation? 

(3) Can known pragmatic theories of language communication be extended to graphical 
representations? 

( 4) Are there any novel applications that capitalize from an improved theoretical basis for NLG? 

The main focus of this dissertation is (1). To show the consistency and usefulness of results from 

(1), an implementation will be presented. 

1 



2 

1.2. Outline of the Dissertation 

In Section 1.3 we will review relevant literature. 

In Chapter 2 we will present a test run of "TINA" the implementation of the theory 

developed in this dissertation. By discussing aspects of this test run we will point out desirable 

features of NLG systems. 

Chapter 3 introduces Grice's theory of pragmatic maxims and presents an application of this 

theory to diagrammatic representations. Common features in diagrammatic representations will 

be listed, and a number of common representation systems will be analyzed according to their use 

of these features as semantic, accidental or conventional. 

Chapter 4 discusses the relations between Natural Language Graphics and Intelligent Inter- 

faces. 

Chapter 5 is the major part of this dissertation. After defining the notion of Graphical Deep 

Knowledge (GDK) and supplying a detailed goal statement for NLG, a task domain analysis of 

GDK is presented. 

Chapter 6 discusses the implementation of the theory presented in Chapter 5. Numerous 

test runs are demonstrated. 

Chapter 7 reviews an implementation that was done earlier in this research effort. The field 

of "Intelligent Machine Drafting" is defined and its relations to Graphical Deep Knowledge as well 

as to Computer Aided Design are discussed. 

Finally, chapter 8 lists future work, and chapter 9 presents our conclusions. 

1.3. Literature Review 

Natural Language Graphics (NLG) [BrK.77] is a subfield of computer science at the intersec 

tion of computer graphics and artificial intelligence. An NLG system is a program which permits 

a user to create, manipulate and query graphical representations with natural language. Typically 



3 

the given language input consists of descriptions of objects and spatial relations between them, fol 

lowed by questions about relations not explicitly contained in the input. Alternatively a user can 

give commands that describe actions that he wishes performed on the objects of his description. 

The manifesto of Natural Language Graphics is a paper by Brown and Chandrasekaran 

[BrC81]. Programs that can be classified as NLG systems are described in 

[AMG84a,AMG84b,MGP84, YTK84]. 

Brown and Chandrasekaran [BrC81] are supplying an impressively complete analysis of the 

graphics phenomena involved in NLG. They also correctly differentiate between "knowledge based 

graphics" and "conventional computer graphics". They say that "In all of computer graphics .... a 

great deal of emphasis on efficient, compact, hand-tailored data structures. Our emphasis is 

almost in the other direction. We need a scheme with which to represent many different kinds of 

information in an explicit way, ... [p. 182)". Brown and Chandrasekaran use a frame system as 

their knowledge representation. A small implementation is described, and the rest of the paper 

deals with "a design for the picture production part of the system" (p. 178). 

Brown and Chandrasekaran also review attempts to combine natural language and graphics 

that predate NLG as a field. Kirsch [Kir64] discusses the combination of natural language and 

diagrams and, besides dealing with problems of natural language understanding, presents the first 

attempt in the literature to formalize the notion of a two-dimensional grammar. The best known 

early NLG-like program is Winograd's SHRDLU [Win72]. SHRDLU is of course known as a para 

digm of using procedural knowledge, while we are interested in declarative knowledge. 

The earliest combination of graphics with semantic networks, the knowledge representation 

technique that we will make use of, is reported in [GLM78]. Giustini refers to the reported seman 

tic network as "mathematical" as opposed to "linguistic", meaning that it does not span the com 

plete set of properties that one would expect from a semantic network. Specifically it is neither 

"teachable" nor is it possible "to retrieve information given data whose format differs from that 

by which the memory previously learned the information" (p. 13). 



4 

The work by Adorni, Di Manzo et al. [AMG84a,AMG84b,MGP84] concentrates on prob 

lems of equilibrium, support, instantiation of unmentioned objects and space occupied by an 

object. It does not draw a clear distinction between the domain of diagrams and the domain of 

real world objects. This makes it difficult to think about different diagrammatical views of the 

same object. Another problem with Adorni et al. 's work is that their publications do not contain 

screen dumps. The range of their graphics efforts is therefore not readily accessible to the reader. 

The research concentrates on difficult natural language problems and uses diagrams only as a 

proof of the NL understanding abilities of the system, not as main subject of investigation. We 

will refer to this approach as criterial use of NLG. 

The weather map analysis system by Yokota et al. [YTK84] offers language input and out 

put as well as pictorial input and output with retrieval of maps based on pictorial input. This 

makes their system the most complete of all approaches to NLG, however it is limited to a small 

domain of expertise, namely weather situations in the Far East. 

It is a largely accepted practice in natural language generation that utterances are generated 

from a knowledge base by an independent mechanism comprising the lexical and grammatical 

knowledge of the system. The result of the generation process consists of a chain of verbal primi 

tives (morphemes). The model of NLG presented here follows the same pattern. Diagrams are 

generated from a propositional knowledge base and consist of pictorial primitives (icons). This 

approach has been discussed previously in work of Kosslyn and Shwartz on imagery [KoS77]. In a 

lengthy argument (p. 270-271) the authors argue that "some sort of constructive activity" is 

needed to assemble an image and that the units of assembly are presumably "entire interpreted 

units of an image". We want to identify these units with icons in a graphics system. Concerning 

the propositional linkage Kosslyn and Shwartz continue their argument and state that " ... images 

could be created by relating together perceptual and more abstract 'propositional' representa 

tions... To buttress the claim .... we performed a simple experiment: ... Thus conceptual informa 

tion can be used in image generation ... " (p. 270-271 ). 



5 

There is another interesting connection between NLG and natural language processmg. It 

has been noted by Waltz [vVal80] that in many cases the formation of an image is a necessary 

ingredient of natural language understanding as a whole. In other words, the language understand- 

ing problem will not be solved completely unless the process of picture generation from language is 

well enough understood.1 In the previously mentioned imagery literature Kosslyn 

[KoS77,Kos80,Kos81a,Kos81b,Kos85] has investigated the generation of diagrams from a par- 

tially propositional representation for purposes of "visual" reasoning. He states that "Proposi 

tions are abstract languagelike discursive representations, corresponding roughly to simple active 

declarative statements" [Kos81b]. Kosslyn does not investigate interactions with natural language 

and does not present a formal catalog of his representations, but he lists important items that. 

need to be represented, and his approach has been an inspiring guide for our work. 

The view of NLG systems as auxiliary devices in the process of language understanding does 

not imply a limitation of their usability to spatial language, i. e. language dealing with physical 

objects and location relations between them. It is well known [MiJ76] that much of language 

makes use of spatial metaphors. 

.. 

There are two other research efforts that relate closely to this investigation. Friedell [Fri84] 

describes the generation of images from high level object specifications which he calls "quasi 

descriptions". He presents two example systems one for the generation of ship images from a data 

base and one for the automatic synthesis of backgrounds for three-dimensional scenes .. Friedell's 

approach is similar to ours in that he uses a graphics knowledge base. It differs in that we are 

using a semantic network, while his work is based on frames. He also does not interface his 

. knowledge base to a natural language parser. 

Under the name "Information Presentation System" (IPS) another approach to image gen 

eration from a knowledge base has been published [ZGY81 J. The AIPS system is based on the 

KL-ONE semantic network and is in spirit similar to our approach. However, there is 

1 Not all scholars agree with the merit of internal images, but. this discussion is of no concern here. 



6 

disagreement concerning the success of the details of the AIPS theory. While Zdybel et al. state 

that "By an IPS we mean a system that... functions reasonably well without demanding custom- 

tooling for a particular application ... " (p. 978) they do not make it clear that their system lives up 

to this expectation. Friedel! notes that "Systems such as BARAT and AIPS succeed in narrow, 

well-defined domains for which it is practical to provide an adequate repertoire of predefined 

parametric object descriptions." (p. 54). Our experience with KL-ONE 2 has been that object attri 

butes of individuals are represented in an unintuitive way, because KL-ONE is by its nature not 

designed for dealing with individuals. Our own representation of attributes is very general and is 

not characterized by what Fried ell calls "parametric object descriptions". 

Since the original inception of NLG as a field, the attitude in some areas of computer graph 

ics has changed, and "world model based" graphics systems [FoD83] now include "redundant" 

information. However, equating this with knowledge based graphics would be tantamount to 

ignoring twenty years of research in knowledge representation. 

The research described in this dissertation has grown out of work on a circuit board mainte 

nance system, and this naturally raises the question about NLG-like work in CAD. It turns out 

that references to natural language in CAD are sparse. An exception is Samad [Sa.m86], who cites 

four reasons why natural language is useful in CAD. Natural Language is not tool specific, does 

not require extensive manual use, permits natural expression, and overcomes limitations of menu 

based systems in complex applications. Sama.d's work deals with post processing and querying of 

the output of a simulation system and is not graphics oriented. 

Recently there has been increased interest in NLG-like behavior of programs in the area of 

multi media interfaces and knowledge based user interface management systems (KBUIMS). This 

is in line with our own implementation that was designed as a user interface. The HITS (human 

interface tools) system [HMR88] is an example for these efforts. HITS is heavily graphics oriented, 

2 I am thankful to Norm Sondheimer at IS! who has given me ample opportunity to get hands on experience with 
KL-ONE. 



7 

but has also a natural language component. While the sub-systems of HITS surpass the sub 

systems of our own implementation, the designers of HITS apparently had to find out that the 

integration of sub-systems in NLG, unless planned from the beginning, as well as the use of an 

appropriate knowledge representation system a.re crucial for such efforts. "HITS currently exists 

primarily as a set of independent tools, most of which are implemented on top of the Proteus 

knowledge base system [ .. ]. We are in the process of reimplementing many of these tools on top 

of a richer knowledge representation system ... " (Section 4). 

Another approach to multi media interfaces that is based on our earlier endeavors is 

[NeS88J. Two workshops give a good overview of the current state of the art m multi 

media/knowledge-based user interfaces [NeK86b, SuT88]. 



CHAPTER 2 

A SCENARIO FOR THE USE OF NLG SYSTEMS 

And the Lord said, Behold, the people is one, and they have all one 
language; and this they begin to do: and now nothing will be restrained 
from them, which they have imagined to do. Go to, let us go down, a.nd 
there confound their language, that they may not understand one 
another's speech. 

Genesis, 11 :6- 7 

In this chapter we will present an example dialogue to clarify the problems attacked in this 

dissertation. It has been compiled from the demonstrations in the implementation chapter 

(Chapter 6) and irrelevant parts have been removed or edited for clarity. Especially "screen 

erase" commands have been deleted in a few places. User input follows the " : > >" prompt. 

Annotations are given in square brackets. 

[ The system has some basic information about the valid coordinate system. It also knows a few form 
primitives, like ship-farm, xand, xport, xboard, etc. Finally it knows the correct coordinates of a 
few special locations like "top".] 

: > >ship-1 is a ship (1) 

PARSED 

: >>the form of a ship is ship-form (2) 

PARSED 

> >ship-1 is at 200 300 on the screen (3) 

PARSED 

8 



> >please show ship-I ( 4) 

[Refer to Fig. 2.1] 

: > > erase the screen (5) 

DONE 

: > >the state of ship-I is non-operational (6) 

PARSED 

: > >state is expressed by rotation and 180 represents non-operational (7) 

[ We have just informed the system how to graphically realize the non-graphical attribute "non- 

------------------------------------· .. 1 

Fig. 2.1 



10 

operational" namely by rotating the icon of a non-operational object by 180 degree. "rotation" is a 
graphics function that p erjorins icon rotation.) 

PARSED 

> >show ship-I (8) 

[Refer to Fig. 2.2] 

: > >what is the form of ship-I? (9) 

SHIP-FORM 

: > >what is the state of ship-I"? (10) 

non-operational 

r--------------------------~ 

I 
0 
0~ 

Fig. 2.2 



11 

: >>whereisship-1? (11) 

(200 300 "relative to" screen-center) 

: > >what are the members of ship? _ (12) 

SHIP-I 

: > > clear the screen (13) 

DONE 

: > >elmer-montgomery is a ship (14) 

PARSED 

: > > elmer-montgomery is here (15) 

["here" activates the moiise, and the position is entered by pressing the left mouse button. J 

PARSED 

> >what are the members of ship? (16) 

(ELMER-MONTGOMERY SHIP-I) 

: > >how would elmer-montgomery look with state non-operational? (17) 

[See Fig. 2.3. Above example of hypothetical reasoning is implemented by building and then era.sing 
a structure asserting the non-operational attribute. ] 

so 

>>clear the screen (18) 

DONE 



12 

I 0 
0~ 

__________________________ _J - 

Fig. 2.3 

: > >show elmer-montgomery (19) 

[See Fig. 2.4] 

DONE 

: > > the form of a board is xboard (20) 

PARSED 

: > > b2 is a board (21) 

PARSED 

: > > b2 is at 2 5 inches on the screen (22) 



13 

PARSED 

: > > b2 has and-1, and-2 and or-I as parts (23) 

PARSED 

: >>and-I is at 1 -1 inches relative to b2 (24) 

PARSED 

: > >the form of and-I is xand (25) 

PARSED 

: > > and-2 is at 1 -2 inches relative to b2 (26) 

PARSED 

: >>the form of and-2 is xand (27) 

PARSED 

: > >or-1 is at 1 -3 inches relative to b2 (28) 

PARSED 

: > > the form of or-I is xor (29) 

PARSED 

: > > the form of a port is xport (30) 

PARSED 

: > >port-I, port-2 and port-S are parts of and-I (31) 



14 

Fig. 2.4 

PARSED 

: > >port-1 and port-2 and port-3 are members of port (32) 

PARSED 

: > > port-I is at -30 -5 relative to and-1 (33) 

PARSED 

: > >port-2 is at-30-25 relative to and-I (34) 

PARSED 

: > >port-3 is at 60 -15 relative to and-I (35) 



15 

PARSED 

: > >erase the screen (36) 

DONE 

: > > display 2 levels of b2 (37) 

[Fig. 2.5] 

DONE 

: > > erase the screen (38) 

DONE 

=D 
=D 
=D-' 

Fig. 2.5 



1B 

: > > display 3 levels of b2 (39) 

[b2 with all its parts and the parts of its parts are displayed. In other words, tliis time the parts of 
aiul-L are displayed. Fig. 2. 6 shows this.] 

: >>clear the screen (40) 

DONE 

: > > fill 100 100 300 300 with and-I (41) 

[Fig. 2. 7] 

DONE 

: > > clear the screen ( 42) 

=0- 

Fig. 2.6 



17 

~ 

) 

Fig. 2.7 

DONE 

: > >show and-I with its environment (43) 

[Fig. 2.8 ] 

DONE 

: > > clear the screen (44) 

DONE 

: >>what are all the parts of b2? ( 45) 

(AND-1 AND-2 OR-I PORT-I PORT-2 PORT-3) 



18 

: >>the form of and-11 is xand ( 46) 

PARSED 

: > > the form of my-or-gate-99 is xor (47) 

PARSED 

: >>the form of the-second-not is xnot ( 48) 

PARSED 

: > > and-11 is at 3 4 inches on the screen {4~) 

PARSED 

I 

~ 

=0- 
=D- 

) 

fig. 2.8 



19 

: > > my-or-gate-99 is left of and-Ll (50) 

PARSED 

: > >the-second-not is above and right of and-11 (51) 

PARSED 

: > >show my-or-gate-99, and-11 and the-second-not (52) 

[Fig. 2.9] 

DONE 

: > > clear the screen (53) 

=D- =D- 

Fig. 2.9 



20 

DONE 

: > >fill 400100 600 200 with and-1 (54) 

DONE 

: > >where is and-I (55) 

(219 292 "relative to" SCREEN-CENTER) 

: > > where is the picture of and-I? (56) 

[Fig. 2.10] 

(460 180) 

lbd 
Fig. '.UO 



21 

: > > the form of icon 1 is form-1 (57) 

PARSED 

: > >iconl is at 200 300 on the screen (58) 

PARSED 

: >>the form of icon2 is form-2 (59) 

PARSED 

: > > icon2 is behind iconl (60). 

PARSED 

: > >show iconl and icon2 (61) 

[Fig. 2.11] 

DONE 

: > > clear the screen (62) 

DONE 

: > > the form of model-4 is xand (63) 

PARSED 

: > > model-4 is at the top of the screen (64) 

PARSED 

: > >show rnodel-d (65) 



22 

- - 

- 

Fig. 2.11 

[Fig. 2.12] 

DONE 

: > > clear the screen 
(66) 

DONE 

: >>another-and is at 2 2 inches on the screen 
(67) 

PARSED 

: > > the form of another-and is xand 
(68) 

PARSED 



23 

r--------------------------,,,, 

=0- 

Fig. 2.12 

: > >port-1, port-2 and port-3 are parts of another-and (69) 

PARSED 

: > > port-1 and port-2 and port-3 are members of port (70) 

PARSED 

: > > port-I is at -30 -5 relative to another-and (71) 

PARSED 

: > > port-2 is at -30 -25 relative to another-and (72) 

PARSED 



24 

: > >port-3 is at 60 -15 relative to another-and (73) 

PARSED 

: > > the form of a port is xport (74) 

PARSED 

: > > display 2 levels of another-and (75) 

[Fig. 2.13] 

DONE 

: >>the size of another-and is large (76) 

Fig. 2.13 



25 

PARSED 

: > >size is expressed by scale and 2 represents large (77) 

PARSED 

: > > clear the screen (78) 

DONE 

: > > show 2 levels of another-and (79) 

[ The somewhat surprising result is due to the fact that the system does not know that the size attri- 
bute should be inherited. Fig. 2.14 ] · 

DONE 

- - - 

Fig. 2.14 



26 

> >size is inheritable (80) 

PARSED 

> > erase the screen (81) 

DONE 

> >show 2 levels of another-and (82) 

[Now this is what we wanted! (Fig. 2.15 )] 

DONE 

(1) associates "ship-I." as an individual with the class "ship". At this point in time the sys 

tem has never before seen either one of the two words "ship" and "ship-1". (2) assigns a form to 

the class "ship". For this example dialogue we assume that "ship-form" is a known concept with 

an associated icon. (3) assigns a position to ship-I. (4) requests to draw ship-L. Note that besides 

the prior defined icon the system had no other information whatsoever about ship-L, and all infor 

mation necessary for drawing is completely derived from the knowledge that was built into the 

system by natural language. Note also that the form for ship-I was derived by inheritance from 

the class "ship". 

(6) assigns a state to ship-L. As before, these are completely new terms to the system. Nei 

ther "state" nor "non-operational" are known in the knowledge base. However, the format of the 

sentence permits to interpret "state" as an attribute class, and "non-operational" as an attribute 

value. (7) now binds the "invisible attribute" state to a graphically realizable attribute "rota 

tion". It also maps the attribute value "non-operational" into a parameter for the graphics func 

tion that has been predefined and is stored in the function cell of the concept "rotation". (8) 

requests redisplay of ship-L. The new display shows ship-I with a changed icon. This demon 

strates that the state attribute is correctly interpreted in a graphical manner. 



27 

Fig. 2.15 

(9) shows that the information passed on to the system by natural language is accessible in 

the knowledge base and can be queried. In t.his particular case the form is retrieved and returned 

by the system. (10) demonstrates that the same is true for attributes, (11) that it is true for posi 

tions, and (12) that the members of the class hierarchy built can be retrieved also. (14) adds a 

member to an existing class. (15) shows simple interaction between language and pointing, and 

( 16) verifies the correct extension of the given class. 

(17) - (19) demonstrate a limited ability to do hypothetical reasoning. (20) - (35) build up a 

little board consisting of an object b2 that has three parts (asserted in 23) and one of the com 

ponents (and-1) has itself three parts (asserted in 31). (37) shows a display command that uses t.he 

level as a selection mechanism what to show. Because only two levels are requested, t.lie parts of 

and-1 are not displayed. (39) in contrast is a complete display, including all three levels of the 

part hierarchy. 



28 

(41) demonstrates the possibility to display an object in a sub-window, such that it is 

stretched to optimally fill this sub-window. (43) shows an object in a similar sub-window, and also 

shows the device where the object is located in a different window. The connection between the 

two windows is created by "thickening" the corresponding object in the overview window. (45) 

shows the ability of the system to do reasoning based on parts. This was implicitly already 

demonstrated with the previous display commands. 

( 46) - (52) demonstrate the ability of the system to represent fuzzy positions and to instan 

tiate them with reasonable values. (54) - (56) show that the system can discriminate between icon 

positions and object positions. (57) - (61) show an example for the use of "2 1/2 - d" representa 

tions. Although the underlying coordinate system is two dimensional, the system is nevertheless 

able to operate with an expression like "behind", and to achieve correct display by selecting the 

order of display. (63) - (65) show ''absolute" fuzzy positions which are interpreted relative to the 

screen. (67) - (74) creates another and-gate with three ports as parts. (75) displays it. (76) - (77) 

assigns an attribute of "size" to the new and-gate and defines that "large" is expressed as a scale 

operation. (79) shows a redisplay. Because the system does not know that size is an attribute that 

should be inherited to parts, the picture shows the parts at their original size. Scaling is done rela 

tive to the center, therefore the scaled object is also relocated, but the parts are at their original 

position. (80) asserts the inheritability of "size", and (82) reactivates display, resulting in a 

correct diagram. 

In summary the above dialogue presents a system that interactively builds a propositional 

knowledge base and immediately makes use of it for question answering as well as for display pur- 

poses. 



CHAPTER 3 

WHAT PHILOSOPHY HAS TO OFFER TO NLG 

Say unto wisdom, Thou art my sister; and call understanding thy kins 
woman. 

Proverbs, 7:4 

3.1. Grice's Maxims of Co-operative Communication 

One of the most outstanding achievements in the field of pragmatics has been the philoso 

pher Paul Grice's [Gri75] formulation of "the co-operative principle" which he has explicated as a 

set of nine maxims, sorted in four groups. This system of maxims has been the basis for criticism 

as well as for much work in pragmatics, but it has not yet been challenged by any alternative sys 

tem. In this chapter we will present a short overview of Grice's work and then show that it is 

applicable to our own research. We will first list the nine maxims in their appropriate categories. 

Maxims of quantity: 

• Make your contribution as informative as required. 

• Do not make your contribution more informative than is required. 

Maxims of quality: 

• Do not say what you believe to be false. 

• Do not say that for which you lack adequate evidence. 

Maxim of relation: 

• Be relevant. 

Maxims of manner: 

29 



30 

• Avoid obscurity of expression. 

• Avoid ambiguity. 

• Be brief. 

• Be orderly. 

In the following sections each one of these maxims will be analyzed concerning its applicability 

towards graphical representations and what, if any, contributions it supplies for the construction 

of NLG systems. Many of the examples given will be derived from the domain of circuit board 

display and maintenance which has been the driving force behind much of this research. 

• Make your Contribution as Informative as Required 

One major attribute that differentiates language from graphical displays is that language is 

transient and sequential. Only one word can be spoken at a time, and after it was spoken, it is 

not accessible any more. The opposite is true for graphical representations. One screen can be 

split into several windows, and each one of them can represent several propositions simultaneously 

and statically. There are at least two ways to make use of this facility, and they will be presented 

as two sub-maxims of Grice's first maxim. 

Sub-maxim 1: Show all pertinent views of the same phenomenon. 

For the display of a circuit board a user might be interested in showing a physical representation 

of the board, or a functional diagram. In a physical representation the actual location of com 

ponents on a circuit board is shown. This is helpful in identifying the location of a component on 

the board itself. In a functional representation components are arranged to express the overall 

functional structure of the displayed device. For instance in a situation where a technician tries to 

identify the function of an apparently damaged component on a board, the first Gricean maxim is 

served best by displaying functional and physical representation at the same time. The physical 

representation can be used to derive a component name or position number which then acts as an 

index into the functional representation. 



31 

Sub-maxim 2: Show a complete view of one phenomenon. 

When dealing with a complicated system, a person normally concentrates on a single component 

or a small group of components. Nevertheless it is helpful to know where this component or group 

is located, relative to the overall system. This can again be achieved by using two windows, one 

that shows the component or group in question, and another one that shows these components in a 

larger surrounding. By using a technique like blinking or highlighting, the common components in 

both windows can be made easily identifiable. 

A similar technique has been used in map creation, where maps of a small country often are 

augmented by an insert showing a whole continent and the country itself highlighted in this insert. 

• Do not Make your Contribution more Informative than is Required 

Paper representations often suffer from the problem of showing too much of a system. The 

dynamic qualities of computer systems make it possible to create completely new reduced views 

that do not overburden the viewer with unwanted information. There are several approaches to 

"not making one's contribution more informative than required". 

The first approach which is standard in computer graphics and window systems deals with 

purely geometrical features and selects a certain viewing area. Changing this area is referred to as 

zooming or panning. Another approach selects parts to be shown according to the part hierarchy 

of the displayed object. This requires an explicit part representation as maintained by the TINA 

system. The selection can be done by showing only one or two or a few levels of this hierarchy. If 

the system has an element/ connection structure (like graphs, semantic networks, or circuit 

boards), then one might want to display all and only the elements that are connected directly to a 

certain user selected focus component. 

Another selection method is to display all and only the components of a certain class, like 

leaf nodes in a graph, molecular nodes in a semantic network, or transistors in a circuit board. 

This requires the existence of a class hierarchy in the knowledge base of the representation system. 



32 

A fourth selection method is to display all and only objects with a. certain attribute. This requires 

the explicit representation of attributes, as well as retrieval mechanisms to select components 

based on their a.ttribu tes. 

• Do not Say what you Believe to be False 

This maxim does not (yet?) apply to computer communication, although the notion of 

"bias" has been mentioned in the AI literature [la.m83]. The basic idea. of biased information is 

that in a situation when a. user expects a.n exaggerated claim (like from a sales man) he might 

draw wrong conclusions if he is not presented with such a.n exaggerated cla1m. 

• Do not Say that for which you Lack Adequate Evidence 

An application for this maxim arises if one uses a program like the "Multiple Belief Rea 

soner" (MBR) [MaS83]. MBR makes a difference between established facts and hypotheses. If this 

program is used for hardware maintenance one could follow its activities by displaying proposi 

tions graphically. Doing this, the representation of a hypothesis should differ from the representa 

tion of an established fact. 

For instance in doing maintenance on a circuit a reasonmg system will create different 

hypotheses about which parts are faulty. If faultiness is shown by a signal color like red, then one 

might use a different line style to distinguish established faultiness from hypothesized faultiness. 

• Be Relevant 

Grice in his original treatment of the pragmatic maxims noted in the section on relevance 

that "I find the treatment of such questions exceedingly difficult ... " [Gri75, p.16]. 

Presenting examples of relevance that relate to graphical representations is correspondingly 

difficult, maybe because relevance really should be seen as a super maxim to the other maxims. 

One way to convince oneself of this fact is to replace the names of the first two maxims by two 

other names. One can replace the first maxim by "say all relevant things" and the second maxim 



33 

by "do not say irrelevant things". In short one can summarize these two maxims as "say all and 

only relevant things". Something that is not true is necessarily irrelevant, and in the same way 

one can capture all the maxims below as being variations of the relevance super maxim. 

AB a side note we would like to mention that the term "relevance" has been used heavily in 

the Al literature in a number of different meanings some of which are not related to Grice's sense 

at all. [AnB75,MaS83], [Car70], [Kad86J, [Sal72,Sal73], [MiR85]. In Grice's sense the term has 

been used for example in [Sp W86] and [Her86]. 

• Avoid Obscurity of Expression 

This maxim is explained by Grice with an example of intended obscurity where two parents 

· talk in a way to prevent a present child from understanding them. From this maxim one can 

derive the requirement to use standard symbology whenever it exists. 

Looking at this maxim in a language context, one finds that in order to be obscure or not 

obscure one first needs the power to generate all required information in different ways. At the 

current state of the art in language generation one is usually happy if one can generate a sentence 

in one syntactically correct and semantically coherent way. In other words, one does not have a 

choice how to do something, if one is barely able to do it all. 

Nevertheless it helps exposing how far Al is away from its ultimate goals, by imagining how 

a graphics system could be obscure if it should wish to do so. A display program might start to 

use a font like Old English for text, or put superfluous ornamentation around the lines it is draw 

ing. Behavior like this belongs, as of this writing, into the realm of science fiction authors. 

• Avoid Ambiguity 

In the context of our theory we permit the use of colors to symbolize attributes of objects. If 

a system has only a limited set of colors available for its task, then a user might be forced to 

assign the same color for two different, types of attributes. This will introduce ambiguity for the 

viewer. From this one can derive a requirement to use hardware that has a wide range of 



34 

expressive facilities, like many colors, blinking, different line styles, different line widths, etc. and 

to make full use of all the facilities given. 

An aspect that makes diagrammatic representations easier to disambiguate than natural 

language is that they usually comprise some form of designed language as opposed to a natural 

language, and designed languages are less susceptible to the ailment of ambiguity. In addition to 

that, graphical languages do not suffer that much from the need of natural language to be concise 

because there are two dimensions of representation available, while language is linear in nature. 

This eliminates another major source of ambiguity. 

• Be Brief 

Like for the "avoid obscurity" maxim, this maxim makes only sense for a system that has 

the ability to behave in two different ways, in this case to be brief or not to be brief. A graphical 

analog of a behavior that does not observe this maxim would be if a program draws solid lines by 

chaining dots even if it has a "line" primitive available. At the current state of the art, Al pro 

grams usually do not have the competence to make such decisions. The programmer will hope 

fully ensure that the display will be constructed according to the briefness maxim. 

• Be Orderly 

The concentration in this section is on the literal meaning of the maxim "be orderly" namely 

on doing things in the right order. In graphical representations there is almost no limit to the 

number of different orders in which parts of a picture can be drawn. If there are n icons, there are 

n! orders of drawing. This differs from natural language (at least English) where there is basically 

a fixed word order given. 

If one takes a piece of text and scrambles it, the understandability of the whole structure will 

be severly impeded. As opposed to language, parts of a graphics display are not transient, but stay 

around after initial creation, so that the final result does not depend on the ( temporal) order of 

presentation (except for overlays). It is, however, clear that presentation order can be helpful in 



35 

several ways. This will be demonstrated agam with examples from our domain of circuit board 

maintenance. 

(1) If a component is found faulty by a maintenance system, then it is of interest to display this 

component first. In this way necessary measures can be initiated by the maintenance techni 

cian, without waiting for the complete display to come up. 

(2) Circuit boards often have a structure consisting of functional units that are interconnected. 

In a functional display the components of these functional units tend to be organized as clus 

ters. One way of creating such a diagram orderly would be to outline the overall structure 

first by empty boxes such that one box represents one functional unit, and then continue by 

replacing or filling these boxes. Such a "black box", structure is often used in addition to a 

functional diagram, and the dynamics of a graphics system permit to integrate both 

diagrams by the representation order, leading the viewer from the overall structure to the 

detail representation. Clearly this method can be applied to any structured representation, 

not just circuit boards. 

(3) Assuming a structuring of a system into black boxes, one can then raise the question in what 

order to fill them with or replace them by components. One possibility is to explicitly 

represent the attribute of importance in combination with our representation of cornp ar a- 

tives and superlatives. If importance information is given, then drawing should be done 

starting with the most important component. Again, this method can be applied to other 

diagrammatic representations also. 

(4) When filling in components in a black box, after establishing a main part, electrical connec 

tivity should control the farther development of the picture. It is much harder to follow the 

process of drawing a picture if the location of current growth is changing in an arbitrary 

manner. ("Don't jump around while you are drawing.") Components should be added in a 

natural order of connectivity. Using connectivity there are at least three different ways to 

advance. One way is to follow the signal flow through the system. The next possible 



36 

approach is to follow a policy of maximum connectivity. This policy would add a com- 

ponent which connects to the maximum number of pending wires. It seems desirable to use 

this last policy only if the signal flow does not give enough information how to continue. 

Finally one can grow in a breadth first manner from the main object. This is certainly the 

least desirable method, but it is still better than random growth. These ideas can be applied 

to any node/link system, like to semantic networks, flow charts, or syntax diagrams. 

With the availability of high speed frame buffered graphics terminals drawing speed has 

become less of interest. However, AI programs are notoriously slow, and while the graphics 

hardware might be able to display a whole complicated device in 1/60 of a second, the underlying 

program that creates the necessary picture might be so slow that the discussed ideas about order 

ing become important. 

Concerning the first presentation of a complicated diagram, we are inclined to claim that the 

slow serial presentation in an intelligent order can be seen as a feature, not a problem. Diagrams, 

as opposed to text, do not impose a clear order of reading. If the system draws the diagram 

according to an importance order as opposed to "left to right, top to bottom", it will help the 

reader to understand the "inner logic" of the displayed mechanism. 

3.2. A special Maxim for Technical Languages 

In comparing natural language with diverse symbolic graphical languages a new pragmatic 

maxim was discovered that applies specifically to scientific/technical languages. This maxim is 

called the maxim of unnecessary variation. 

The Maxim of Unnecessary Variation: 

Do not represent two objects or two relations differently, unless you want to express a 
difference between them. 

This maxim comes in two versions, as unnecessary intra-variation and as unnecessary inter- 

variation. 



37 

Intra-variation refers to differences between two representations that occur 111 the same narrow 

context, usually on the same screen or page. 

Inter-variation refers to differences between two representations of the same well defined class of 

representations, however in different contexts. 

The first Sub-Maxim of Unnecessary Variation (Consistency): 

Avoid intra-variation at all costs. 

The second Sub-Maxim of Unnecessary Variation {Conservativity): 

. Avoid inter-variation unless you have a good reason to introduce it, i. e. follow the conven 
tions established for this class of drawings. 

Some examples will elucidate these sub-maxims and show that they present a very reasonable 

choice in dealing with symbolic graphical representations. 

It is an explicit style guideline for drafting of circuit board diagrams that one should not 

represent transistors/tubes in the same drawing by more than two different sizes [Ren71]. We 

claim that one should draw all transistor symbols on one page in the same size. Not doing so 

would create unnecessary intra-variation that would be confusing. The less knowledgeable techni 

cian might suspect that the different sizes express something, maybe different power consumption. 

0-- 

Fig. 3.1: A transistor amplifier with unnecessary variation. 



38 

But even the experienced technician will probably feel irritated by this unnecessary variation. The 

actual size of the transistor is limited by practical considerations like visibility on one hand and 

space consumption on the other hand. Fig. 3.1 shows two identical cascaded amplifiers, however 

unnecessary variation makes it hard to understand the diagram. Biesel has reported the same 

effect [Bie84], however without analyzing the pragmatic reasons for it. 

A good example for inter-variation can be derived from another representational system, 

namely from function graphs (Fig. 3.2). There is no reason why the coordinate axes of a function 

graph have to be drawn parallel to the page the drawing is done upon, with x pointing to the 

right. Nevertheless anybody that breaks this convention has to have a good reason, for instance 

he might need a very long x axes, so he could switch to the format in Fig. 3.3. Anybody using the 

format in Fig. 3.2 where the x-axes is tilted against the page boundary by approximately 45 degree 

will engender utter protest from his colleagues, although the figure itself is presumably correct. 

Conventions of the described nature are usually not arbitrary but often help to eliminate 

unnecessary perceptual features. For instance there is a strong convention not to have any connec 

tions cross any components. In semantic networks this means that arcs should not run over nodes, 

and in circuit representations it means that wires should not run over transistors or any other 

Fig. 3.2: A Function Graph with unnecessary variation. 



39 

components. Mutual intersections of connections a.re usually not avoidable, but they add only one 

feature. Intersections of wires with components add at least two features, namely entrance point 

and exit point. In addition, intersections are perceptually more significant than e. g. parallel lines, 

assuming line segments of equal length [W al87]. 

One can demonstrate the effect of unnecessary variation with a text written with a printer 

that constantly changes the font used. Meaningless variation is added to the text which has a dis 

tracting effect on the person trying to read it. For the reader who doubts these claims Fig. 3.4 

contains an example of a font cataclysm as test reading. 

y 

X 

Fig. 3.3: A function graph with an acceptable layout. 

The MAXIM OF Unnecessary Variation 

is demonstrated by adjoining text 

of several fonts which we claim is 

hard to read 

Fig. 3.4: A font cataclysm. 



40 

3.3. Feature Analysis of Symbolic Graphical Representations 

In the previous section perceptually accessible high and low level features of graphical 

representations have been categorized implicitly into three different classes. (An example for a 

high level feature would be overall arrangement and an example for a low level feature would be 

line intersection.) These feature classes will now be discussed explicitly. 

Semantic Features. 

A perceptually accessible feature is considered "semantic" if any change of an instance of it would 

result in a change of meaning for the picture containing it. 

Pragmatic Conventionalized Features. 

A perceptually observable feature is considered a pragmatic conventionalized feature if a change of 

it would not change the meaning of the picture, but there are well established guidelines how this 

feature should be selected. An important aid for recognizing conventionalized features is that one 

can usually verbalize what the convention is ("draw the x-axis parallel to the page boundary"). 

Accidental Features. 

A perceptually observable feature is considered an accidental feature if a change of it would not 

change the meaning of the picture containing it, and where a range of acceptable values for the 

feature exists. 

It should be noted that accidental features can vary between different contexts, but not in the 

same context; this is due to the maxim of unnecessary variation. Pragmatic conventionalized 

features should not even vary between different contexts. 

Unfortunately, designers of technical graphical languages virtually never make the effort to 

compile a list of perceptually recognizable (high and low level) features of their representations 

and to categorize them into semantic features, pragmatic conventionalized features, and accidental 



41 

features. By not supplying such a list designers imply that the only way to acquire their 

languages is by example, and one would rather have a formal semantic specification for a formal 

language which then, may be augmented by examples.' 

The point being made here is important for an NLG system, because it will (at the current 

state of the art) not acquire the meaning of e. g: circuit board diagrams by example. If we want 

the system to share the knowledge with the user that a line intersections is electrically significant 

(or not!) we have to worry about representing this fact explicitly. 

One can add a fourth redundant list to describe a graphical language. Due to the reduction 

ist character of representations which applies to most technical languages as well as to knowledge 

representation systems (we will return to this observation), every domain will have a number of 

features that are not represented by any perceptual feature of the technical language. Although it 

is usually impossible to supply a complete list of such features, it is desirable to mark some of 

them as not represented, if the danger of wrong interpretation .exists. In other words, if there are 

features that are not represented, but somebody might think that they are represented, it is 

beneficial to state explicitly that they are not represented. This is done for instance in some maps 

of the solar system that state explicitly that planets are not drawn to the same scale as the rest of 

the map. So the feature of planet size is not represented. 

Semantic features, i.e. features that cannot be changed without changing the meaning of the 

display, can be either representative or symbolic features. If a yellow object is displayed yellow, 

then the color is a representative feature. If a faulty object is (always) presented in red, then the 

color is a symbolic feature. In the more common case of a symbolic feature a responsible display 

designer should supply an annotation explaining the corresponding domain feature. 

We do not expect that from today on every e. g. electrical circuit diagram will have four 

such lists of features associated with it. This would be unnecessary and take more space than the 

1 It has puzzled me since my days in engineering school that nobody made an attempt to teach the language of circuit 
boards in a formal way. 



42 

diagram itself, and it would not even help a beginning "circuit diagram reader". However, two 

environments where such lists would be immensely helpful have already been suggested: in teach 

ing a graphical language, and in designing an NLG system. The latter is the reason why we have 

developed this whole theory. 

One could raise an objection that listing accidental features is never necessary, because one 

can use a closed world assumption, declaring that every feature that does not show up in the list 

of semantic or conventionalized features is accidental. This of course presupposes that one has 

compiled two lists of all these other features without forgetting one. It is therefore preferable to 

describe salient accidental features also, because a reader (viewer) might suspect that a certain 

feature was only forgotten in the other lists. Should a user ask an NLG program about the mean 

ing of an accidental feature, it would be beneficial if it is known as such. 

In order to exemplify the descriptive methodology suggested here, a number of graphical 

representation systems will be reviewed. Before getting to this, an overall list of features will be 

presented that has been found useful. This will shorten the detail lists for the different representa- 

tions. 

3.3.1. Features Common in Symbolic Representations 

A basic distinction will be made between icons which usually have a fixed form, OR appear as a 

closed figure, and lines which are open and used often to connect icons.· The third type of elements 

permitted are descriptive labels. The following is a list of perceptually accessible low and high 

level features that we have found useful in describing graphical representations. 

• Form of the icons used . 

• Connectivity between icons by an uninterrupted line that impinges on two or more of the icons. 

• Line style (bold, dotted, etc.). 

• Simple line intersections. 



43 

• Line intersections with marking points or avoidance arcs. 

• Size of icons used. 

• Relative spatial arrangement. This is very general and subsumes some of the other features. 

• Orientation of icons. This is independent of the relative positions. 

• (Prohibited) crossings between icons and lines. 

• (Prohibited?) overlay of icons. 

• Density of the icon distribution in the given space. 

• Overall arrangement of icons describing a flow from left to right or top to bottom (sometimes 

with a few exceptions). 

• Proximity association of labels and icons. 

• Proximity association of labels and lines. 

• Containment association of labels and icons. 

• Endmarker of lines (e.g. arrowheads). 

• Fonts of labels. 

• Relative positions [i. e. distances, as opposed to arrangements). 

• Area color of icons. 

• Boundary color of icons. 

• Hatching of icons. 

• Angle. 

• Line orientation. 

• Scales (linearity or not). 

• Containment of icons. 

• Permitted overlay of icons (by assignmg the overlay area a different color or hatching pattern 

than the separate icons). 

• Intersections. This has several sub cases already mentioned before. 

• Touching relations between icons. 



44 

In the following sections the occurrence of above features in different graphical representation sys 

tems will be investigated. We will start with a look at (what else?) graphical displays of circuits 

and a class of semantic networks that will be heavily used in later chapters, so called SNePS net 

works. For these representational systems semantic features, pragmatic conventionalized features 

and accidental features will be given. If appropriate some features that are not represented will 

also be mentioned. The reader will notice soon that there are a number of "borderline" cases. 

Also semantic features are sometimes negative, in that a certain representational feature is never 

used in a representational framework. In that case the inclusion of that feature would create 

doubt whether one is in fact dealing with a wire plan/ SNePS net, etc. therefore they are con 

sidered as (negative) semantic features. Also the degree to which variation of accidental features 

would create confusion, if varied, is different for different features, depending on their perceptual 

salience. 

3.3.2. Logical Wire Plans 

Semantic features: 

The form of the icons is fixed (specified by technical norms). Every icon form represents a specific 

type of component. The connectivity between icons expresses electrical connectivity. This applies 

to solid lines only. Coaxial switches are sometimes marked by connected dotted lines, so the line 

style used is meaningful. Line intersections that are marked with a little dot express electrical 

connection between wires. Labels describing components or wires have to be nearer to the 

described component than to any other component. Wires are undirected, i.e. there are no specific 

endmarkers; a consistent change of this (negative) feature would make it doubtful whether one is 

dealing with a wire plan at all. Areas are not colored or cross-hatched, except for some icons that 

contain small parts filled in with the drawing color. No scale is associated with the picture. Icons 

a.re not contained in other icons or overlaid over them. 



45 

Conventional features: 

Relative spatial arrangements should place components belonging to one functional unit near each 

other. Icons should be arranged such that the overall flow of the signal processed follows the con 

ventional reading direction, i.e. from left to right and top to bottom. Icons should be in a stand 

ardized orientation (upright), or at most rotated by 90 degree or flipped horizontally or vertically. 

Wires should be horizontal or vertical whenever possible. Crossings between lines and icons are 

prohibited. Overlaying of icons is prohibited. Overlaying labels with icons is prohibited. Inter 

sections between lines should be avoided as much as possible, but they are meaningless, if they 

occur, Angles are meaningless, but wherever possible right angles are used (except inside of icons 

themselves). Icons are supposed not to touch each other. 

Accidental features: 

Icons should have a constant size, however one has some flexibility in selecting this size. All lines 

representing wires should be drawn in the same line width. All icons of the same type should have 

the same line widths used. The same functional unit should be displayed with the same layout 

pattern. The density of icons in the presentation area should be approximately constant. Fonts 

are meaningless. Relative distances between components are meaningless. Icons and wires are usu- 

ally drawn in black or blue (blue prints). 

Unrepresented features (selection): 

Very little of a real circuit board is preserved. Forms and relative positions of components are not 

represented, and this excludes most other features. 

3.3.3. Physical Wire Plans 

Semantic features: 



46 

Connectivity is a semantic feature (assuming a single layer board with no wires passmg under 

components, an assumption that will not hold for many circuits). Line style is meaningful, one 

might indicate wires running under components by dotted lines. Simple line intersections are 

meaningful. They express real electrical connections. Relative spatial arrangement is meaningful. 

It. means: that's how components are arranged on the board. The same applies to icon orientation 

and derivatives of it, like density of distribution, overall arrangement, touching relations, and 

relative positioning. Proximity or containment association of labels with icons and lines is seman 

tic. There are no endmarkers, color is not used. 

Conventional features: 

The rigid limitations that are the result of the need to correctly mirror a real circuit limits the 

number of conventions used drastically. Conventions are used where there is a choice, and there is 

not a lot of choice if one tries a quasi analog depiction. 

Accidental features: 

The form of the icons used seems to be an accidental feature in the following sense. Two equally 

looking components (in reality) should look the same way on the plan. However there are no 

strong conventions, and one might also vary degree of precision of the icons, so they might actu 

ally look different on different wire plans. On the other hand, very different components might 

physically look the sa.me. Size of the icons is accidental, but no variation of scale is permitted. 

The same applies to line widths. 

Unrepresented features (selection): 

Colors of components are usually not represented. 



47 

3.3.4. SNePS Networks 

And thou shalt make for it a grate of network of brass; and upon the net 
shalt thou make four bras en rings in the four corners thereof. 

Exodus 27:4 

SNePS semantic networks are used as the major tool of this investigation and will be 

explained in later sections, where diagrams will also be supplied as examples. They are only 

included here to maintain the logical structure of this chapter. The reader not familiar with 

SNePS is invited to skip this section and to return to it after familiarizing himself with the graphi 

cal network notation; The word "semantic" does not have the same meaning in SNePS and in the 

chapter heading "semantic features". 

Semantic features: 

Connectivity between icons is meaningful. Solid lines express arcs, dashed lines express auxiliary 

arcs. Labels of lines must be next to the lines (such that there is no other line that they are nearer 

to). Labels of icons must be inside the icons. Lines must be marked on one end with an arrow 

head. The icon that the head is pointing at is called a dominated node. Areas are not colored or 

cross-hatched. No scale is associated with the picture. Icons are not contained in other icons or 

overlaid over them. 

Conventional features: 

Icons are circles, ellipsis, or sometimes rectangles. The choice is based on the length of the label 

associated with it, and all icons are identical in meaning {independent from the form). Intersec- 

tions between arcs are meaningless, but they should be avoided whenever possible. Icon sizes are 

meaningless, but the convention is to draw them according to the size necessary for labels. The 

relative spatial arrangement of icons is meaningless, but it is preferred to have molecular nodes 

above base nodes. Icons are always horizontal. Intersections between icons and lines are prohi- 



48 

bited. Overlays between icons are prohibited. Icons are supposed to fill the given space about 

equally and not to touch each other. 

Accidental features: 

Line style is accidental. Fonts are accidental. Relative positions between icons are accidental. 

Icons and lines are usually drawn in black. Angles are meaningless and can span a wide spectrum 

of values. This does not disagree with the maxim of unnecessary variation, because the angles are 

enforced by label sizes and do not give the feeling of being varied randomly. 

Unrepresented features (selection): 

Given the highly abstract nature of semantic networks and of what they represent, there are very 

few unrepresented features. However if one wants to talk in terms of an implementation, then the 

networks do not express the implementation language ( e. g. Common LISP versus Franz LISP), 

implementation technique, or implementation environment (hardware, operating system). 

3.3.5. Maps 

A specifically interesting representational system for our purposes are maps, because they are 

a borderline case between symbolic representations that we are dealing with here and analog 

representations. For instance some maps express a specific three dimensional character by shad 

ing. Nevertheless there are some factors of abstraction in drawing maps [Arn86] and many rela 

tions are expressed by symbolic icons. The rigid format of feature categorization used in the pre 

vious sections will be relaxed at this point, because many of the descriptions are repetitive. 

Maps have icons of variable form, namely country boundaries, and normal icons that mark 

villages, mountain tops, etc. There are no lines in the sense of the other representational formats. 

The relative spatial arrangements are significant, and so are the orientation of variable icons. 

Sizes are not preserved. The density of fixed form icons should not become too large. Labels have 



49 

to be as near to the described icon as possible, however there are also area describing labels (for 

mountain chains), and labels may have different fonts for cities, countries and mountains, which 

permits to relax the distance condition. Fixed form icons are contained in variable form icons. 

Area color expresses political division or height above zero, or sometimes vegetation or population 

distributions. Hatching is used sometimes for large cities. Non-political boundary lines are some 

times expressed with a color different from political boundary lines. 

Angles are not preserved (like sizes). A scale is given, but certain objects like villages are 

often exaggerated relative to this scale. 

Different types of maps preserve different features, but no map preserves the original size of 

the displayed objects. Most maps do not preserve any three dimensional structure, but there are 

some exceptions (for instance globes). 

3.3.6. Pie Charts 

We will limit ourselves to simple as opposed to hierarchical or exploded pie charts. Such pie 

charts represent one single numerically measurable feature in an analog way. The icons of pie 

charts have the form of slices. The angle of a slice in the chart is the meaning-carrying item. 

Labels must be assigned uniquely to slices. There is no concept of connectivity, intersection or end 

markers. The relative arrangement of the slices is not meaningful. Different slices are usually 

marked in different colors or different hatching patterns. The radius of the area is not meaningful, 

but this is an accidental feature with strong pragmatic limitations, varying the radius would be 

extremely confusing. Usually no scale is supplied although it would be possible to do so. Icons 

don't overlay but touch each other along their straight lines. Some pie charts indicate the conven 

tion that segments are ordered according to size. 



50 

3.3.7. Bar Graphs 

Bar graphs are interesting because they behave differently in two different dimensions. The 

form of the icons used is constant, except for variation of one measure. In this respect there is 

only one icon used ( except for coordinate axes). There are no connecting lines. The line style used 

is not meaning carrying, neither is the color. Size is interesting because it is a semantic feature in 

the vertical direction, but not so in the horizontal direction. A scale is used that may be loga 

rithmic instead of linear. It is a strong convention that the vertical direction be parallel to the 

drawing plane boundary. 

Bars may either touch each other, or not, but this must be consistent, a strong pragmatic 

limitation. In simple bar graphs there are no intersections or inclusions of icons. Labels must fol 

low the proximity condition and are usually of a single font. Icons may be hatched or their areas 

colored, and if this is done then color is meaningful, such that every different ~olor describes a 

different feature. 

3.3.8. Euler Circles 

Icons are all closed shapes with no mner lines, and usually with no corners and approxi 

mately elliptic form, referred to as blobs. Sometimes icons are circles or ellipsis. There is no line 

structure, and labels are usually contained in the icons. Pens are normally not semantic. The size 

of icons, as well as relative positions are not meaningful and there is no scale given. Icons may 

intersect, may be contained, and are sometimes shown as overlay. Icons may be colored and or 

hatched. 

3.3.9. Graphs of Functions of one Variable 

This representation consists besides the coordinate axes and their labeling of no icons, only 

of a. "line". If several functions in one diagram are displayed, then line style might be used for 

differentiation. Line intersections a.re meaningful (for instance the intersections with the x-axis). 



51 

Labels have to be near the coordinate axes points they describe. Finally there is a scale given for 

both coordinates x and y, and they might be different. The coordinate axes are supposed to be 

parallel to the drawing plane, by strong convention. 

3.3.10. Flow Charts 

Icons are limited to a few regular forms (boxes, diamonds, ... ). Lines are connecting icons, 

there are arrow heads that express a direction of the lines. Pen and width of the lines are acciden 

tal features. The size of icons is not meaningful, but they have to leave enough space to contain 

their descriptive labels. Icons have conventional orientations. Lines may not cross icons, neither 

may icons contain or overlay each other. Lines have no labels associated, except for 

TRUE/FALSE ( or sometimes yes/no or a small variation of these). Fonts are accidental. Hatch 

ing is not used. Color is accidental, but usually black. Lines are preferably parallel to the draw 

ing surface boundaries (if possible). There is no scale specified. Intersections of lines are not 

meaningful but should be avoided whenever possible. Overall arrow orientation usually goes from 

top of the page to bottom of the page, this is a weak convention, because loops make it necessary 

to run backwards. 

3.3.11. Syntax Diagrams 

Syntax diagrams are quite similar to flow charts in their structure, although they are 

different in meaning. They differ in that different fonts are often used meaningfully, and that the 

overall flow is rather from left to right then from top to bottom. The icons used vary slightly, 

with boxes with rounded edges replacing diamonds as second main icon. 



CHAPTER 4 

GRAPHICAL DEEP KNOWLEDGE AND INTELLIGENT INTERFACES 

One of the most important growth areas of computer science which happens to be directly 

related to NLG is the design of user interfaces. The sixth (sic!) generation project of the Japanese 

computer industry [GaS86] is witness as well as a successful journal, the "International Journal of 

Man Machine Studies", and relevant publications in a number of others. Cognitive psychology, 

human factors, artificial intelligence, operating systems, and even hardware design (mouse!) have 

helped in designing better user interfaces. 

The user interface is nowadays seen as a major part of every system, because acceptance of a 

new device is dependent on the quality of the interface. Unfortunately it is not always possible to 

"program" a success in interface design, and well planned and designed interfaces have suffered 

utter rejection by the user. 

In the recent past the knowledge revolution has been catching up with user interfaces 

[NeK86a,NeK86b]. It has been argued [All86,ScE86,ShG86b] that knowledge is as necessary for 

intelligent user interfaces as for any other intelligent system. In this section a few short comments 

will be made on the positive influence of knowledge based systems on user interfaces. We will pre 

face these with presenting a problem which has almost become part of interfacers folklore. 

SYSTEM: Select one of the following countries: 
Belgium, France, England, Sweden, Norway. 

USER: 

SYSTEM: 

Belgium 

Invalid Command "Belgium". 

What's wrong here is that the system obviously does not know what it is talking a.bout. It expects 

probably a command like "select" followed by a country name, or just a position number, but it 

does not inform the user about this fact. The exact same type of thing can happen with a mixed 

52 



53 

graphics natural language interface. Imagine the following dialogue: 

SYSTEM: [ displays Fig. 4.1 ]. 
Please select one of the objects. 

USER: 

SYSTEM: 

triangle 

Invalid input "triangle". 

(4.2) 

In this case the system might expect an input by means of a pointing device, but. it fails to inform 

the user about this fact. The word "triangle" is useless to a system that does not know about tri- 

angles, only about lines and points. 

\Ve will not argue for the advantages of multi-media interfaces, this has been done ably at other 

places [PAC85,RPK85]. But we will argue that a multi-media interface will be useless, unless the 

system shares some knowledge with the user about what the user is currently seeing. In other 

words, it is not enough for the system to draw something, but it has to know what is currently 

visible on the screen, and it has to know the most important perceptual attributes of objects on 

the screen that people might use to refer to certain objects. 

0 
D 

Fig. 4.1: An arrangement. of simple geometrical objects. 

D 



54 

The approach to permit this common knowledge consists in maintaining separate informa 

tion on the objects to be displayed and on the pictures that are visible. A user might request the 

display of an object PCM-BOARD! in all its details. As will be elaborated later on, the system 

should react with following a stored part hierarchy, to locate all the parts of PCM-BOARD 1, their 

forms, their positions, their attributes, etc. Then all these parts have to be displayed, and this is 

how far somebody would go that is interested in a nice display. But it is not enough, because a 

user might refer to an object currently visible, or even worse, to an object visible on the last 

screen, therefore the system must maintain all this information in a propositional format, so that 

it can answer questions. 

It is clear that knowledge about screen arrangements will not be available initially, and the 

system will have to create the structures describing the screen by itself. This will permit a user to 

refer to to the position of an object on the screen, although this position is different from its posi 

tion in the world and has just been created dynamically. We will discuss the inner workings of 

this mechanism later on in the section on knowledge compilation (Section 5.1.4). 



CHAPTER 5 

GRAPHICAL DEEP KNOWLEDGE AND REASONING FOR NLG 

5.1. Knowledge Representation 

He that planted the ear, shall he not hear? he that formed the eye, shall 
he not see? He that ch.cstiseth. nations, shall not be correct? even he that 
teacheth man knowledge? 

Psalms 94, 9-10 

Knowledge representation is widely considered one of the most important fields of Artificial 

Intelligence, and it has even been called the "glue" that keeps the whole field together [McC83]. In 

chapter 2, describing a scenario for the use of NLG systems, it has been argued that certain 

knowledge structures are necessary to achieve intelligent behavior of a graphics oriented program. 

The major part of this chapter consists of the formal description of a collection of such knowledge 

structures. We will refer to the class of all such structures as "Graphical Deep Knowledge". 

Before dealing with necessary representational constructs for NLG systems, this chapter will 

give a characterization of graphical deep knowledge as well as a precise formulation of what we 

consider the goal of NLG research. Terminology necessary for this endeavor is worked out on the 

way. Later on it is found that inheritance of attributes makes sense along part hierarchies, not 

only class hierarchies, and an argument against representation systems built on IS-A hierarchies 

will be derived from this finding. In this way the specific domain helps to improve knowledge 

representation theory as a whole. 

The work presented here makes use of the SNePS [Sha79b] Semantic Network Processing 

System as a notational formalism as well as an implementation "language". Information and 

clarification about SNePS will be supplied whenever necessary. 

55 



56 

5.1.1. A Goal Statement for NLG 

It is the major purpose of this chapter to develop a precise goal statement for NLG. On the 

way some interesting terminology can be developed. For the benefit of the reader the chapter has 

been divided into a few subsections, but it should be seen as one long argument. 

5.1.1.1. The Reductionist Character of Representations 

In this section we will address three basic properties of knowledge representation systems 

and talk in some detail about one of them, the "reductionist character" of knowledge representa 

tion. This discussion has been inspired by work of Woods who has discussed fundamental issues of 

knowledge representation in [W 0087]. 

The first ( and trivial) basic feature of a representation is its characteristic of being a func 

tion. It maps an entity or a group of entities into another entity or group of entities. For 

instance a map is a representation of a piece of land. The second characteristic of a representation 

is that it is considered to be a representation by somebody. AB Minsky would say, "the model 

relation is inherently ternary" [Min68). Every representation has it in its nature that it can be 

considered an object by itself, and it is an act of interpretation that makes somebody not look at a 

map as a piece of paper but as a representation of a piece of land. 

Any object that is seen as a representation of another object can nevertheless itself be viewed 

as an object. The term primary object will be used to designate an object that is not regarded in 

its function as representing another object. So the same physical object can either be viewed as a 

primary object or as the representation of another object. For instance when somebody cuts off 

the white margin around a map, then he performs an operation on the primary object and does 

not refer to its meaning as a representation at all. On the other hand if one corrects the border 

line of a country that was changed by war, then this is an operation that changes the representa 

tional quality of the map. 



57 

The important aspect of representations that we want to focus on is that they are usually 

reductionist in order to be of any value. That means that the representation is missing certain 

features of the original which makes the representation more "manageable" than the represented 

object. For instance a map is missing the original size and three dimensionality of a piece of land 

which makes it possible to fold it and store it in a drawer, while it still preserves enough of the 

features of the original to be an interesting representation. 

There are sometimes exceptions to the reductionist character of representations. When a jet 

fighter of a hostile nation is captured, then one can consider this fighter as a primary object as 

well as a representation of how the other fighters look, and one would then have a non-reductionist 

representation. But even in this extreme case one could not rely on totally identical properties of 

represented objects (any other fighter) and representation (the one at hand). Cars of the same 

type and make often show very different behavior, and some turn out to be "lemons" without any 

body knowing why they should bedifferent from all the other cars that came from the belt on the 

same day. In conclusion one can say that most representations are reductionist by design, but 

even if a representation is meant to be perfect, like one car seen as the representation of another 

car of the same make and type, it is still never possible to accomplish a complete representation of 

all features. 

These observations on representations apply to knowledge representation, and unless one 

tries to model abstract objects with very few properties, knowledge representation will be a reduc 

tionist mapping. Woods [Woo87] (p. 47) refers to three "fundamental limitations" of modeling the 

world by an intelligent system, namely (1) changes of the world may not be captured, (2) there is 

too much to be learned, and (3) the world is too rich to even conceptualize certain things. If one 

uses a fully intensional knowledge representation system like SNePS, then things become even 

more complicated. Because intensional knowledge representation does not try to model a world, 

but a cognitive agent, one has to consider two potential steps of reduction. The first step of reduc 

tion happens when knowledge a.bout a world is represented in an incomplete fashion by a cognitive 



58 

agent, while the second step occurs in modeling this agent based on incomplete information about 

his internal structure. These facts will be summarized in what we want to call the "First Funda 

mental Conjecture about Knowledge Representation (First FCoKR)". 

The First Fundamental Conjecture about Knowledge Repr-esent.at.iom 

Every knowledge representation for any non-trivial world is a reductionist mapping. 
"Reductionist" hereby means that the mapping contains less information than the mapped 
entity. 

Besides the problem of potentially non-accessible information, there are two different limitations 

that contribute to the reductionist character of KR systems. First of all, the complexity of any 

non-trivial world will surpass the representational capacity of all known intelligent systems. 

Secondly, for any representational system there is a limitation in grain size. At some point it 

becomes possible to make a change to a represented domain that is so small that no corresponding 

change in the representation is possible due to grain size limitations. This is a limitation of the 

representational adequacy of the representation system. 

5.1.1.2. The Need for an Internal Relevance 

Any function that performs a reductionist mapping from a given world state into an internal 

representation of a cognitive agent will be called a knowledge acquisition mapping (KAM}. This 

mapping will normally be based on some perceptual mechanism. However we are not interested in 

details of this mechanism. 

We will, for now, notate the functionality of the KAM by 

K =KAM (W, M) (5.1.1.2.1) 

where vV is a perceptually accessible world, M is the internal state of the cognitive agent, and K is 

the resulting knowledge structure of the acquisition process. 

Cognitive agents are able to influence the knowledge structure K that they are building up 

by manip1t!ating their own acquisition mapping. In other words, people are able to let their 



59 

internal goal structure influence what type of knowledge is assembled for a given world. For 

example, a person might very well be a chess master who has been using his home chess set for 

many years, and nevertheless he may not be able to give a complete description of the form of one 

of the figures. This is the case because he has manipulated his acquisition mapping towards sup 

plying relations between figures, but not towards analyzing the shapes of them in detail. 

One could say that a cognitive agent is able to focus his attention on relevant information. 

Unfortunately, as has been pointed out in the chapter on philosophical contributions to NLG 

research (Section 3.1), the term "relevance" has been used in the literature with a large number of 

different meanmgs [MiR85, Sal 72, Sal 73, Sh W76] [AnB75, Car70,Kad86, Sp W86] [Gri75, Gri78] 

which neither agree with each other nor with the notion currently of interest. In order to discrim 

inate the currently intended sense of relevance from previous use in the field, the term "int~rnal 

relevance" will be used. The notion of internal relevance differs from Grice's relevance in that he 

describes a phenomenon of communication between two agents. Internal relevance on the other 

hand does not require a second agent as source of the communication, it is limited to a single 

agent. 

Even so there are two different ways that internal relevance can come into play. Either the 

agent can select information from an environment according to his criteria of internal relevance, 

or he can, in the process of reasoning, generate new information and test it against his criteria of 

internal relevance. If the new information does not conform to his criteria he can eliminate it 

from further elaboration. 

Definition 5.1.1: Internal Relevance Criterion: 

An internal relevance criterion is a set of goals that can be used by a cognitive agent as a 
filter in his knowledge acquisition mapping. 

This results in adding an additional argument to the knowledge acquisition mapping, leading to a 

modified version of (5.1.1.2.1). 

K = KAM (W, M', RC) (5.1.1.2.2) 



60 

where RC is a relevance criterion. The original M has been modified to M' because M comprises 

all of the cognitive agent's knowledge, and therefore also his relevance criteria. M' eliminates this 

redundancy. So the use of an internal relevance criterion helps cognitive agents to deal with the 

problems imposed by the First FCoKR. 

5.1.1.3. Differentially Adequate Knowledge Representation 

There is an obvious relation between internal relevance and the First FCoKR. If one were 

not forced to do a data reduction, one would not need a criterion how to do it. However, the First 

FCoKR also results in the generally accepted practice of everyday work in knowledge representa 

tion. Charniak & McDermott [ChM85] describe the design of a knowledge based system as a 

repeated attempt to stretch a given representational mechanism to the breaking point. If the 

breaking point is reached, then amendments to the representational system become obvious and 

will have to be made, constituting the effective research progress. 

This practice is frustrating, because knowledge representation is by no means done for its 

own purpose. Most knowledge representation systems are part of a larger unit. A parser might 

supply input by translating natural language into knowledge structures, or a natural language 

generator might be driven by stored knowledge. The representation itself can be considered an 

intermediate medium that is used to manage the complexity of the natural language parsing and 

generation problem. Even in the theoretical setting of an AI research lab one will have to try for a 

parser. After all, a successful parser / representation / generator system is a proof of the 

effectiveness of the representation. 

To really appreciate the difficulty of this task, it pays to take a comparative look at one of 

the simplest parsing problems in computer science, namely that of parsing an integer number into 

a word of memory. A number of different binary codes has been designed (BCD, Huffman, Ham 

ming, Grey, ... ), and in order to write an appropriate parser, the correct representation has to be 

known. However, let us assume that it is not known how many bits the device has, nor is there a 



61 

complete list of all possible input numbers, nor a list of what binary patterns correspond to what 

numbers for the majority of the input numbers. Nobody would seriously attempt to write such an 

ill defined procedure. 

A look at natural language parsing unfortunately shows that one is in exactly this 

unpleasant situation. There are no generally accepted constraints on the representation except 

maybe finiteness and discreteness. The existence, number and quality of system primitives, com 

parable to the number of bits, is usually a research issue, not a known fact. Given the limitations 

of the First FCoKR one .cannot even hope to achieve a complete correct description of a given 

world. The representations for most possible natural language utterances are not trivially known. 

There is not even a complete list of all possible natural language utterances that one would like to 

parse, because there are infinitely many possible utterances. But even a weeker descriptive 

mechanism like an acceptor or a grammar that exist for many formal infinite languages does not 

exist for natural language. 

Some people might seriously think that the task could not be done at all, were we not con 

fronted with living proof all the time. 

So the KR researcher takes single natural language utterances, or small classes of them and 

creates corresponding knowledge items using what he thinks is an approximation of his own men 

tal algorithm. His main goal is to make sure that two utterances which are obviously different to 

the human observer are never forced by limitations of the representational system to be mapped 

into identical representations. 

We would like to capture this desired property of knowledge representation systems by a 

definition: 

Definition 5.1.2: Differentially Adequate KR Systems: 

A knowledge representation system is differentially adequate if any two worlds with an 
interesting difference are representable by different representations. 



62 

The key problem in the definition above is the word "interesting", which we could as well have 

replaced by "relevant". It turns out that researchers sometimes do not agree on what would con 

stitute an interesting difference. In other words, the KR researcher is using his own private inter 

nal relevance criterion all along. 

There is nothing inherently wrong with the use of one person's relevance criterion, if a 

representational system is accepted by more than one researcher. In this sense knowledge represen 

tations become a social phenomenon, as much as a proof in mathematics is only a proof if a 

number of educated people agree on it. Unfortunately, only very little effort has been expended 

towards making the implicit internal relevance criterion that went into some representational sys 

tem explicit. So we conclude that the best we can achieve in Knowledge Representation is to find 

differentially adequate representations, parameterized by the shared ( often implicit) internal 

relevance criterion of a researcher community. This limits the goals that we can set for NLG 

research. 

5.1.1.4. A Second Fundamental Conjecture about Knowledge Representation 

In this section we will discuss a second conjecture about knowledge representation which is 

not directly related to the rest of this chapter but builds on the ideas discussed earlier. 

It has been argued in the cognitive psychology literature [BMR82] that vision processes 

require the use of top down semantic information. Biederman writes that "Access to the semantic 

relations among the entities in a scene is not deferred until the completion of spatial and depth 

processing and object identification. Instead, an object's semantic relations are accessed simul- 

taneously with its physical relations as well as with its own identification" (p. 144). 

Kosslyn 1 [KoS77] was already previously quoted saying that "conceptual information can be 

used in image generation ... " (p. 271). Kosslyn's paper describes a program that creates "mental 

images" from a "propositional representation" and uses them for a number of operations. The 

1 We continue to ignore the ima.gery debate. We simply take the standpoint oft.he imagists. 



63 

claim of Kosslyn and fellow researchers is that the mental images that people report are not an 

epiphenomenon of a propositional knowledge representation, but an experimentally demonstrable 

functional representation. A large amount of supporting experimental evidence is given in 

[Kos80]. The "propositional representation" used contains among other things coordinate values, 

and the internal images created by Kosslyn's simulation program can be displayed. 

A system that creates pictures from coordinate values is usually referred to as a "computer 

graphics program", and the obvious conclusion is that anybody who subscribes to Kosslyn's theory 

of mental images is claiming that there must be some sort of computer graphics system in the 

human -brain which we want to refer to as a mental graphics sy.stern. (We hurry to stress that we 

do not claim the existence of real pictures in the brain, we are only drawing a simple conclusion 

from Kosslyu's implementation which does not disagree with the notion of a functional representa- 

tion.) 

We argue that the propositional knowledge for "vision" and "mental graphics" consist of 

shared parts as well as parts that are dedicated to each one of these activities. Research in com 

puter vision and computer graphics would be considerably more unified, if all of the knowledge for 

vision and graphics were shared.2 On the other hand, both tasks deal with a number of common 

high level concepts like shapes, relative arrangements, and colors, and we subscribe to localized 

and unique representations of concepts. Therefore both tasks will have to access the same shared 

semantic representations concerning shapes, etc. vVe will say that conceptual knowledge that can 

be used for vision has the attribute of "receptive adequacy". Semantic knowledge used for (men- 

ta!) graphics is "projectively adequate". 

Semantic knowledge of the described kinds has to be acquired, and here the First FCoKR 

comes into play. An internal relevance criterion is necessary for both types of knowledge. 

Nevertheless, all the acquired knowledge will be resident, in one semantic memory which is highly 

2 Of course we cannot exclude tha.t whatever is happening in the br a.i n is unified and completely different from our 
current scientific approaches. 



64 

interconnected. This might pose difficulties at access time. Minsky [Min75] has argued that one of 

the most important parts of intelligence is the retrieval of the right piece of information at the 

right time. This attitude disavows the separation of intelligence into knowledge store and proces- 

sor. Recent developments in the philosophy of psychology also criticize such a separation.3 

One possible way to retrieve the "right knowledge at the right time" is to organize it accord 

ing to the expected task. However, we would not want to reorganize knowledge after it had been 

acquired. It would be much more efficient to classify knowledge according to its use from the very 

beginning. This is the content of our Second Fundamental Conjecture on KR (Second FCoKR). 

The Second Fundamental Conjecture about Knowledge Representation: 

A task oriented knowledge representation system should make use of the same internal 
relevance criteria for knowledge acquisition and for task related knowledge access. 

In other words, it is more parsimonious to organize knowledge at acquisition time according to the 

expected use, than to first acquire it and restructure it later on for use. Even more importantly, 

when goals change, and therefore internal relevance criteria are adapted, it is more parsimonious 

to adapt only one mechanism, as opposed to adapting the knowledge acquisition and the 

knowledge retrieval part of the system. (Prior knowledge will need some restructuring anyway). 

5.1.1.5. Definition and Goal of Graphical Deep Knowledge Research 

In the previous section we have mentioned knowledge bases that can be used for generating 

diagrams and have called them "projectively adequate". In addition we want to do propositional 

reasoning about knowledge bases describing the physical structure of diagrams, and a knowledge 

base that permits to do this will be said to exhibit "deductive graphical adequacy". While the 

terms "visual knowledge" and "graphical knowledge" are standard AI terminology, the literature 

reports no good name for the type of knowledge we a.re referring to. This is why we have intro- 

3 John Haugeland, talk given on 4/23/87 at SUNY at Buffalo 



65 

duced the term "Graphical Deep Knowledge" [GeS87]. 

Definition 5.1.3: Graphical Deep Knowledge: 

A knowledge base is said to contain graphical deep knowledge if at least part of its 
knowledge exhibits deductive graphical adequacy, and part of its knowledge exhibits projec 
tive adequacy. 

While the utility of designing a differentially adequate representation system as a first step in 

creating the whole complex of representation / parser / generator / reasoner has been well esta 

blished in natural language oriented knowledge representation, especially in the analysis of belief 

systems [ShM82, WiR86, WiB83], we think that graphical deep knowledge has not been analyzed in 

the same way. Therefore a research program that focuses on a task domain analysis of graphical 

deep knowledge in a comparable way to the analysis of belief systems is a worthwhile endeavor. 

Creating a differentially adequate representation system is however not good enough. A 

knowledge representation by itself is meaningless, unless the semantics of the representation is 

given. Descriptive semantics (i. e. a good natural language explanation) or procedural semantics 

are two well known possibilities. We will give syntax and descriptive semantics for each introduced 

structure of graphical deep knowledge. Whenever useful, we will informally describe how the 

given structure influences the behavior of an abstract graphics machine that processes display 

requests. 

5.1.1.6. Semantic Primitives and Differential Adequacy 

Existing knowledge representation systems differ with respect to their use of semantic primi- 

tives. Some systems supply the user with a fixed set of primitives, while other systems supply him 

with tools for creating semantic primitives. Neither AI nor philosophy have so far succeeded in 

defining a reasonable set of primitives that are sufficient in all situations. Researchers whose goal 

it is to identify such a set are therefore often forced to use ad hoc extensions of their theory if 

unexpected difficulties arise in an application. 



66 

Two examples of theories that have been created with a set of primitives in mind, which 

later on had to be extended are Schank's primitive actions and Fillmore's deep cases 

[Fil68, ScA77]. Schank's work was later extended to include additional primitive (social) actions. 

Concerning Fillmore's deep cases, no compilation of a generally accepted set of cases exists to date 

[BrM87]. Problems with finding the ultimate set of semantic primitives have therefore led 

researchers to design systems that permit the user to specify his own set of primitives. Such sys 

tems can be seen as tool kits to design and test knowledge representation systems, in effect making 

them knowledge representation design systems (KReDeS). This approach is used in the SNePS 

(Semantic Network Processing System) [Sha79b] system which we will introduce at a later time in 

more detail. However, it is necessary to anticipate some of the SNePS ideas in order to analyze 

the relation between differential adequacy and semantic primitives. 

SNePS is a semantic network system with arcs and nodes where the user is required to define 

the arc labels that he wants to use. (There is a small set of predefined arc labels which are used by 

the reasoning system, however, this is not meant to be in any way exhaustive). Our work with 

SNePS has advanced under the "assumption of asymptotic domain coverage". According to this 

assumption it is possible to define a small domain of world knowledge, and by analyzing it 

thoroughly to converge towards a set of semantic primitives (arc labels) which are sufficient to 

completely describe this domain. 

At no point in time can one be sure that a complete set of primitives has been found, but the 

number of new labels necessary asymptotically approaches zero. Attempts to reach asymptotic 

domain coverage have been made by other researchers using SNePS in the area of belief sentences 

[WiR86] natural language syntax and semantics [Nea85] and temporal expressions in narratives 

[Alm87]. 

This permits us to define the goals of graphical deep knowledge research in a more precise 

way. We are aspiring to reach asymptotic domain coverage for the domain of graphical deep 

knowledge. An understanding of the overall goal of the NLG research program requires more 



67 

analysis of the natural language side and will be given at the end of the next section. 

5.1.1. 7. The Linearity Principle of Knowledge Representation 

Differential adequacy is an important goal in designing a knowledge based system, however 

it is by itself not sufficient. If a knowledge based system achieves asymptotic domain coverage, 

then we are only guaranteed that every interesting difference in the world can be represented, but 

it is not clear how "simple" this representation will be. 

It seems unsatisfactory if a cognitively simple concept can only be expressed by a large 

number of primitives, This does not say that it is per se bad if a short sentence is expressed with 

many nodes and arcs, because one might have a very rich representation system that attaches 

inferred knowledge to the actual representation of the sentence. But if this really happens, then 

we would like to have it happen consistently. In other words, we do not want to represent most 

five word sentences with three or four semantic network nodes, but have one five word sentence of 

this language that can only be represented with 25 nodes. 

It is difficult to define complexity measures for natural language and for knowledge struc 

tures, but one would like to have a more complex language utterance expressed by a more complex 

knowledge structure, and vice versa. In other words, one wants a linear relation between the com 

plexity of an utterance and the complexity of its image in the knowledge base. This idea has been 

guiding our work on the language side of NLG systems. We will refer to it as the "linearity prin 

ciple". 

The Linearity Principle ( comparative form): 

Of two knowledge representation systems of comparable and satisfactory differential ade 
quacy the better system is characterized by better approximating a constant with its quo 
tient of knowledge structure complexity and complexity of the corresponding sentence for a 
wide range of sentences. 

We need to talk about two systems of satisfactory differential adequacy, because we do not want 

to invoke the linearity principle for systems that are not differentially adequate. Otherwise one 

might use the "empty mapping" which assigns the empty knowledge structure to every sentence. 



68 

This will result in perfect linearity with a quotient of 0. However this system would not be satis 

factory in its differential adequacy. 

The linearity principle (LP) can be seen as a generalization of Shapiro's work on non 

standard connectives [Sha79a]. Shapiro has argued that the connectives of standard first order 

predicate logic are not very pleasant for certain applications. For instance if one would want to 

represent the sentence "Two of chip-L, chip-2, chip-3, and chip-4 are multipliers", the resultant 

structure might look like this: 

is-a( multiplier, chip-I) & is-a( multiplier, chip-2) OR 
is-a( multiplier, chip-I) & is-a( multiplier, chip-3) OR 
is-a( multiplier, chip-I) & is-a( multiplier, chip-4) OR 
is-a( multiplier, chip-2) & is-a( multiplier, chip-3) OR 
is-a( multiplier, chip-2) & is-a( multiplier, chip-4) OR 
is-a( multiplier, chip-3) & is-a( multiplier, chip-4) 

(5.1.1.7.1) 

Had we chosen an example with four multipliers in a set of ten chips it would be unthinkable to 

assume that such a structure is built by a person upon hearing the corresponding sentence. There 

fore Shapiro has introduced connectives that directly can represent sentences like "more than i but 

Jess than j of the following n assertions ... hold true". 

Before we present an example application of the linearity principle it is necessary to remind 

the reader that the arc labels in SNePS networks (Fig. 5.1.1.7.1) are seen as system primitives. 

The number of different arc labels is not fixed and can be extended by the user [ShG86a]. 

If people can describe a simple arrangement of objects by a short sentence then it should be 

possible to describe it with a reasonably simple SNePS structure. If this is not the case then the 

number of user defined primitives has to be extended to accommodate the sentence. (Of course 

new primitives will also have to be used if the sentence is not representable at all). 

For instance if two people are sitting in front of a graphics terminal displaying the Adder 

Multiplier (which has been used in maintenance research, Fig. 5.1.1.7.2), and one of them asks: 

"Tell me the names of all multipliers." 



69 

part-relation 

sub-object 

sub-object. 

type 

Fig. 5.1.1.7.1: A SNePS network. 

part-relation 

type 
object 

I 
01 M 1 Multiplier 

then the other person will presumably be able to do that. Therefore one would want an NLG sys- 

tem to be able to do the same thing. Also the knowledge base should contain information on all 

multipliers in a format approximately linear in size with respect to the answer given by a person. 

This leads directly to an old idea, the implementation of a class hierarchy. (Less obvious examples 

will offer themselves naturally at later occasions). 

based on graphical deep knowledge can finally be given. 

Armed with the linearity principle a comprehensive description of the goal of NLG systems 

THE GOAL OF NLG RESEARCH: 

Given the language L of all utterances that create, describe, modify, or query a world of symbolic 
graphical representations. NLG as we want to understand it. has the following goals: 



70 

D1Ml 

DIAI 

D1M2 

DlA2 
D1M3 

Fig. 5.1.1.7.2: The adder-multiplier 

(1) To achieve asymptotic domain coverage for Graphical Deep Knowledge, such that members 
of the set of created knowledge structures, called S, relate to sentences of the language L by 
virtue of the linearity principle. 

(2) To design a generator that maps structures of S into pictorial representations. 

(3) To design a parser that maps sentences of L into structures of S. 

( 4) To design a function that generates sentences of L from structures of S. 

The parts of this goal statement are given in order of importance, so our focus is on the descrip- 

tion of correct knowledge structures for graphical purposes. The use of NLG that has been called 

before criteria/ concentrates on the parsing and language generation algorithms. 

5.1.2. The SNePS Knowledge Representation System 

5.1.2.1. - Introduction 

The SNePS semantic network processing system has been aptly described in a number of 

places [Sha79b,ShS83,ShR86J. SNePS networks are labeled directed graphs consisting of nodes 

and arcs, but not. all such graphs are legal SNePS networks. Nodes represent concepts, i. e. ent.i- 

ties that. the system can reason about. Arcs represent. non-conceptual binary relations between 

nodes. The major building blocks of SNePS networks arc propositions. This makes SNePS a 



71 

propositional network as opposed to an inheritance network like KL-ONE, NIKL, KL-TWO, 

LOOM, KRYPTON, or other members of the KL-ONE family [BFL83,BFL85,BrS85,MaB87]. 

The normal way to represent a conceptual relation is to create one node for each argument 

and one node for the relation itself. The SNePS system automatically generates an additional 

node that represents the proposition itself, i. e. a reification of the relation. This node is named by 

SNePS with a label of the form mXX, such that XX is a unique id number. Once such a proposi 

tion node is built, the user is not permitted to add any nodes under it. (The specific meaning of 

"under" will be explained shortly). 

If the user decides that the relation itself is of no interest to him, i. e. he does not expect his 

system to reason about the relation, then he may omit the node corresponding to it. So the 

semantics of a SNePS structure is not dependent on the relation node, but on the combination of 

arcs under the proposition node. In other words one can view combinations of arcs emanating 

from a common proposition node as a case frame and assign this frame a meaning. Individual arc 

labels do not have a semantics. The interpretation of case frames as the meaning carrying units in 

SNePS is based on the ideas of Fillmore's [Fil68] case grammar. This ancestorship shows in the 

treatment of missing information by SNePS. If the filler for one or more cases (slots) is not avail- 

able it is permissible to omit the corresponding slot. A structure that has a set of arc labels that 

are a subset of the labels of another structure is not a completely different case frame, but a 

reduced version adapted to the available information. This assumes that the arcs in both struc 

tures are at the same level, i. e. they are emanating from corresponding nodes. 

In graphical network representations of SNePS networks it is customary to draw proposition 

nodes above their corresponding arguments, and this is expressed by saying that they dominate the 

argument nodes. (See Fig. 5.1.1.7.1). However there is no absolute necessity to maintain the domi 

nation relation in the picture. The directionality of the arcs is sufficient to determine the proposi 

tion node. Nodes that do not dominate any other nodes are called base nodes and are used to 

express elementary ( often individual) concepts. A node that is not a base node is called a molecu- 



72 

lar node (therefore the labels of the form mXX). 

The arcs displayed in graphical representations are called "descending arcs". They point 

from proposition nodes to the arguments they dominate, or possibly from a proposition A to 

another proposition B if A expresses something about B. Arguments of propositions may them 

selves be molecular nodes that are not propositions. Such nodes are called structured individuals. 

The interpretation of a node as proposition or structured individual is the responsibility of 

the user (or the program interpreting the knowledge structures). The following rule of thumb 

helps: top level structures and structures representing SNePS rules are always propositions. Dom 

inated molecular nodes are propositions if an intensional action ("believe") is expressed about 

them, otherwise they are likely to be structured individuals. The differentiation between proposi 

tions and structured individuals corresponds to the differentiation between sentences ("The house 

is red") and attributive phrases ("The red house ... "). Therefore, when in doubt, one can interpret 

everything as a proposition, potentially loosing readability. 

For every descending arc there is an ascending arc that connects the same two nodes but 

points in the opposite direction. Ascending arcs are labeled by appending a minus sign to the label 

of the corresponding descending arc. They are not shown in network pictures, but they are neces 

sary to make connected pairs of nodes mutually accessible. Because of the universal use of anti 

parallel ascending and descending arcs, any concept in a net can be reached from any other con 

cept, a property that we consider desirable. 

SNePS is a "neat" knowledge representation system that has the whole power of predicate 

logic, and in addition features a number of sophisticated non-standard connectives, and it is possi 

ble to build rules that correspond closely to natural language terms expressing rules. This is, for 

instance, not the case for first order predicate calculus and is an implicit application of the linear 

ity principle. SNePS rules can be used in forward, backward, and bidirectional reasoning modes. 

This power is avoided by other representational systems because of its penalties in nm time 

efficiency [ChM85]. 



73 

SNePS features and the right way of reading SNePS networks will be introduced as necessi 

tated by the ideas that will be developed. However, it is important to counter some methodologi 

cal criticism that might be leveled against this modus operandi. 

The principal ideas of the SNePS system have been stable since 1971 [Sha71]. Changes to 

implementation, new host machines, new LISP dialects, and sometimes new interpretations of sub 

tle details have occurred, but the basic ideas of the system are unchanged. So the fact that 

different features of the system are introduced as necessary does not reflect the ad hoc creation of 

these features in order to deal with a specific problem, but it reflects a pedagogic attitude towards 

introducing ideas where they are needed. 

5.1.2.2. Notational Conventions for SNePS Networks 

Fig. 5.1.1.7.1 shows an example of a typical SNePS network. The nodes ml, m2, m3, m4, 

m5 represent propositions. ml expresses the fact that the object Dl is of type M3A2. m2 expresses 

the fact that the object DlAl is of type Adder. m3 expresses the fact that the object DfMl is of 

type Multiplier. m4 expresses the fact that the real-part relation holds between Dl and DIAL m5 

expresses the fact that the real-part relation holds between Dl and DlMl. An equivalent first 

order predicate calculus representation for Fig. 5.1.1 would be the following one: 

type( ml, M3A2) & object( ml, Dl) (5.1.2.2.1) 
type( m2, Adder) & object( m2, DlAl) 
type( m3, Multiplier) & object( m3, D~Ml) 
sub-object( m4, DlAl) & object( m4, Dl) & part-relation( m4, real-part) 
sub-object( m5, DlMl) & object( m5, Dl) & part-relation( m5, real-part) 

This representation is unnecessarily redundant, and we will introduce a pseudo-predicate notation 

according to the following formal scheme. Given a conjunction of a number of binary predicates 

with identical first arguments, transform the first argument into a pseudo predicate. Transform 

all binary predicates into arguments at odd numbered positions, and insert all second arguments 

at even numbered positions. In symbols: 

n 

fj p,.(a0, a;) ->ao(p1 a1 p2 a2 ... ) 
i=l 

(5.1.2.2.2) 



74 

This transformation is syntactic sugar and has no influence on the meaning of the representation 

which depends on the combination of system primitives (arcs). AB an example we will show the 

translation of (5.1.2.2.1). 

ml( type M3A2 (5.1.2.2.3) 
object Dl) 

m2( type Adder 
object D1Al) 

m3( type Multiplier 
object D1Ml) 

m4( sub-object D1Al 
object Dl 
part-relation real-part) 

m5( sub-object D1Ml 
object Dl 
part-relation real-part) 

Whenever we want to abstractly describe a class of structures we will use a case frame nota- 

tion instead of a linearized network representation. In this case dominated nodes will be replaced 

by bracketed terms describing classes, and dominating nodes will be eliminated. If it becomes 

necessary to refer to a whole structure, for instance because it is used as a sub-structure at some 

other place, then we will name the structure with a bracketed term followed by a colon. If a struc 

ture may occur in two alternative formats we will separate them by an exclamation mark. We 

will now show the previous example in case frame notation. The case frame for the fifth structure 

is a duplication of the case frame for the fourth structure and may therefore be omitted. Simi 

larly, the case frames for the first, second, and third structures a.re identical, therefore only one of 

them needs to be shown. 

type 
object· 

< device-type> 
<object-I> 

<object-2> 
<object-3> 
real-pa.rt 

(5.1.2.2.4) 

sub-object 
object 
part-relation 

Introducing a name for the first structure we get: 



75 

<membership> : 
type 
object 

(5.1.2.2.5) 
<device-type> 
<object-I> 

This representation might look like BNF notation, but it is different from it, because the pairs of 

slots and fillers may occur in any order and are not constrained by the order in which they are 

shown here. However, for each individual pair, slot and filler may not be exchanged. In other 

words (5.1.2.2.5) is identical to (5.1.2.2.6), but not to (5.1.2.2.7). 

<membership> : 
object 
type 

(5.1.2.2.6) 
<object-I> 
<device-type> 

<membership> : 
type 
<object-I> 

(5.1.2.2.7) 
<device-type> 
object 

In continuous text case frames are sometimes simply shown as lists of arc labels. In this notation 

(5.1.2.2.6) would be represented as (object type) or (type object). 

Pictures have been looked at with suspicion in parts of the scientific community. For 

instance in AI Hayes [Hay77] states that "If someone argues for the superiority of semantic net 

works over logic, he must be referring to some other property of the former than their meaning 

(for example ... their attractive appearance on a printed page)" (p. 561). Although we have seen 

some reversal of this attitude lately [Riv87], we have int.roduced above representational conven- 

tions to give a precise linear representation of the syntax of knowledge structures. 

5.1.3. Representational Constructs of Graphical Deep Knowledge 

5.1.3.1. Form Knowledge 

A number of different scientific subfields and fields have been interested in the representation 

of forms. Among these are the already mentioned computer vision, computer graphics, and 

imagery, but also solid modeling [Req80], computer aided design (CAD), and character recogni 

tion. It turns out that no representation in any of these fields satisfies the requirements for 



76 

graphical deep knowledge. 

Computer vision has developed the largest number of different form representations [BaB82]. 

All representations are however insufficient because they are not projectively adequate. At this 

point it is useful to divide the notion of projective adequacy into a narrow sense and a wide sense. 

A form representation is projectively adequate in the narrow sense if it can be fed "immediately" 

into a graphics processor which will then create a picture. A representation is projectively ade 

quate in the wide sense, if it contains a.II the information necessary to create a display, but an 

intermediate step of assembly is necessary to transform it into graphics code. "Assembly" hereby 

refers to any process requiring arithmetic or rearrangement, but not to a translation that can be 

handled by one step table lookup. 

No computer vision representation is projectively adequate in the narrow sense for a vector 

graphics system, although polyline representations [BaB82] come near to this requirement. How 

ever, a number of representations used in computer vision are not even projectively adequate in 

the wide sense. A typical example would be Fourier descriptors [BaB82]. This representation is 

based on the approximation of a curve by an infinite convergent series of trigonometric functions. 

The perfect reconstruction of the given form would require to compute this infinite sum which is 

normally impossible. Therefore Fourier descriptors are an example of a representation used in 

computer vision which does not preserve complete form information. (Fourier descriptors have a 

few nice properties though, for instance they can be formulated to be invariant to some geometric 

transformations). Computer vision representations might not be projectively adequate, because to 

be projectively adequate would inhibit their ability to solve the computer vision problem. 

Computer graphics representations a.re by definition projectively adequate in the narrow 

sense and are organized to permit efficient projection. However they usually fail at the other 

requirement for graphical deep knowledge in that they don't show deductive graphical adequacy, 

at least not in human terms. This requires further clarification. 



77 

Most graphics systems operate on primitives at the level of points, lines, arcs, and polygons. 

They do not operate on conceptual objects. Given a picture of a chair the system might know 

things about the lines that make up the chair, but not about the chair as such. Only model based 

computer graphics systems [FoD83] store interesting information about the world. (We already 

pointed this distinction out). However, we do not want to refer to a world model as a knowledge 

base and to operations on such a model as propositional reasoning. 

Our conception of knowledge, namely declarative propositional knowledge, is certainly 

different from the data structures used in model based graphics. We are hereby in line with 

Smith's knowledge representation hypothesis [Smi85]. This widely quoted ( e. g. [LeB85] ) 

definition says that 

Any mechanically embodied intelligent process will be comprised of structural ingredients 
that a) we as external observers naturally take to represent a propositional account of the 
knowledge that the overall process exhibits, and b) independent of such external semantical 
attribution, play a formal but causal and essential role in engendering the behavior that 
manifests that knowledge. 

Robins [Rob86] expresses the differences between knowledge and data in the following way. He 

says that " ... knowledge is not the same as data. Knowledge has a certain depth to it, while data 

is rather linear in nature; knowledge tends to be abstract and symbolic, and may contain rules and 

other information from which inferences may be made, while data tends to be composed of simple 

tables of attribute/value lists .... " (p. 6). 

Frijda [Fri72] characterizes human memory by four properties which Giustini [GLM78] has 

taken to mean that these properties should be exhibited by an artificial intelligence system. These 

properties are that memory has to be associative, teachable, inferential, and able to retrieve infor- 

mation given input which differs from the the structure used to learn it. 

In summary, we think that knowledge is characterized by the following attributes. (1) 

Knowledge is symbolic and propositional. (2) Concepts in a knowledge base are highly intercon- 

nected. (3) Any two concepts in a knowledge base are mutually accessible. (4) Knowledge is in an 

appropriate format for a reasoning engine that has access to it. ("Knowledge in a book locked 



78 

into a drawer is not knowledge.") (5) Knowledge is relational, with relations defined over domains 

of small dimensions. (6) Knowledge is uniform, in the sense that meta-knowledge is represented 

with the same formalism and in the same space as knowledge. 

While every form of mechanical knowledge representation is ultimately implemented as a 

data structure, the opposite does not hold, and a data structure that does not conform to (1) - (6) 

above cannot be referred to as knowledge. In this sense computer graphics systems do not exhibit 

deductive graphical adequacy, because they are not based on a knowledge representation, not even 

if they have a world model. 

Character recognition [Har72J is probably the field that most completely ignores projective 

adequacy. Many character recognition systems [KeB81] as well as word recognition systems 

[Hul85] rely on systems of features. The totally enclosed space in an "o" would be a possible 

feature to distinguish it from the open "c". Feature models are obviously not formulated for pro 

jective adequacy and fa.re poorly in that respect. The other major model of character recognition 

is template matching. Template based character recognition appears to be better for projective 

purposes, but here there is no information about parts of characters stored. Parts are a concep 

tual structuring tool that is used in human reasoning and should be contained in a graphical deep 

knowledge based representation. So templates are better in their projective adequacy but worse in 

their deductive adequacy. 

CAD systems [Ger85] and solid modeling as an integral part of it [Req80] come closest to the 

requirements of graphical deep knowledge. A solid modeler is always connected to a graphics inter 

face. Therefore it is able to draw pictures which therefore proves that it is projectively adequate. 

Some steps have been made towards deductive graphical adequacy. For instance so called con 

structive solid geometry models (CSG) of solids are based on the combination of three-dimensional 

primitives with boolean opera.tors. The combination of two primitives with "OR" and "AND" 

operations creates a representation that contains important hierarchical information, structured in 

a way close to the human reasoning process [Req80]. 



79 

Requicha [Req80] has pointed out that solid modeling systems profit from redundant 

representations. This observation has to be carried over to the realm of graphical deep knowledge. 

He notes that CSG representations support the use of a number of important algorithms, while 

surface representations are preferable for actual display creation. Therefore hybrid models are 

redundant but more powerful than simple CSG representations. 

Before presenting the approach to form representation advocated here, a short repetition of 

the requirements is helpful: 

• The representation should be projectively adequate in the narrow sense. 
• The representation should be deductively adequate; 

• The representation should be based on conceptual primitives which seem natural to the 
human observer. 

• The representation should support relations~ 'between primitives which are natural to 
humans. 

• The representation may contain redundant information. 

To fulfill these requirements a representation with the following properties is used. The 

representation consists of basic forms (icons) and asserted relations. The basic forms are (sup 

P?sed to be) meaningful to human observers. Every basic form is represented as a procedure that 

has three properties. (1) The procedure consists of calls to graphics primitives. (2) Executing a pro 

cedure of the name <name> results in the drawing of an object that is described by <name>. 

(3) The procedure name is accessible as a concept in the knowledge representation system, i.e. it 

functions simultaneously as a node in a semantic network. The representation of a basic form is 

therefore projectively adequate and also a conceptual unit. 

Relations between icons are represented propositionally. A large number of different propo 

sition types is permissible, and every type will be dealt with in its own chapter. 

The SNePS system is used in the following way to accommodate the described form 

representation. The name of every basic form in the system is a base node in the SNePS semantic 

network. The SNePS inference machine treats it as a conceptual unit and permits reasoning a.bout 



80 

it. At the same time every SNePS node is also an uninterned LISP atom4• This uninterned atom is 

accessible through a so called node-access which is an interned node of the same print-name. As is 

well known, LISP assigns a number of different cells to every atom. Franz LISP in particular, 

which has been one of the SNePS implementation languages, supplies a function cell, therefore it is 

possible to store a LISP function in the function cell of the interned node-access. This function is 

made up of calls to graphics primitives from a LISP graphics package and, if called, will create the 

picture described by the corresponding concept. 

So far forms have been explained, but nothing has been said about objects. Objects and 

forms are separate concepts, linked by an asserted proposition. This conceptual separation of 

forms and objects opens the doors to a number of knowledge representation techniques which have 

been used widely. For instance it becomes possible to associate a form with a class of objects, 

instead of a single object. Many objects can then be made members of this class. 

Before presenting the actual knowledge structures for form assertion, an additional argu 

ment for redundant representations will be derived from a concrete example. Objects have a 

number of features that people seem to realize immediately when looking at them. An example of 

such a feature is symmetry [EaL86]. The knowledge that an object is symmetrical is obviously not 

necessary in order to draw it. A representation that is projectively adequate but has no redun 

dancy would therefore lack this information. 

An NLG system asked whether a certain object is symmetrical could run a symmetry detec 

tion procedure on its form. However, this does not seem to be the case for humans, because sym 

metry is realized at a very early stage of the recognition process, indicating that symmetry prob 

ably is itself helpful in recognizing the object [Bie87]. Therefore it is justified to explicitly 

represent information about symmetry, even if this information is redundant given that the whole 

form is stored. The actual representation for symmetry will be given much later, near the end of 

this chapter. 

"Recently the internal representation of nodes has been changed lo str uct.ur es. This has no influence on the user level 
described here. 



81 

One should remember at this point that we are not concerned with solving the image under 

standing or the knowledge acquisition problem, therefore the question is not raised how symmetry 

information was extracted in the first place, or when redundant spatial information is created. All 

we are interested in is how to represent the information in a consistent and deductively adequate 

way once it is already given. 

We are finally ready to show the knowledge structure that links the concept of an object to 

the concept of its form. 

5.1.3.1.1. Individual Form 

( define form 
modality 
object) 

(build form xand 
modality logical 
object chipl) 

(5.1.3.1.1) 

(5.1.3.1.2) 

The above two list structures are commands of the SNePS User Language (SNePSUL). The 

"define" command defines the arc labels "form", "modality", and "object". This command also 

automatically defines three more arcs, namely forrn-, modality-, and object- which are inverse arcs 

to form, modality, and object. As noted before, these inverse arcs which are required by the 

SNePS system guarantee universal accessibility of every node from every other node in the net 

work and are automatically maintained without user request. By specifying the three arc labels 

form, modality, and object they become primitives of a user defined network. 

The build command creates a network structure as in Fig. 5.1.3.1.1. It links an object con 

cept "chipl" to a form concept "xand" and a modality concept "logical". Together these three 

arcs could be read as: "the object chipl has the form xand under the modality logical". In other 

words, the meaning of the structure results from the combination of the form, modality and object 

arcs. The impact of the modality arc will be explained in a separate subsection. According to the 

notational conventions established earlier, the two commands given will result in the creation of 



82 

form 

object 
modality 

logical 

Fig. 5.1.3.1.1: Object chipl has the form xand. 

the following network: 

m l] form 
modality 
object 

xand 
logical 
chi pl) 

(5.1.3.1.3) 

In the future the SNePSUL commands will be omitted and only the actual network structures 

shown. The form function "xand" that draws the icon displaying an and-gate is coded as follows: 

(def xand 
(lambda (x y) 
(setq CENTER (list x y)) 
(mapcar (function draw-wse) 
'((xplylnrel-wse O O 20 0 *b) 
(xarcrel 20 -20 0 20 -180 *b) 
(xplylnrel-wse 20 -40 -20 0 *b) 
(xplylnrel-wse O -40 0 40 *b) 
(xplylnrel-wse O -10 -30 0 *b) 
(xplylnrel-wse -30 -30 30 0 *b) 
(xplylnrel-wse 40 -20 30 0 *b))))) 

(5.1.3.1.4) 

The def-statement is the Franz LISP method to define a function. The function defined is named 

"xand" and consists mostly of calls to the two graphics primitives xarcrel and xplyhuel-wsc. xar- 

ere! draws an arc and xplylnrel-wse a polyline (a train of line segments) respectively. The picture 

created is shown in Fig. 5.1.3.1.2. 

Abstracting from the given example a syntactic description of an individual [orm would con- 

sist of the following case frame: 

form 
modality 

<form> 
<modality> 

(5.1.3. ! .. 5) 



83 

Fig. 5.1.3.1.2: An AND gate. 

object <object> 

We will supply a descriptive semantics for every given case frame. (5.1.3.1.5) represents the pro 

position that the object <object> has the form <form> under the modality <modality>. 

This structure can be used to answer questions like "What is the form of <object>?" or for 

identifying all objects that; have the form <form>, or for asserting that some agent believes in 

the fact that <object> has the form <form>. Assuming our model of an abstract graphics 

machine receives the request to draw the object <object> under the modality <modality> and 

at a location (x, y ), then the function denoted by <form> is applied to the arguments x and y. 

The location (x, y) will be the location of a privileged point of the object <object> called the 

reference point. How x and y can be determined, their meaning relative to the screen and the 

nature of the reference point will be explained below. 

Two notes about the epistemic status of the syntactic variables <object>, <Tor m >, and 

< modality> have to be made. (I) If one of these variables is used again later on in the context of 

this dissertation, even if it is modified by an integer number (e.g. <object!>, <form-I>), it. 

refers to the same syntactic variable as defined here. (2) It. has been pointed out repeatedly in the 

literature (e.g. [McD81] ) that one cannot, rely on a label to express a meaning. This was said in 

the context of a computer processing these labels, but it, applies as well to semantics specifications 

as given here. Therefore we will not hesitate to give a semantics specification like "<modality> 

represents a modality". After all, we could have used a term like <gOOOI > as a syntactic v a.ri- 



84 

able. Nevertheless we will strive to use self documenting names for syntactic variables, and to 

supply additional information about them, wherever possible. 

<form> stands for the concept of a form, i.e. of an entity that can be visualized by a per 

son, and that can be projected by the abstract graphics machine. <object> denotes the concept 

of an individual object. <modality> stands for the concept of a modality, whereby a modality 

can best be understood as one of several possible "views" of an object. We will devote the whole 

next section to modalities. 

5.1.3.1.2. -T'he Problem of Display Modalities 

The association of modality information with other representational structures has the fol 

lowing significance. Objects like gates of electronic circuit boards usually show up in different 

types of technical drawings. Wire plans that contain logical structures of circuits are one common 

form of representation. Another common form are physical representations. In general the form 

of an object in its logical representation is different from the form in its physical representation. 

Fig. 5.1.3.1.2 shows the representation of an AND gate in a wire plan. The three short line seg 

ments signify two input wires and one output wire. In reality an AND gate would have at least 

two more wires which are necessary for power supply, and in order to achieve an even number of 

legs a sixth unused pin. So a physical structure would look like Fig. 5.1.3.1.3. 

Fig .. 5.1.3.1.3: The physical structure of an AND gate. 



85 

Commercially available AND gates usually come 111 dual-in-line packages, with four gates 

per package, so Fig. 5.1.3.1.3 is still a simplification of a realistic structure. This introduces the 

interesting problem of logical parts that do not correspond one to one to physical parts. 

Even ignoring these additional problems it is clear that a single object will have different 

forms and different positions if displayed logically or physically. We refer to these two different 

ways of display as the logical (= functional} display modality and the physical(= structural} display 

modality. Any assertion in the network therefore has to be qualified by the modality for which it 

is valid. 

Example: 

ml( object 
form 
modality 

gate-I 
andgate 
logical) 

(5.1.3.1.6) 

One could raise the question whether other display modalities might exist, and in fact this is the 

case, even in a very limited domain like circuit board display. Components like coils create mag 

netic fields which are larger than they are themselves. Other components (most notably other 

coils) might be sensitive to magnetic fields. A display of a circuit board in the magnetic modality 

would therefore be a variation of the physical display, with the following changes: 

• Components creating a magnetic field will be displayed with a form that shows an approxi 

mation of the boundaries of their respective magnetic fields. This will result in showing 

them larger than they really are. It might even result in overlap between such components. 

• Components sensitive to magnetic fields will be displayed in their correct sizes. 

• Components that are neutral with respect to magnetic fields will not be displayed at all. 

Another comparable display modality is the thermal modality. Such a display would show 

all the heat sources and all the heat sensitive components in two different colors, ignoring all other 

components. In general we will permit all the representation systems that were introduced in 

chapter 3.3 as additional modalities. 



8B 

5.1.3.1.3. Modalities versus Partitions 

Fig. 5.1.3.1.4 shows 4 case frames in two different modalities. One question that arises 

immediately is whether the representation with modality arcs is not redundant, and whether some 

sort of partitioning of the network [Hen79] would not be more appropriate, as shown in Fig. 

5.1.3.1.5. It will now be argued that this view differs only graphically from the view in Fig. 

5.1.3.1.4. 

In SNePS every arc connecting two nodes has a converse arc associated with it which con 

nects the same two nodes, however in the opposite direction. The label of the converse arc is ident 

ical to the label of the original arc, except for a minus (-) appended to the name. Normally the 

object 

form. 

object 

object 
modality 

Fig. 5.1.3.1.4: Four case frames in t.wo modalities. 



87 

object 
form 

object 

function 

object 

structure 

Fig. 5.1.3.1.5: A partitioned representation of modalities. 

user is not confronted with this arc at all, not in build operations, not in screen displays and not 

in drawings of the network. Nevertheless this converse arc makes every node in the network acces 

sible from every other node and is used in knowledge base retrieval operations [Sha79b]. 

In Fig. 5.1.3.1.6 the same picture is shown as in Fig. 5.1.3.1.4, however the modality arc is 

now replaced by the inverted arc modality-. Also the graphical layout. has been changed such that. 

a structure similar to Fig. 5.1.3.1.5 is created. In short., it becomes clear that the modality 

mechanism is isomorph to a partitioning of the network into separate areas, and although Fig. 

5.1.3.1..5 seems more intuitive to some people, Fig. 5.1.3.1.4 captures the intent and the implemen 

tation equally well. As soon as several independent part.it.ionings are introduced, diagrams of t.he 

form of Fig. 5.1.3.1.5 often cannot be maintained any more, while diagram,-; like Fig. 5.1.3.1.4 can 



88 

object 

form 

object 

object 

modality- 

Fig. 5.1.3.1.6: Alternative representation of 5.1.3.1.4 

be extended easily. Besides that, using modalities to achieve network partitioning is more parsi 

monious than to invent a completely new structural building block called a "partition". 

5.1.3.1.4. Class Form with n Step Inheritance 

As mentioned before, an object might inherit. a form along a class hierarchy. Unfortunately one 

needs to present forms before classes to show the use of classes by a graphics processor, and classes 

before forms t.o give the descriptive semantics for form inheritance. \Ve have decided to indicate 

t.he use of class structures in this section, but. a scparat.c section (5.1.3.5) will be reserved for t.h e 

formal introduction of classes. 



89 

Syntax: 

object <object> 
type <class> 
modality <modality> 

sub-class <class> 
class <class-2> 
modality <modality> 

sub-class <class-2> 

class <i class-n > 
modality <modality> 

class <class-n> 
form <form> 
modality <modality> 

(5.l.3.l.7a) 

(5.l.3.l.7n) 

Semantics: 

(5.l.3.l.7a) describes a simple class membership, meanmg that <object> is a member of 

<class> under the modality <modality>. (5.l.3.l.7n) asserts that every member of the class 

<iclass-n > that does not have its own form has the form <form> under the modality <modal- 

ity>. The interm~diate structures will be discussed in the section on class hierarchies. <class> 

stands for the concept of a class, i. e. an entity that is by itself not displayable, but which has 

members" that are (potentially) displayable. All other syntactic variables in the above structure 

have been defined in the previous sections. 

Assuming that there is no other network structure present that could have an influence on 

the display of <object>, then we can summarize the procedural effect of above structures in the 

following way. If the structure (5.1.3.1.7) is asserted, and the structure of (5.1.3.1.5) is not 

asserted, when requested to draw the <object> at location (x, y), apply the function <form> to 

x and y. 

Example Network: 

5 We are not interested in empty classes or infinite classes. 



90 

m l] object chip2 
modality logical 
type c-d2) 

m2( sub-class c-d2 
modality logical 
class ci-d2) 

m3( sub-class ci-d2 
modality logical 
class cf-d2) 

m4( class cf-d2 
modality logical 
form xor] 

(5.1.3.1.8) 

(5.1.3.1.9) 

(5.1.3.1.10) 

(5.1.3.1.11) 

The node ml represents the membership of chip2 in the class c-d2. The node m2 represents the 

proposition that c-d2 is a sub-class of the class ci-d2. The node m3 represents the assertion that 

ci-d2 is as sub-class of cf-d2. Finally the node m4 stands for the proposition that all members of 

the class cf-d2 have the form xor. All these assertions are valid for the logical display modality 

only. (Side note: the letter x is used to indicate a concept that also figures as a form primitive. 

An XOR gate would have the concept name xxor. Similarities with the terminology of the X win 

dow system are purely accidental). The nodes m2 and m3 are available for subclass and member 

ship reasoning. 

An example of a class form without intermediate steps would look as follows: 

m5( object chip3 
modality logical 
type nand) 

m6( class nand 
modality logical 
form xnand) 

(5.1.3.1.12) 

(5.1.3.1.13) 

A drawing request for object chip3 with a requested display modality "logical" would result in the 

execution of the function xnand which will draw a nand-gate. m5 expresses the class membership 

of chip3 in the class xnand, and m6 represents the proposition that a.II members of the class nand 

have to be displayed using the form corresponding to the concept xnand. 



A few final notes on forms follow now. All forms in this investigation are assumed to be 

rigid. No attempt has been made to deal with "prototypical forms" as found by Rosch for base 

level categories of objects [Ros78]. Forms for classes will be mentioned again in the chapter on 

classes (5.1.3.5). Most objects in the real world are constructed from parts, and we will devote a 

chapter to this subject (5.1.3.4). 

5.1.3.2. Positions 

5.1.3.2.1. Requirements for Position Representations 

Position information always relates to a reference frame. How can we represent a reference 

frame in a knowledge representation system? After having achieved this, how can we then 

represent positions that refer to this reference frame? 

People who talk about a graphics display might either talk about the objects in the world 

that are depicted, or about the icons on the screen. Assuming a three dimensional world, displays 

have to be created by projection on a plane. This constitutes a third space that a knowledgeable 

user might want to refer to, We would like to express positions in all these spaces with a unified 

mechanism. 

A major problem in position specification is that people use two different methods to refer to 

space. They either refer to positions based on numerical coordinates, or they use what we want to 

call "fuzzy" or "conceptual" coordinates. Two examples of such conceptual coordinates would be 

"left" and "near". So a representation is necessary that captures numerical coordinates as well as 

conceptual coordinates in a unified framework. Numerical coordinates themselves might refer to 

different types of reference frames. Besides cartesian coordinates there are polar coordinates in 2- 

d, and cylindrical and spherical coordinates in 3-d. Whatever knowledge structure one uses, it 

should not be necessary to make a commitment concerning the coordinate type. 



92 

Another problem in interpreting spatial utterances is that people use absolute and relative 

position specifications. We argue that there are no absolute positions, therefore it is necessary to 

express absolute positions with the same mechanisms as relative positions. What was said before 

about two types of coordinates carries over to absolute positions. "Left" and "near" can be con 

sidered as relative conceptual coordinates, but terms like "top" or "center" express fuzzy absolute 

coordinates. Therefore, whatever structure is introduced to describe fuzzy relative coordinates 

must also express fuzzy absolute coordinates. 

Although it was stated that we do not insist on a redundancy free representation for GDK, 

we would still like to find ways to eliminate repetitive items from the knowledge base, if we can 

find a well defined and algorithmic method to-recover this information. Two accepted KR candi 

dates for such knowledge economy are inheritance and default assumptions. We would like to find 

a knowledge structure for position representations that lets us make use of these methods in a way 

that agrees with cognitive ideas about object representation. 

Another requirement that we want to raise is that our representation should help in identify 

mg spatial invariants and, more importantly, describe positions in a way that maintains these 

invariants. This is an interesting problem because ranges of size ratios seem to be important in 

object recognition as well. as in practical graphics applications. A good example for such a graph 

ics application is the use of a viewport (window) on the viewing surface of a work station. Win 

dow managers usually permit to relocate and scale windows, but the result of scaling a window 

down is most often to limit the physical range of the document that is viewed in the window 

instead of scaling the window appropriately together with its contents. 

An interesting language related problem is the use of terms like "behind" even when refer 

ring to a display of 2-d icons. How can a position representation sensibly interact with a reference 

frame representation to decide a.bout the meaning of such a term, and how can it do this without 

keeping track of complete 3-d information? 



93 

\;Ve will use the next section of this chapter to discuss all the problems that are connected 

with reference frames. After that we will present our solutions for the other problems mentioned 

in this section. 

5.1.3.2.2. Reference Frames 

In understanding utterances about spatial relations the identification of a correct reference 

frame is often the first problem that has to be solved [Son76]. Computer vision research also has 

been looking at the problem of reference frame identification in some detail [Pin84]. Questions 

have been raised about the correct type of coordinate system, as well as about the correct handed 

ness of the coordinate axes. 

For NLG the problem of reference frame identification represents itself in the following 

manner. The screen that a person looks at naturally induces a coordinate system with axes paral 

lel to the screen edges. There are a few reasonable choices for the center position, and we will 

assume a privileged screen coordinate system, having a horizontal right pointing x axis intersecting 

a vertical upward pointing y axis in the leftmost lowest pixel on the screen. A person may then 

use screen coordinates to describe the location of an object. Unfortunately screen coordinates 

alone are an insufficient device for NLG. 

A normal graphics device has a certain addressing range. Typically one has pixels from O to 

1024 in the horizontal direction, and from O to 800 in the vertical direction. If a person refers to a 

position which is beyond this range, for instance by using negative coordinates, she makes it clear 

that she is not interested in screen coordinates, but in plane or world coordinates. So reference 

frame identification means to determine the relation between the world coordinate system and the 

screen coordinate system. 

To project an object of the world onto a screen two conceptual steps are necessary. First a 

projection plane is selected, and the object is projected onto the plane with beams orthogonal to it. 

Then an area on the projection plane needs to be selected and mapped onto the screen or onto a 



94 

viewport6 on the screen. 

The previous paragraph implies a number of different conceptual objects that we are operat 

ing with, and which therefore deserve consideration for being represented in the network. There 

can be several different world coordinate systems. One world coordinate system can be projected 

on several different projection planes. Although we have assumed a privileged screen coordinate 

system, we can nevertheless not prohibit the user to think in terms of a screen coordinate system 

that divides the given space into four equally sized quadrants. Because of the different "seman 

tics" of plane and screen coordinates we need to associate each coordinate system with its type. In 

order to compute the projection from a world coordinate system to a projection plane we need to 

represent the plane in the world coordinate system. Given a projection plane, there might be 

different coordinate systems in it. For instance one might want to describe the plane with a carte 

sian or a non-cartesian coordinate system. So it is necessary to associate each coordinate system 

with a type tag. To permit arbitrary names for the axes, which is necessary if there are several 

systems of the same type, we need to give the correct order for the axes. Sometimes somebody 

wants to conceptualize one projection plane with two different types of coordinate systems, e. g. 

one cartesian, and one non-cartesian. In this case one plane has to be associated with two different 

coordinate systems. For the second step of display generation we might want to consider to 

represent the window that is projected, and the viewport it is mapped into, or alternatively we 

might want to talk about the scale factor and the shift vector that performs the necessary coordi- 

nate transformation. 

For the first step of projection we will now show the most general possible conceptualization 

represented with case frames. First the representation of a coordinate space. 

Syntax: 

<space-description> 
space 

(5.1.3.2.1) 
<space-descriptor> 

6 It is now customary to refer to an area on the screen of a terminal as a window. Strictly speaking this is wrong, the 
correct term is viewport. 



95 

space-type <space-type> 

Semantics: 

The space denoted by <space-descriptor> is of the type <space-type>. <space-descriptor> 

denotes any concept of a coordinate space. <space-type> is one member of the set { world, plane, 

screen}. This definition does not make any statements about the coordinate system used in 

<space-descriptor>. 

Syntax: 

<coordinate-system> 
space 
coord-sys 
coord-type 
first-axis 
second-axis 
third-axis 

(5.1.3.2.2) 
<space-descriptor> 
< coord-sys-descriptor > 
< coord-type > 
<axis> 
<axis-2> 
<axis-3> 

Semantics: 

The coordinate system < coord-sys-descriptor> represented by an atomic node is resident in the 

space <space-descriptor> and is of the coordinate type < coord-type » and has the three axes 

( <axis> <axis-2> <axis-3>) in exactly this order. <space-descriptor> denotes any concept 

of a coordinate space. <coord-sys-descriptor> denotes any concept of a coordinate system. 

<axis>, <axis-2>, and <axis-3> denote concepts of coordinate axes. <coord-type> is one of 

the atomic nodes { cartesian, polar, cylindrical, spherical}. <axis> will be interpreted as an X 

axis, if the <coord-type> is cartesian, and as an R axis otherwise. <axis-2> will be interpreted 

as a Y axis if <coord-type> is cartesian, and as a <P axis otherwise. <axis-3> will be inter 

preted as Z axis, if <coord-type> is cartesian or cylindrical, ignored if it is polar, and interpreted 

as a r axis otherwise. If <space-descriptor> is defined as a two dimensional space by its 

<space-description>, then the third axis will be ignored. We will consider the origin of the coor- 

dinate system as its reference point, therefore any reference to the position of the coordinate sys- 

tern is a reference to its origin. 



96 

Having shown methods to define a space and a coordinate system in it, it becomes possible to 

specify a world coordinate system as well as a plane coordinate system for projection purposes. To 

permit the computation of a projection we need to represent the plane in the world. One can 

represent the plane coordinate system by a vector to its origin and two vectors in the plane, denot- 

ing the directions of the plane coordinate axes. The plane itself is then spanned by its axes. Alter- 

natively one can represent the plane independently of its coordinate axes, and represent the axes 

themselves with the same three vectors. The second representation is redundant, something that 

does not disturb us, as repeatedly noted," and we will argue that it is a conceptually better 

representation. 

Given- that we permit one plane to have several coordinate systems, it becomes clear that the 

plane is on a lower level in the ontology that we are designing than the coordinate system embed- 

ded in it. It is therefore unnatural to define the plane by means of the higher concept of a coordi 

nate system in the plane. We will therefore prefer the second representational solution. A good 

way to represent a plane in a cartesian coordinate system is by giving its intersections with the 

three coordinate axes. The three vectors that describe the plane coordinate system can be 

expressed as triples of numbers with units. 

We will not show either one of these two structures, because in this investigation only a few 

special purpose positions of planes and plane coordinate systems will be used, and the general pur 

pose representations are not necessary. We will also assume without loss of generality that all 

world coordinate systems have axes parallel to the direction of gravitation designated as the Y 

axis. 

For notational purposes we will refer to world coordinate axes as X, Y, and Z, to plane coor 

dinate axes as xp, Yp, and to screen coordinate axes as x and y (See Fig.5.1.3.2.1). More precisely, 

x and y are used generically or with reference to the privileged screen coordinate system. The 

discrimination between these two choices will always be possible by context. In the program the 

7 Purists may eliminate appropriate components from the vectors. 



y 

z 

g7 

WORLD 

PLANE 

X 

Fig. 5.1.3.2.1: Three different coordinate systems. 

names of coordinate axes will be identical to the concept labels for them, and these, as we have 

shown, can be randomly chosen and asserted with the <coordinate-system> structure. 

The following positions of projection planes relative to world coordinate systems will be per 

mitted. (1) X parallel to xP and Y parallel to yr; this will be called a "front view". (2) X parallel 

to x,, and Z parallel to yr; this will be referred to as a "top view". (3) X antiparallel to xP and 

Y parallel to yP; this is a front view with leftness defined by the computer. (4) X antiparallel to 

xP and Z para.lie! to y,,; this is a top view with leftness defined by the computer. 

The reasons for these choices are as follows. It. has been stressed repeatedly that this work 

only concerns 2-dimensional NLG. Nevertheless it turns out. that. people often look at a 2- 

dimensional diagram with a preconception that this is really a projection of a 3-dimensional world. 

Imagine a screen with a vertical arrangement of two circles (see Fig.5.I.;3.2.2). If one assumes that 

this scene represents a front-view, then one circle is clearly above the ot.her circle. But, if a person 

looks at the diagram as a map and at. the t.wo circles as two trees and pictures herself "below" the 

lower circle, t.h en she will think of "upper" circle as being "behind" the lower circle! So some 



98 

0 

0 

Fig. 5.1.3.2.2: An arrangement. of two circles can be described in two ways. 

natural language utterances can only be interpreted if one starts with the idea of a 3-dimensional 

world coordinate system. Luckily people do not seem to assume arbitrary projection angles, so it 

will be sufficient for us to use (1) and (2). Interestingly, if one does not want to specify "behind 

ness" by concrete(= numeric) terms, the world coordinate system is not necessary at all, and one 

can talk about one object being behind another object even in reference to a screen coordinate sys 

tem! 

Choices (3) and (4) are due to the ambiguity of the terms "left" and "right" in conversations 

of two agents facing each other. Two dimensional coordinate systems are traditionally drawn such 

that. the negative half axis corresponds to the left hand of the viewer, and the positive half axis to 

the right hand. Because a person could imagine that the computer is "looking at. the screen" from 

behind, she might, be tempted to interpret. the term "left." as seen from the computer. This 

implies a reverse assu m pt.ion about, the x axis, which corresponds to a mult.iplication factor of -1. 

Therefore the x axis becomes an t.ipnrallcl to the X axis. 



99 

The choice of the vector from the center of the plane coordinate system to the center of the 

world coordinate system as well as the mapping from an area on the projection plane to an area. 

on the screen is of little importance from the knowledge representation point of view. The reason 

for that is as follows. Under normal circumstances NLG wants to display an object or a group of 

objects. This is different from "normal" computer graphics, where an area in the world (the win 

dow) is specified and mapped into a viewport on the screen. 

An NLG user rather expects the program to find its own window that includes all the objects 

he wants to see, and- map it correctly into a selected viewport. The necessary translation factor 

and the necessary shift vector are dynamically adapted at every single display request. In this 

computation the vector from the .center of the plane coordinate system to the center of the world 

coordinate system functions only as an "uninteresting" constant. Choosing a vector orthogonal to 

the plane eliminates this constant. Note that our assumptions are still more rigid than e. g. 

Hinton's [Hin79] opinion that in vision reference frames might not have a center at all, just a set 

of preferred directions. 

We will now present the knowledge structure that covers all the projection choices that we 

have considered interesting. 

Syntax: 

<projection> (5.1.3.2.3) 
coord-sys-w 
coord-sys-p 
view 
leftness 

< coord-sys-descriptor > 
< coord-sys-descriptor-2 > 
<top-or-front> 
<user-or-system> 

Semantics: 

The case frame (5.1.3.2.3) describes a projection. It asserts that a projection from the coordinate 

system < coord-sys-descriptor > to the (plane) coordinate system < coord-sys-descriptor-2 > is 

done such that the following holds true. (a) The origins of the two coordinate systems a.re con 

nected by a vector orthogonal to the plane. (b) The plane is located such that the projection 



100 

amounts to a <top-or-front> view. The only values that can be taken on by <top-or-front> 

are "top" and "front". In other words, for a front view the projection plane is parallel to the 

plane defined by the [X Y] plane, and for a top view the projection plane is parallel to the plane 

defined by the [X Z] plane. ( c) The x axis in the plane is oriented such that a lateral term ("left") 

is interpreted from the view of <user-or-system>. The only values that can be taken on by 

<user-or-system> are "user" and "system". It is permissible to omit the slot containing 

< coord-sys-descriptor >. In that case the <view> structure is used only to interpret fuzzy 

natural language terms. 

Without such an assertion the following questions would be meaningless to the system: "Do 

you mean left for me, or left for you"?" and: "Is this a top view or a front view?". No other possi- 

ble projections than the ones derived by combining "top" or "front" and "user" or "system" are 

permitted. 

Above structure has the following effect on display requests. If required to display an object 

A "behind" an object B, and <top-or-front> is "top", then A will be displayed vertically above 

B. If the view specified is "front" then A will be displayed at the same location as B, such that B 

is drawn later and overdraws A. "In-front", "above" and "below" are interpreted analogously. 

If required to display an object "at the left", and <user-or-system> is "user" ("system"), then 

the object will be displayed in the left ("right") area of the screen seen from the user's point of 

view. 

Example: 

ml( coord-sys-w world-I (5.1.3.2.4) 
coord-sys-p plane-2 
leftness user 
view front) 

ml asserts that projections from world-I to plane-2 will be clone such that a front view is 

achieved, and such that the term left, is defined according to the user's sides. (5.1.3.2.4) 

exemplifies the default assumption that we will make in most of the rest of this dissertation. 



101 

5.1.3.2.2.1. Concrete Units in Reference Frames 

Sizes and distances in the world will be specified in units like "inch" or "centimeter". Sizes 

on a graphics terminal are device dependent and specified in pixels. In order to correctly map 

from world units to pixels the system must know how many pixels correspond to one unit of 

length. To permit one knowledge base to work with several different devices it is necessary to 

include the device in the case frame. 

Syntax: 

unit 
pixels 
device 

<unit-name> 
<pixel-number> 
<device-name> 

(5.1.3.2.5) 

Semantics: 

A unit <unit-name> is graphically represented by drawing <pixel-number> pixels on a device 

<device-name>. <unit-name> is the concept of a linear measurmg unit. <pixel-number> 

stands for the concept of an integer number. It is considered to be a special case of <value> (see 

Section 5.1.3.2.3). < device-name> stands for a node that represents the current graphics device. 

Any size specification in a unit like inch has to be transformed, using this mapping, to compute 

the correct size of pixels on the screen. 

5.1.3.2.2.2. Fuzzy Units in Reference Frames 

In natural language, descriptions of distances are usually given by people in terms of expres- 

sions like "far" or "near".· These expressions are highly ambiguous. If a person A asks a person B 

whether it is far to the city hall, and the person B replies "yes" then we don't know anything 

about the actual distance. If A is sitting in a car then the term "far" will obviously have a 

different meaning from the case where A is walking on the sidewalk.8 But even the case of the per- 

8 We ignore other sources of ambiguity, like "of which city?" 



102 

son on the sidewalk has to be differentiated. For a jogger a distance of two city blocks might be 

considered near, while for an old person with a walking stick the same distance is quite far. 

The ambiguity of spatial distance terms is well known, and the use of norms to describe typ 

ical sizes has been reported in the linguistics literature [Bol77]. We will interpret the meaning of 

the terms "near" and "far" as a fixed ratio of the available space defined by the screen ( or 

viewport) and the position of the reference object. 

5.1.3.2.2.3. Modalities Revisited 

At this point it becomes necessary to add a short note about the relation between modalities 

and spaces. Display requests are given by asking for an object. However this object might exist in 

several different spaces, and each one of these spaces might be projected onto several different 

planes. So therefore it would be necessary to specify an object together with a space. 

We have found that the only common situation where one object occurs in two different 

spaces is when the spaces are conceptually different, like a logical and a physical space. Also pro 

jecting one space on two planes is useless under the limiting assumptions we have made about pro 

jection planes. If the two planes are orthogonal, then, because we are dealing with 2-d icons, one 

of the planes will show only line segments. If the two planes are parallel, then the two projections 

will only differ by an "uninteresting constant". The effect of this constant will be eliminated by 

the following window to viewport mapping. Therefore it is sufficient to use modalities to index the 

correct display. 

The other alternative would be to make the modality part of the <space-description> case 

frame. But that would require e. g. forms to be defined with reference to a space, a quite unna 

tural solution. \Ve will therefore use modalities as defined earlier on. 



103 

5.1.3.2.3. The Representation of Positions 

Positions are the most complex phenomenon m graphical deep knowledge. Nevertheless it 

turns out that one can get by with a single structure to represent every possible case. In this sec- 

tion this overarching representational structure will be discussed. First we have to introduce the 

representation of a measurement which consists of a value and a unit. 

Syntax: 

<linear-measure> (5.1.3.2.6) 
value <value> 
unit <unit> 

Semantics: 

<linear-measure> describes a measurement, such that <value> is the value and <unit> is the 

unit of the measurement. <value> may be any numerical value or an element of a small set of 

conceptual values, namely { left, right, above, below, near, far, behind, in-front}. We will refer to 

numerical values as "concrete", and to conceptual values as "fuzzy". <unit> may be any unit of 

length measurement, including one of a small set of conceptual units, namely { left-right, above 

below, near-far, behind-front}, or it may be the concept of an object used as a unit (see section 

5.1.3.2.9.1). 

Syntax: 

<angle-measure> 
value 
unit 

(5.1.3.2.7) 
<angle-value> 
<angle-unit> 

Semantics: 

An < angle-measure> consists of an <angle-value> and an <angle-unit>, such that <angle- 

value> is any number9 and <angle-unit> is any measuring unit for angles, like degrees or r adi- 

0 More precisely <angle-value> stands for a node that represents the concept of a number that can specify an angle. 
We will somewhat relax the rigor of our specifications. 



104 

ans. 

In the specification of a position we will make use of linear as well as angular measures, therefore 

we define the following alternative. 

Syntax: 

<measure> (5.1.3.2.8) 
<angle-measure> ! <linear-measure> 

Later on we will make use of an area. measure, so we include here. 

Syntax: 

<area-measure> 
value 

(5.1.3.2.9) 
<area-value> 

unit <area-unit> 

Semantics: 

An < area-measure > consists of an <area-value> and an <area-unit>, such that <area. 

value> is any number or one of the fuzzy values { small, large}, and <area-unit> is any concrete 

measuring unit for areas or the conceptual unit small-large. 

vVe now need to assign a direction to a measurement. 

Syntax: 

<component> (5.1.3.2.10) 
direction 
measure 

<axis> 
<measure> 

Semantics: 

<component> describes an oriented measure, such that <a.xis> is an axis of a. known coordinate 

system, and <measure> is a measure as defined previously. <axis> may refer to a linear axis, 

as well as to a conceptually bent axis, as they are made use of in non-cartesia.n coordinate systems. 

Syntax: 



<vector> 
coord-sys 
component 
component 
component 

· Semantics: 

105 

(5.1.3.2.11) 
< coord-sys-descriptor > 
<component> 
<component-I> 
< component-2> 

(5.1.3.2.11) describes a <vector> that is defined in a coordinate system <coord-sys-descriptor> 

and that consists of three components <component>, <component-I>, and <component-2> 

which are all < component c-s. In the most general case this vector will be defined in a 3-d space. 

However, as noted before, it is permissible to omit irrelevant or unavailable information, therefore 

a 2-d vector will be represented by omitting the slot for < component-2 >. 

Syntax: 

<object-position> : 
object 
relpos 
rel-to 
modality 

· Semantics: 

(5.1.3.2 . .12) 
<object> 
<vector> 
< object-or-co> 
<modality> 

<object> denotes an object concept. <object-or-co> denotes an object concept or a coordinate 

system concept. <object-position> describes the position of an object <object> by supplying a 

reference object <object-or-co> and a vector <vector> that has its starting point in the refer 

ence point of the reference object <object-or-co> and its ending point in the reference point of 

<object>. The <object-position> specified this way is valid for the modality <modality> 

only. 

Syntax: 

<class-position> : 
class 
relpos 

(5.1.3.2.13) 
<class> 
<vector> 



106 

rel-to 
modality 

<object-or-co> 
<modality> 

Semantics: 

The <class-position> case frame defined in (5.1.3.2.13) defines the relative position for a class 

<class>. Every <object> that is a member of <class> and that does not own a position by 

virtue of an <object-position> case frame and that does not inherit a position from a sub-class of 

<class> has its position assigned by the <class-position> case frame. The position is specified 

by the vector <vector> positioned such that it starts in the reference point of <object-or-co> 

and ends in the reference point of <object>. The <class-position> is only valid for the modal- 

ity <modality>. 

Syntax: 

<position>: (5.1.3.2.14) 
< class-position> <object-position> 

Semantics: 

A position description <position> is either a <class-position> or an <object-position>. The 

exclamation mark denotes a BNF-like "or", but remember that this and all previously shown 

structures are not BNF structures, because slot-filler pairs may be arranged in any desired order. 

We will now represent an <object-position> in its expanded form by replacing syntactic vari 

ables by appropriate sub-structures. 

<object-position> : 
object <object> 
relpos coord-sys 

component 

(5.1.3.2.15) 

< coord-sys-descriptor > 
direction <axis> 
measure value <value> 

unit <unit> 
component direction < axis-2 > 

measure value < value-2 > 
unit <unit-2> 

component direction <axis-3> 
measure value < value-3 > 



107 

unit <unit-3> 
rel-to <object-or-co> 
modality <modality> 

(5.1.3.2.15) represents a proposition that, in modality <modality>, <object> is <value> 

<unit>s in the <axis> direction and <value-2> <unit-2>s in the <axis-2> direction and 

<value-3> <unit-3>s in the <axis-3> direction away from the position of <object-or-co> m 

the coordinate system given by < coord-sys-descriptor .>. 

Given a display request for <object> in the modality <modality>, <object-position> 

can be used to derive the position of <object>, if the position of <object-or-co> and the valid 

reference-frame < coord-sys-descriptor > are known. 'vV e will now show a number of examples that 

demonstrate how this general purpose position description can be used to solve the representa- 

tional problems that we have set out to attack (see Section 5.1.3.2.1). 

· 5.1.3.2.4. Concrete versus Fuzzy 2-d Descriptions 

One of the problems that we have set out to solve was to create a representation that will 

capture concrete as well as fuzzy spatial descriptions. The following example shows < object 

position> for a front view of the object gate-1 positioned relative to the object transforrner-d in 

world-I. 

·the modality "function". Coordinates are concrete, i. e. numbers. The valid coordinate system is 

m6( object 
relpos 

gate-1 
m5( coord-sys 

component 
m4( direction 

measure 

component 
m3( direction 

measure 

rel-to 
modality 

transformer-4 
function) 

(5.1.3.2.16) 
world-I 

X 
m l] value 1.2 

unit inch)) 

y 
m2( value 0.8 

unit inch))) 

We may read this example by saying that gate-I is 1.2 inches to the right and 0.8 inches above 



108 

transformer-4 in the coordinate system world-1 under the modality "function". Due to space limi 

tations the slot name "component" has been placed in a line by itself. This has no influence on 

the meaning of the structure. Note that the Z coordinate has been omitted, according to our ear 

lier assumption that irrelevant information may be omitted. Also note that the names X and Y 

are purely mnemonic. The meaning is assigned to them in an appropriate reference-frame asser- 

tion. 

Now, as an alternative we will present an example for a fuzzy relative position representa- 

tion. 

m8( object 
relpos 

rel-to 
modality 

gate-1 
m7( coord-sys 

component 
m4( direction 

measure 

(5.1.3.2.17) 
world-1 

X 
ml( value 

unit 
left 
left-right)) 

switch-8 
function) 

We are assummg a special fuzzy unit "left-right" that has only two values, namely "left" and 

"right". This choice makes perfectly sense for the following reason. Consider an x axis with grid 

points at all integer numbers. If one is required to describe the position of a point on this axis and 

the point does not match any of the grid points, then the reasonable strategy used by most people 

is to describe the point by the grid point nearest to it. This is exactly what is done in the previous 

structure, except that the grid consists of only two points and the distances of the two points from 

the origin are not fixed. 

Four additional fuzzy relative positions can be derived by combining measures on the left- 

right axis with measures on the above-below axis. The following structure represents "above- 

left". 

m8( object 
relpos 

gate-1 
m7( coord-sys 

component 
m4( direction 

measure 

(5.1.3.2.18) 
world-I 

X 
m l] value left 



109 

component 
m3( direction 

measure 

rel-to 
modality 

switch-8 
function) 

unit left-right)) 

y 
m2( value above 

unit above-below)) 

We will not permit combinations of behind-front and left-right, i.e. spatial terms like "in-front 

left", therefore we will not represent these combinations, although they are clearly representable 

in the given case frame. 

5.1.3.2.5. Polar Coordinates 

We have required that non-cartesian coordinates should be a possible representational alternative 

for positions. In this section we will show that our general purpose representation for positions 

can capture polar coordinates as well. Polar coordinates describe the position of a point by a dis 

tance from the origin and the angle between the vector from the origin to the point and the R-axis 

of the system. Polar coordinates are assumed to describe the position of points in the plane only. 

To describe the positions of points in 3-d space one has to add either a height coordinate above the 

[R <Ji] plane, the Z coordinate, or an angle between the vector to the described point and the [R <Ji] 

plane, commonly referred to as r . 

m8( object 
relpos 

LED-4 
m7( coord-sys 

component 
m4( direction 

measure 

component 
m5( direction 

measure 

rel-to 
modality 

resistor-7 
function) 

(5.1.3.2.19) 
world-r 

R 
m l] value 

unit 
2 
inch)) 

PHI 
m2( value 60 

unit degree)) 

This example encodes the information that the reference point of LED-,1 is 2 inches away from the 

reference point of resistor-7, and the vector pointing from the former to the latter has an angle of 



110 

60 degrees with the R axis of the system world-r. The information that <P (PHI) is a non-linear 

axis is not contained in its name which is purely mnemonic, but in the case frame describing the 

coordinate system, as well as in the unit "degree" that has to be used appropriately if drawing of 

LED-4 is desired. 

Polar coordinates can be used naturally to express one more fuzzy measure, namely near-far. 

m8( object 
relpos 

switch-I 
m7( coord-sys 

component 
m4( direction 

measure 

(5.1.20) 
world-99 

R 
ml( value 

unit 
near 
near-far))) 

rel-to 
modality 

transistor-99 
function) 

Note how beautifully this representations falls out of the combination of the basic assumption that 

unknown or irrelevant fillers may be omitted in SNePS with the polar conceptualization of space. 

5.1.3.2.6. Absolute versus Relative Positions 

The distinction between absolute and relative positions is the one that comes to mind first 

when looking at spatial knowledge. However, it can be argued that there are no absolute posi- 

tions. Any positional information refers to a reference frame. Elimination of reference frame 

ambiguity has been mentioned before as a major step in language understanding. A speaker using 

an absolute spatial term assumes that the hearer knows what the correct reference frame is. The 

hearer also knows that there is a reference frame and makes an assumption about its identity. 

The declaratively present knowledge of the current reference frame becomes obvious when a 

third person joins a discussion about spatial relations and asks for clarification. Both prior parti- 

cipants will be able to explain the reference frame they had in mind. Therefore the knowledge 

structure for an absolute position will differ from the structure for a relative position only by a 

marker that indicates that the given reference frame is at the same time the current reference 

frame. In the environment of SNePS this can be achieved by making the concept of the reference 



111 

frame the value of a SNePSUL variable called for instance CURRENT-REFERENCE-FRAME. 

A SNePSUL variable is a variable that can store a node set and that is maintained by the 

SNePS top level interpreter. If such a variable contains a singleton node set, then one can say 

that it "points to the node" in the node set. So the CURRENT-REFERENCE-FRAME variable 

points to the node that represents the concept of the currently valid reference frame. A similar 

solution has been used by Almeida [Alm87J to mark the current reference time. This has been 

referred to as the "NOW point". The use of structures that describe absolute positions reported 

in [GeS87J has to be seen as a convenient abbreviation which is satisfying for engineering purposes, 

however not as a cognitive model. 

5.1.3.2.6.1. Fuzzy Absolute Positions 

A sentence like 

Put the multiplier at the top. (5.1.3.2.21) 

gives the impression of a fuzzy' absolute position, because the reference object "screen" is not 

explicitly mentioned. We will continue to use the term "fuzzy absolute positions", keeping in 

mind that they are in fact positions relative to the screen and show the representation of the set of 

fuzzy absolute positions { top, bottom, left, right, upper-left-corner, upper-right-corner, lower-left- 

corner, lower-right-corner, center}:. More precisely we will discuss the positions "top", "upper- 

left-corner", and "center" separately. All other positions are analogous to these three. 

The screen a person is looking at naturally induces the existence of several objects, e. g. the 

object "upper-edge": We will require that the reference point of this object be in the middle of it. 

We claim, that an object is at the top of a screen, if it is near to the upper-edge. A representation 

for "near" has already been introduced before, so the necessary structure follows immediately. 

m8( object 
relpos 

gate-9 
m7( coor d-sys 

component 

(5.1.3.2.22) 
screen-coord-sys 



112 

direction 
measure 

R 
ml( value near 

unit near-far)) 
rel-to 
modality 

upper-edge 
function) 

Likewise an object in the upper left corner is near an induced object that we want to call the 

upper-left-corner of the screen. screen-coord-sys refers to the privileged screen coordinate system. 

But what about an object at the "center"? There are two conceptual ways to deal with the center 

location. (1) We can assume that "center" is also one of the objects that are induced by the 

screen, and that in fact every object with a horizontal and vertical symmetry axis induces a (vir 

tual) object "screen-center". In this case the same structure as before will do. 

m8( object 
relpos 

coil-7 
m7( coord-sys 

(5.1.3.2.23) 
screen-coord-sys 

component 
m4( direction R 

measure ml( value near 
unit near-far)) 

rel-to 
modality 

screen-center 
function) 

Note that the quality of this conceptualization is inversely proportional to the distance of the 

reference point of the object from its own center. Therefore we have required before that the 

reference point should not be outside of the object. 

The other alternative to represent the center position of an object makes use of four (!) posi 

tion case frames and two additional case frames. An object is at the center of the screen if it is 

below the top, right of the left edge, left of the right edge, and above the bottom edge. This 

description would cover any position inside of the screen. "Near" and "far" are of no help at this 

point. 'vVe would have to introduce four distance tokens for the four distance slots, and assert 

with two additional case frames that pairs of these distance-tokens are coextensive. This last task 

is traditionally achieved in SNePS with the "equiv" arc [ShM82]. We will show three of these six 

structures, the others follow analogously. 

m8( object 
relpos 

AND-1 
m7( coord-sys 

( 5 .1.3 .2 .2,1) 
world 



113 

component 
m4( direction 

measure 

component 
m6( direction 

measure 
rel-to upper-edge 
modality function) 

m18( object AND~l 
relpos m17( coo rd-sys 

component 
m14( direction 

measure 

component 
m16( direction 

measure 
rel-to lower-edge 
modality function) 

m(20 equiv distance-1 
equiv distance-2) 

y 
ml( value below 

unit above-below)) 

R 
m3( value distance- I))) 

(5.1.3.2.25) 
world 

y 
mll( value above 

unit above-below)) 

R 
m13( value distance-2))) 

(5.1.3.2.26) 

The second solution is unpleasant because it requires a large amount of structure, something not in 

line with the linearity principle; after all language describes the center of a box with a single word. 

We also have to introduce unspecified distance tags ( distance-I, distance-2 etc.), objects that func 

tion as place holders and whose epistemic status is at least doubtful. On the other hand, what 

gives usthe right to introduce a virtual object at a point just to save our representation? 

Luckily, cognitive science has been investigating virtual objects for quite some time. Some 

of these phenomena are known as "subjective-contour illusions". In experiments [Wal87] subjects 

perceive certain locations in a class of diagrams as brighter than other locations, although no real 

difference in brightness exists. Although we do not know about a perceived brightness difference 

for the center of a box, we feel justified by these results in making the center of a box a virtual 

object that "comes with every box". 



114 

5.1.3.2. 7. Explicit versus Deduced Reference Objects 

One of the requirements that we mentioned earlier was to design our position case frame so 

that it would be possible to eliminate "blatantly redundant" information from it. One candidate 

for this operation is the reference object. Considering e. g. an electrical circuit board, it is quite 

clear that all components can be described well by placing them relative to the board they are 

mounted on. If the explicit representation of this information is eliminated, we need a reliable 

method to recover the correct reference object. 

In a later chapter (5_1.3.4) part hierarchies, a very basic structure of the cognitive system, 

will be introduced. If an object is placed with relative coordinates and no reference object is 

asserted, then the logical object to look for is the object it is part of, i.e. the "super-part". This 

choice is supported by experimental work of Kosslyn [Kos80]. Kosslyn has concluded from work 

with subjects, that in humans positions of parts seem to be stored in reference to the object they 

are parts of. Kosslyn himself has used this assumption in his simulation program reported in the 

same reference. 

We would like to add another argument in favor of such an organization of object 

knowledge. This argument is based on the well known limitations of short term memory [Mil56]. 

Given a main object M with n parts in a one level part hierarchy. Given also a cognitive agent 

that tries to retrieve the positions of all the parts, presumably in order to assemble an internal 

image. Now consider two possible forms of knowledge organization: (1) Each object has a relative 

position specified relative to the "main object". (2) Each object has its position specified relative 

to one of the other n-1 objects or relative to the main object, such that every object is anchored 

directly or indirectly at the main object. No limiting assumptions about these spatial references 

are made, except that they form a tree (i. e. no circular dependencies). 

Assuming that a position has to be kept in STM in order to do a computation, it is necessary 

(in case 1) to keep the absolute position of the main object in STM, and to move the relative posi 

tions of all the other objects there (at least temporary). At no time are there more than two posi- 



115 

tions necessary in STM. In case 2 an object B might be placed relative to an object A. A in turn 

might be placed relative to the main object. In order to compute the position of B it is necessary 

to maintain 3 position values in STM, one for M, one for A and one for B. If the chain length of 

relative positions is permitted to grow, a point might be reached where the number of necessary 

elements exceeds STM capacity. Alternatively, if one wants to assume that only the positions of 

the two objects that are immediately involved in the computation have to be resident in STM, 

then the main object would be bumped as soon as object B is loaded. Later on it might be neces 

sary to reload the position of the main object. Under these assumptions the effort of computing all 

part positions grows due to additional "paging". So organization (2) is temporally or spatially 

inefficient, resulting in the expected argument for organization (1 ). 

is discussed in its own section. 

The following structures will be explained without giving details on the part hierarchy which 

m25( object 
modality 
part-relation 
sub-object 

board-I 
logical 
real-part 
gate-I) 

m8( object gate-I 
relpos m7( coord-sys board-world 

component 
m4( direction X 

measure ml( value 2 
unit inch)) 

component 
m5( direction y 

measure m2( value 0.5 
unit inch)) 

component 
m6( direction z 

measure m3( value 0 
unit inch))) 

modality function) 

m18( object board-I 
relpos m17( coo rd-sys board-world 

component. 
m14( direction X 

measure mll( value 10 
unit inch)) 

(5.1.3.2.27) 

(5.1.3.2.28) 

{5.1.3.2.29) 



116 

component 
m15( direction y 

measure m12( value 8 
unit inch)) 

component 
m16( direction z 

measure m13( value 0 
unit inch))) 

rel-to board-world 
modality function) 

m8 represents the relative position of gate-1, but no reference object is given. m18 represents the 

relative position of board-I in the board-world. Finally m25 represents the fact that gate-1 is a 

part of board-I and therefore board-I is a super-part of gate-1. Because gate-1 has no reference 

object specified, its immediate super-part will be assumed as the reference object. Remember also 

that the origin is considered the reference point of a coordinate system, therefore m18 is correctly 

specified. 

5.1.3.2.8. Own versus Inherited Relative Positions 

Another way to eliminate information from a case frame is by permitting its inheritance 

along a class hierarchy. AB noted before, a separate section will be devoted to class hierarchies, 

here only the aspects that relate class hierarchies to positioning tasks are discussed. 

Given a circuit board that functions as a main object and has components as its parts, it is 

natural to assert relative positions relative to the board (see last section). However with several 

boards of the same type it is not necessary to store this relative position for every gate. If the gate 

is a member of a class of gates, and if all gates of this class have the same relative position relative 

to their board, then it is enough to assert the position information with the class. Practically that 

means that a position vector is only specified once, namely with the class, and omitted in all the 

object-positions. For the position specification of a class, refer back to (5.1.3.2.13). The position 

specification of an object degenerates then to the following pleasantly simple structure. 

m8( object 
rel-to 

OR-3 
OR-2 

(5.1.3.2.30) 



117 

modality function) 

The following example network represents a class membership. 

m2( type 
modality 
object 

and-gate 
logical 
and-gate-O] 

(5.1.3.2.31) 

The class "and-gate" would be placed by an instance of (5.1.3.2.13). "And-gate" is not the class 

of all and-gates, but it is a sub-class of all and-gates. This is the case because it describes a class of 

and-gates which are positioned in a cert.ain way on a board of the class of which board-I is a 

member. The· following structure would connect the class "and-gate" with a super-class compris- 

ing and-gates in any position and is an example of our notation for sub-class/super-class relations. 

m5( sub-class 
modality 
class 

and-gate 
logical 
all-and-gates) 

(5.1.3.2.32) 

· 5.1.3.2.g. Coordinate Unit Types 

Besides the description of fuzzy absolute positions, the identification of positional invariants 

has been the most challenging and rewarding area of the analysis of positions. Coordinate units 

used in scientific as well as practical applications, whether engineering, geography, mathematics, 

masonry, ... make use of a predefined and publicly known base unit like the inch. The base unit is 

independent of both the objects that are positioned relative to each other. The distance is 

· expressed as a multiple of the base unit. This is not the only way positions could be expressed. 

One could use the size of either one of the involved objects of a relative position specification as 

the base unit (or even of any object in the system). 

There are practical reasons to permit such types of coordinate units. One such reason is the 

scaling problem for objects with parts. As is well known from computer graphics [FoD83] an 

object which is not at the center of the current coordinate system will not only be scaled but also 

relocated by a scaling operation. This is undesirable for the following theoretical reason. We view 

the scaling of an object as an operation that expresses a size attribute of the object. (Attributes 



118 

will be treated in Section 5.1.3.3). This attribute applies to each part separately and is indepen 

dent of its position. More precisely scaling is supposed to be done for each object relative to its 

own reference point. 

In order to correctly scale a whole group of parts it is therefore necessary to recompute the 

position of each part, which makes the display algorithm unwieldy. Body coordinates come to the 

rescue. If the relative position of a part is already given in multiples of its own size then any scal 

ing of the part will not change its relative position! In other words, we can maintain our theoreti 

cal claim about scaling as being an attribute of an object, without paying a penalty in terms of the 

complexity of scaling a group of parts. 

This observation is especially useful in connection .with view-ports on a screen, because if all 

positions are given in multiples of the size of the viewport, then the resizing of the viewport does 

not require any special scaling algorithm for the positions of all displayed objects. We consider 

this approach to viewport resizing far more interesting than the computationally easier solution of 

displaying a different, potentially smaller segment of the document under the window. 

Another argument for using an object-size as a base unit for specifying distances between 

parts is the importance of proportions in object perception and recognition. The recognition of 

objects and especially of characters depends not on absolute sizes, but on ratios. A large L can be 

recognized as well as a small L, but shortening only the horizontal segment will lead to the danger 

of a confusion with an I. In the same way if people see a giant, then they have no problem recog 

nizing him as human, "just bigger". If one would compute the ratio of arm length to the distance 

of the arms from the spine for a large segment of the population, then a certain range of values 

would result. A giant or a midget would have their ratios somewhere in this range, and therefore 

can be recognized as humans. (Of course many other ratios will be used for recognition too). 

In short, absolute information about part positions, does not have to be preserved for recog 

nition purposes; it is more interesting to look at proportions. Relative positions between parts, 

which are measured in body units of one of the involved objects therefore express a set of valuable 



119 

invariants, and it is of interest to create a graphical deep knowledge structure that preserves them. 

(Only one value is preserved for each relative position, not a whole range.) 

We have opted to permit any object in the system as base object, but coordinates based on 

the size of an object and coordinates based on the size of its reference object show a pleasant side 

effect, they actually simplify the position representation used! This is the case, because no 

separate node for a unit is necessary, rather one of the object concepts itself functions as unit. 

The crucial difference between absolute units versus the use of the object or the reference 

object as unit is not that a third object is involved for the first type, but that this third object is 

never scaled together with the other objects. We will first show the case frame for body coordi 

nates, i. e. coordinates that use the object itself as unit. 

object <object> 
relpos coord-sys world 

component direction 
measure 

component direction 
measure 

component direction 

rel-to 
modality 

measure 
<object-or-co> 
<modality> 

Reference object body coordinates follow now. 

object <object> 
relpos coord-sys world 

component direction 
measure 

component direction 
measure 

component direction 
measure 

rel-to 
modality 

<object-2> 
<modality> 

(5.1.3.2.33) 

X 
value 
unit 
y 
value 
unit 
z 
value 

<value> 
<object> 

<value-2> 
<object> 

0 

(5.1.3.2.34) 

X 
value <value> 
unit <object-2> 
y 
value <value-2> 
unit <object-2> 
z 
value 0 

The simplification of the structure comes about by eliminating one .node, namely the independent 

unit node (like the "inch" node). Clearly in (5.1.3.2.34) the reference object has to be constrained 



120 

towards being a real <object>. Procedurally the extent, i.e. the smallest enclosing rectangle with 

sides parallel to coordinate axes is used to interpret body coordinates. An x coordinate is inter- 

preted as multiple of the x-length of the extent, and a y coordinate is interpreted as multiple of 

they-length of the extent, of <object> (or <object-2>, whichever is specified). 

5.1.3.2.9.1. Fuzzy Coordinate Unit Types 

One problem we have set out to solve was to capture concrete as well as fuzzy coordinates 

with the same representation system, and the introduction of objects as size units forces us to look 

for the applicability of this idea to fuzzy units. It turns out that in fact fuzzy body coordinates 

can be used to model expressions like too near and too far, i. e. expressions that have to do with 

the reach of a human arm or mechanical device. Consider e. g. the reach of two boxers. A boxer 

stands too near to his opponent in a defense situation, if the other one can reach him, while he is 

too far if he can't. On the other hand, in an attack situation, a boxer is near if his own arms can 

reach the opponent and far otherwise. Therefore the meaning of "too near" and "too far" 

depends on the arm length of the two fighters. 

If one boxer has longer arms than the other one, than the two boxers might be standing too 

near from one's point of view and too far from the other's. Given that the absolute distance 

between them is identical, the fuzzy units they are using must be different, each man using his own 

arm length. The same is true for the reach of a robot arm or the distance planes from an air craft 

carrier can fly. As well known, something that is "too big" might still be very small, and some 

thing that is "too far" might actually be pretty near, so the following structures do not model 

nearness per se. Our interpretation of "too near" will therefore be as follows. If an object is 

nearer than the size of the unit-object measured both in the same dimension, then it is too near, 

otherwise it is too far. 

m8( object 
relpos 

arm-I 
m7( coord-sys 

component 

. (5.1.3.2.35) 
world 



121 

m4( direction 
measure 

R 
ml( value 

unit 
far 
arm-I))) 

rel-to 
modality 

face-2 
physical) 

In the above example arm-I is too far away from face-2, relative to its own length. 

5.1.3.2.10. Screen, Plane and World Coordinates 

We have required that the same knowledge structure can be used for screen, plane and world 

coordinates. This is in fact the case. The type of coordinate system is contained in the case frame 

describing it, but not in the position representation. The three different spaces are interesting for 

the following reason. If a position description applies to an object in a world coordinate system, 

then it is possible to create different views depending on the projection plane that is selected. If a 

position is specified in plane coordinates, then one has no more choice concerning the view, and 

plane coordinates are by nature two dimensional. However, a display on the projection plane 

might be too large to fit a given viewport on a screen. It is therefore permissible to do scaling or 

shifting to move the display into the viewport. If a position is given in screen coordinates, then no 

more coordinate transformation for viewing purposes is permitted. So each coordinate space 

behaves differently with respect to the operations necessary and permissible for display purposes. 

While concrete coordinates are permissible for any type of coordinate system, we have lim 

ited ourselves to describing fuzzy position representations in relation to the screen. The reason for 

this is that the screen itself supplies the necessary reference frame that gives meaning to a term 

like top. The limited size of the screen also makes terms like "near" less ambiguous. In the real 

world Venus is quite near from us, compared to Pluto. On the other hand, two atoms are quite 

far away from each other, compared to the distance between protons. The real world just supplies 

too many orders of magnitude, each one having its own "near" and "far". 



122 

5.1.3.2.11. 2 1/2 Dimensional Representation 

Although we have been assuming 2-dimensional structures in most of this dissertation, we do 

not want to exclude a user from talking about an object "behind" another object, even in a front 

view. One way to accommodate this is to use a graphics technique called 2 1/2 - d display. This 

does not refer to Marr's 2 1/2 - d [MaN78], but can best be imagined as a number of sheets on top 

of each other. It is therefore necessary to assign different 2-dimensional objects to different sheets. 

This is achieved by using the Z coordinate of a world coordinate system. 

Our abstract graphics machine will make the following assumptions to deal with different 

layers. (1) Objects are in principle plane. Therefore, if the position of the reference point of 

object A has a Z value less than the Z value of the position of the reference point of object B, then 

all points of A have positions with Z values less than the Z values of the positions of all points of 

B. (2) The layering of objects decides about the order of drawing them. An object C with a large 

Z coordinate is considered to be far away from the viewer, and therefore will be drawn first. An 

object D with a small Z coordinate will be drawn later, and if it shares part of the [X Y] space 

with C, then D will overdraw C and effectively create the impression of an object "behind" 

another object. This is the point where our assumption of permitting only a few special projection 

plane positions becomes most crucial. Effectively we are expecting the projection plane to be 

parallel to the sheets that are displayed. This trivializes the projection algorithm. On the other 

hand, it is precisely the "behind" phenomenon that forces us to maintain three dimensions. 

The layer model, with all its limitations, is quite useful for practical applications. For 

instance physical (structural) circuit board displays can be modeled by one layer containing the 

wiring on the surface of the board, while the components can be assumed to be in a layer above 

the board. The following structure shows a concrete example that expresses two objects in two 

different layers. This assumes again that the projection plane is parallel to the [X YJ plane, some 

thing expressed in the reference-frame descriptions. 

m8( object wire-1 (5.1.3.2.36) 



123 

relpos m7( coord-sys world 
component 
m6( direction Z 

measure m3( value 
unit 

1 
inch))) 

rel-to 
modality 

chip-4 
structural) 

To express a fuzzy relation, the two valued unit behind-front can be used. 

m8( object 
relpos 

wire-I 
m7( coord-sys 

component 
m6( direction 

measure 

(5.1.3.2.37) 
world 

z 
m3( value 

unit 
behind 
behind-front))) 

rel-to 
modality 

chip-4 
structural) 

5.1.3.3. The Representation of Attributes in Graphical Deep Knowledge 

5.1.3.3.1. Types of Attributes 

Objects have attributes, pictures have attributes, and users make different judgements about 

what they consider to be relevant. From this situation a number of different representational pos 

sibilities emerges. For our purposes an object can have three different types of attributes: 

intrinsic-visible attributes, accidental-visible attributes, and invisible attributes. Intrinsic-visible 

attributes are attributes of the form of an object that will automatically be displayed whenever 

the object is displayed. For example a symmetric 2-d object will appear symmetric whenever 

displayed. Accidental-visible attributes can be varied in displaying an object, without modifying 

its form. We consider color and orientation as accidental-visible attributes. Invisible attributes 

cannot be displayed at all, but they can be symbolized. The faultiness of a component in a circuit 

board is an example of an invisible attribute. 

Pictures can have four different types of attributes: representative attributes, symbolic attri 

butes, accidental attributes and situational attributes. A representative attribute of a picture 

stands for a corresponding visible attribute of an object. A symbolic attribute of a picture stands 



124 

for a not corresponding (usually invisible) attribute of an object. An accidental attribute carries 

no information about the object. Accidental attributes should be avoided whenever possible. 

Finally a situational attribute describes a temporary attribute which is characteristic of the whole 

object viewer system and not just the object itself. 

Unfortunately the attribute itself does not tell to what type it belongs, and the attribute of 

color qualifies for all four classes. If a banana is displayed as yellow, then the color is representa 

tive. It represents an object that is in fact yellow. If a faulty circuit is represented as red, then 

this is a symbolic attribute, standing for a different object attribute namely faultiness. If a 

banana is drawn white on a black and white graphics terminal, then this is an accidental attri 

bute. It does not express anything. Finally, if a circuit in a circuit board display is usually 

displayed in blue, but temporarily the display is changed to red to catch the attention of a user, 

then the red color becomes a situational attribute. A favorite situational attribute on graphics 

devices is blinking. 

The third factor m this analysis is the viewer. An object might have invisible attributes 

which are of interest. Therefore some symbolic mode of representation for such an attribute is 

required. Unfortunately it is situation dependent what is of interest and what isn't. Because real 

life is more vivid than computer graphics, the number of choices for object attributes that are v isi- 

ble is already much larger than the number of choices for available pictorial attributes. If one 

adds the fact that some pictorial attributes have to be used as symbolic attributes one always has 

to deal with a representational mapping that has a much smaller range than domain. This is the 

problem of reductionist representation in a different guise. 

The only method of dealing with reductionist graphical representations is to relinquish the 

requirement for stable bindings between object attributes and pictorial attributes. A user can 

tailor a representation "to his requirements by assigning object attributes in order of importance to 

available pictorial attributes until he runs out of pictorial attributes, It should be pointed out 

that this free mapping between object and picture attributes constitutes an asset of knowledge 



125 

based NLG systems. (Details about this observation will follow shortly, see Section 5.1.3.3.3.) 

Another way to analyze attributes is according to the number of argument positions. 

Although there are very few clear cut cases, it seems reasonable to represent faultiness of a device 

as a binary attribute. The device is either faulty or it isn't. In other words, this is an attribute 

that does not have any values. Therefore it does not have any argument positions either. Alter 

natively one can view faultiness as an attribute with one argument position which can receive one 

of two values, "faulty" or "working". 

Other attributes can better be captured by an attribute value from a small base set. Color is 

such an attribute. Although one could deal with 10 binary attributes of the form being-red versus 

not being-red, being-blue, versus .not being-blue, etc., etc. it seems more natural to talk about the 

attribute color which can have one of 10 attribute values. To nomologically better differentiate 

the attribute from the attribute value we will refer to the attribute itself as attribute class and to 

the attribute value as such or as argument position. The semanticist Lyons [Lyo77] refers to this 

distinction as "bipartite sense-components consisting of {i) a superordinate marker taken from the 

set M = { SEX, COLOUR, AGE, SPECIES, .... } and (ii) a subordinate markerv s , specifying which 

particular location within the domain denoted by the superordinate marker is denoted by the 

subordinate marker." (p. 325). 

Some attributes might have arguments which are subsets of integers or of reals. For 

instance an object might be rotated relative to its normal position. This object would then have 

the attribute class "rotated" with a real number as an attribute value. While one can vary this 

number from O to 360, or from -180 to 180 both of these representations are more abstract than 

the representations people seem to prefer. According to our introspection a representation is more 

natural that uses numbers from Oto 180 and left/right instead of+/-. This invites the representa 

tion of attributes with two argument positions, namely the sense of rotation, as well as the degree. 

The first argument position will be taken by a real number between O and 180, the second one by 

one of the values "left" or "right". The analog extension to three or more argument values 



126 

presents no difficulty. 

If one combines attributes with forms then two ways of interpreting the relation between 

these two entities become necessary in the presence of an abstract graphics machine. An attribute 

may be strictly descriptive, i. e. describe a feature that is incorporated in the form of an object. 

We will refer to such attributes as unmapped attributes. Alternatively an attribute might be used 

"modificatory", to change the form of an object which has been inherited along a class hierarchy. 

This will result in a modified graphical display. We will refer to such an attribute as a mapped 

attribute. Two separate sections will distinguish between those two. 

The last way to discriminate between different attributes that we want to discuss is the dis 

tinction between relative attributes and absolute attributes. An attribute like "faultiness" of a 

device is absolute. It is possible to decide that the device is faulty, without any reference to 

another device. Similarly a basic decision about "color" can be established''" without a reference 

object. On the other hand, an attribute like "large" requires a reference class to become meaning- 

·ful. 

5.1.3.3.2. Simple Attribute Representations 

vVe will initiate this section with the representation of an absolute attribute with one argu 

ment position. 

Syntax: 

<a-attribute-I> 
atrb-cls < attribute-class> 
atrb <attribute-value> 

(5.1.3.3.1) 

Semantics: 

(5.1.3.3.1) is a structured individual describing an absolute attribute with one argument position, 

10 We make a number of simplifying assumptions here, including day light and a community of speakers that agree 
on basic color terms. 



127 

whereby <attribute-class> denotes any concept of an attribute, and <attribute-value> denotes 

any concept of an attribute value belonging to this <attribute-class>. Here and in all future uses 

of <attribute-value> it is permissible that <attribute-value> be itself a structured individual. 

It is assumed that one object may have only one <attribute-value> for each <attribute-class>. 

The next structure exemplifies an absolute attribute with two argument positions. 

Syntax: 

< a-attribute-2 > : 
atrb-cls 
atrb l 
atrb2 

(5.1.3.3.2) 
<attribute-class> 
<attribute-value> 
< attribute-value-2 > 

Semantics: 

(5.1.3.3.2) is a structured individual describing an absolute attribute with two argument positions, 

whereby <attribute-class> denotes any concept of an attribute, and < attribute-value> as well 

as <attribute-value-2> denote concepts of attribute values. 

The structure for an attribute with three argument positions follows analogously. The struc 

ture for a zero-value attribute <a-attribute-0> is created by omitting the <attribute-value> 

slot from the <attribute-I> definition. With this we can define the structure of an absolute 

attribute <a-attribute> as a choice. 

<a-attribute> (5.1.3.3.3) 
<a-attribute-0> ! <a-attribute-I> ! <a-attribute-2> <a-attribute-3> 

We will now turn to the representation of relative attributes. 

Syntax: 

<r-attribute-I > 
rel-atrb-cls < attribute-class> 
atrb <attribute-value> 

(5.1.3.3.4) 

ref-set < reference-set> 

Semantics: 

(5.1.3.3.4) is a structured individual describing a relative attribute with one argument position, 



128 

whereby <attribute-class> denotes any concept of an attribute, and <attribute-value> denotes 

any concept of an attribute value belonging to this <attribute-class>. <reference-set> denotes 

any concept of a group of objects, being either a < class> of objects, or a structured object with 

parts. It is assumed that one object may have only one <attribute-value> for each pair of an 

<attribute-class> and a <reference-set>. If an <r-attribute-1> case frame is given without a 

<reference-set>, then it is assumed that the immediate super-class of the object provides the 

reference. (This relies on a non-tangled class hierarchy). 

Above interpretation of a default is in complete analogy with relative positions where a miss 

ing reference object is derived from the part hierarchy. In fact this choice seems quite natural, 

considering the linearity principle again. If somebody says that "Joe is tall", we will assume that 

Joe is a human, and that he is probably in the area of 6 feet and above. Therefore we will not 

represent the reference class explicitly in the system. If somebody wants to preempt the default 

interpretation he has to supply a reference set. Such would be the case in a sentence like "Joe is 

tall for a kid of four years", or "Joe is small for a basket ball player". 

The extension of this representation to two, three or zero attribute values raises no prob 

lems, and we can summarize being an attribute as being either a relative attribute or an absolute 

attribute. 

<r-attribute> (5.1.3.3.5) 
<r-attribute-O> <r-attribute-1> <r-attribute-2> ! <r-attribute-3> 

<attribute> 
<r-attribute> ! <a-attribute> 

(5.1.3.3.6) 

After clarifying what an <attribute> is, we now have to assign it to an an entity m our 

knowledge base. 

Syntax: 

<attribute-assignment> 
patient 
attr 
modality 

<patient> 
<attribute> 
<modality> 

(5.1.3.3.7) 



129 

Semantics: 

The <attribute-assignment> case frame asserts that a patient <patient> has an attribute 

<attribute> in the modality <modality>. <patient> represents the syntactic class of all units 

that may receive an attribute. It may be an <object>, a <form>, a <class>, or a 

<feature>. The last two syntactic classes will be introduced below. 

This structure makes it possible to query what attributes <patient> has. Because the 

definition of <attribute> guarantees that if an object is "faulty" it is not "working", and if it is 

"red", it is not "green" etc. it is possible to give correct no replies to questions like: "Is the multi- 

plier faulty?" even if there is no complete list of all possible values of an attribute in the system. 

Example: 

m2( patient 
modality 
attr 

gate-I 
logical 
ml( atrb 

atrb-cls 

(5.1.3.3.8) 

faulty 
state)) 

The above structure associates the object gate-I with an absolute attribute value faulty, belonging 

to the attribute class state. A second example will show a relative attribute with two argument 

positions. 

Example: 

m5( patient 
modality 
attr 

gate-I 
logical 
m4( rel-atrb-cls 

atrbl 
atrb2 

(5.1.3.3.9) 

rotation 
left 
90)) 

The attribute class here is rotation, while the two arguments describe the sense of rotation and the 

amount of rotation. It is assumed that g ate-I belongs to a class of gates which is bound to a form. 

This form has a natural orientation, because our form representation is not rotation invariant. 

The attribute of the class member gate-I expresses its rotation relative to this class associated 

orientation. 



130 

The use of attributes with two or three argument-positions amounts to a compromise 

between structure complexity and expressive power. The attribute class of an attribute describes 

the attribute value. If there are two attribute values, then the attribute class gives a "global" 

description of both of them together, but it does not say anything about each one of them 

separately. If somebody wants to capture such distinctions, attribute sub-classes become neces 

sary. The attribute-class rotation is then characterized by a sub-class "direction" and a sub-class 

"amount". 

It is clear that this restructuring adds considerable knowledge to the attribute representa- 

tion. The system gains the knowledge that "left" is a "direction", etc. However, we consider the 

previous representation sufficient for all practical purposes. For completeness we will show an 

example of the use of a three-valued attribute and a zero-valued absolute attribute. 

Example: 

m7( patient adder-6 
modality logical 
attr m6( atrb-cls addt.ext 

atrbl "a text" 
atrb2 bold 
atrb3 12)) 

(5.1.3.3.10) 

The object adder-6 receives the text "a text" with a font size 12 and a bold face as attribute. The 

structure used makes it clear that one cannot create attributes with arbitrarily many argument 

positions, or with a varying number of argument positions. The first problem is due to the fact 

that arcs have to be defined in SNePS before they can be used, and there is always a fixed number 

of them. The second problem is due to the association of attribute classes with modifier functions 

which will be discussed in the next section. 

Example: 

m2( patient 
modality 
attr 

icon-1 
function 
ml( atrb-cls faulty)) 

(5.1.3.3.11) 



131 

This is an alternative representation of the example (5.1.3.3.8), assuming that one wants to con 

ceptualize faultiness as a zero-value absolute attribute. 

5.1.3.3.3. Attribute Mappings 

One of the attractive features of GDK based systems is that mappmgs between different 

representational formats can be done declaratively and therefore changed easily, but still show a 

procedural effect. This has a number of practical applications, besides being sometimes a bare 

necessity to deal with the reductionist problem. Color is usually a strong medium of communica 

tion and can be used to symbolically represent other attributes which are of a non-graphical 

nature. However if a specific user happens to be color-blind, then he will loose important features 

of the system. In a knowledge based representation system one can specify the desired mapping of 

object attributes to picture attributes explicitly. Because this information is accessible to the 

abstract graphics machine, it can be used to change the display format. 

We first need to introduce a structured individual that will be used in attribute mappings. 

Syntax: 

<value-mapping> : 
expressed 
expressed-by 

(5.1.3.3.12) 
<attribute-value> 
<argument> 

Semantics: 

(5.1.3.3.12) expresses a structured individual describing a mappmg between one < attribute- 

value> and a corresponding argument to a modifier function <argument>. The < attribute- 

value> usually describes an invisible attribute value, while the <argument> is its corresponding 

symbolic attribute value. <argument> must be represented by a base-node. 

The following structure completely describes how to represent the necessary mapping. 

Syntax: 



132 

<attribute-mapping> : 
attr 
mod-func 
vall 
vall 

<attribute-class> 
<modifier-function> 
<value-mapping> 
< value-mapping-2 > 

(5.1.3.3.13) 

modality <modality> 

Semantics: 

The structure (5.1.3.3.13) expresses the proposition that attributes of the class <attribute-class> 

can be expressed graphically by the functional <modifier-function>. In addition it expresses the 

correct mapping between argument positions of the attribute case frame and arguments of the 

<modifier-function>. Each syntactic variable named <value-mapping>, possibly with a 

number after the word "mapping", expresses one mapping between an argument position and a 

corresponding function argument. The "vall" arc makes it possible to differentiate between attri 

butes with one or more argument positions. If an attribute happens to have two argument posi 

tions then the <value-mapping> case frames are qualified by "vall" and "val2" arcs. The 

"val2" arc marks mappings for the second additional argument. For attributes with three values 

a "val3" arc is necessary. 

This structure incorporates the knowledge necessary to answer questions like "How would 

you display something <attribute-value>?". The procedural effect of a mapped attribute comes 

about the following way. If the user's request is to display an object which has the attribute 

<attribute-value> belonging to the attribute class <attribute-class> and if <attribute-class> 

is linked to the LISP function <modifier-function> by a structure like (5.1.3.3.13) and if the 

<attribute-value> is linked to <first-argument>, then call the function <modifier-function> 

with the form of the object as first argument and with <first-argument> as second (first addi- 

tional) argument. 

So the <modifier-function> takes a <form> as main argument, and it returns a form- 

function that has been changed such that if it is executed it will incorporate the attribute 



133 

expressed by <attribute-value>. Now the position is retrieved as usual and plugged into the 

modified form function. 

Example: 

ml4( attr 
modality 
mod-func 
vall 

val l 

newstate 
logical 
tint-jg 
m12( expressed 

expressed-by 
ml3( expressed 

expressed-by 

(5.1.3.3.14) 

faulty 
green) 
working 
magenta)) 

Above example expresses that faultiness of the attribute-class "newstate" is expressed by the 

"tint-jg" function with the argument "green" while a "newstate" of "working" is expressed by 

the color "magenta:". 

For certain attributes numerical values are used, and it would be difficult to impossible (and often 

unnecessary), to create a table of corresponding attribute values for object and picture. This 

problem can be solved by a simple convention. If any attribute-value is not covered by an 

expressed/ expressed-by case frame the attribute-value itself is meant to be used as an argument to 

the modifier function. Alternatively, the same strategy has to be used, if the mapping involves an 

elaborate computation, not to be expressed in the knowledge base. The mapping case frame for 

this situation degenerates to the following format: 

attr 
mod-func 
modality 

< attribute-class> 
<mod-function> 
<modality> 

(5.1.3.3.15) 

The description of the procedural effect of this structure can be expressed in the following way. In 

order to draw an object with an attribute <attribute-class>, send the <form> of the object as 

first argument to the function <mod-func>. It is assumed that the <form> has been inherited 

along the class hierarchy. Send the attribute values unchanged as arguments to < mod-func .>, 

such that the value at the first argument position becomes the second argument, the value at the 



134 

second argument position becomes the third argument and the value at the third argument posi 

tion becomes the fourth argument (if they exist). 

By now the reader should be sufficiently familiar with our approach to knowledge represen 

tation to realize that this convention is a short-cut in the interest of efficiency. No knowledge 

about this convention is stored in the system, so the system could not answer questions about it. 

The convention exists only in the eye of the beholder and in the abstract graphics machine. 

The use of the modifier function requires some more clarification. In the theory developed 

here, an attribute-class is considered as an abstract functional which takes the object it is applied 

to as argument. If there are any attribute-values asserted, then these correspond to additional 

arguments to be supplied to the functional. The node at the end of the "mod-func" arc is at the 

same time the concept that represents the abstract functional and a reference to the code that per 

forms the operations of the concrete functional. This is done in complete analogy to form concepts 

which simultaneously refer to procedures embodying graphics code. 

As trivial as this idea might seem, it creates the only possible attribute theory that is true to 

the following two principles: 

(1) A form which is modified by an attribute is itself a form and should therefore be represented 

consistently with all other form representations. 

(2) All attributes in the system should be treated consistently. The other way one could incor 

porate attributes in a form function is to make the attribute-values arguments to the form 

functions themselves. However, this would require the user to predict ALL attributes he 

would ever want to use, or to recode all forms for every new attribute, or to use the method 

of modifier functions for all the attributes he did not think of in the first place. This would 

create form functions with many arguments in the first place and would still result in ad hoc 

extensions for newly discovered attributes. Obviously none of these alternatives is very 

satisfying. 



135 

To change the representation of a certain attribute by color to a representation by different 

line styles, a new attribute mapping becomes necessary. To keep track of the currently valid map 

ping a CURRENT-MAPPING pointer will be used. This is in complete analogy to the 

CURRENT-REFERENCE-FRAME pointer used earlier (section 5.1.3.2.6). 

An attribute that expresses a form modification of an object which has its form assigned as 

an individual is not supposed to be used as a mapped attribute. The reason for that is as follows. 

One can say that somebody is a "tall man", thereby modifying the size expectation for a typical 

man. However one cannot say that "Joe is tall", expecting this to modify our image of Joe. 

Either Joe is tall, and then the attribute incorporates useful redundant information, which how 

ever should not be used to influence our image of Joe, or Joe is small, in which case the attribute 

contradicts our knowledge of his form. This limitation does not apply if one wants to model 

changes over time, something which is not our concern. 

5.1.3;3.4. Unmapped Attributes 

If an attribute does not have an associated mapping function then it is not used to modify 

the pictorial representation of an object. This is referred to as an unmapped attribute. 'vVe will 

present a few interesting unmapped attributes in this section; 

As noted before, the fact that the system has complete procedural knowledge of its form 

primitives does not make declarative knowledge about these forms unnecessary. So one might 

want to assert that an <object> or a <form> is round. 

ml( patient circle-I (5.1.3.3.16) 
attr m2( atrb-cls form 

atrb round) 
modality physical) 

Similarly, symmetry is an important attribute that has initially (section 5.1.3.1) helped to 

motivate the representation of "redundant" information in the system. Like the "form" attribute 

symmetry can be asserted about objects as well as forms. 



l3B 

ml( patient circle-I 
attr m2( atrb-cls 

atrb 
modality physical) 

(5.l.3.3.17) 
symmetrical 
x-axis) 

The atrb arc points to one of the three base concepts "x-axis", "y-axis" or "center". The 

representation of other symmetries is not intended. This exclusion of general symmetry is in line 

with cognitive data that shows the privileged position of vertical symmetry which is easiest 

detected by the human visual system [EaL86]. 

The area of a <form> or an <object> will also be considered an attribute, however we 

will treat only concrete areas as unmapped attributes, while fuzzy area representations will be 

mapped attributes. The attribute value of a concrete area representation may be any value from 

the earlier introduced class <area-measure> (structure 5.1.3.2.9), i. e. it will be a structured 

value. 

In the chapter on contributions of philosophy to NLG we have presented a feature analysis 

of symbolic graphical representations. We will now demonstrate with an example the representa 

tion of feature types as attributes. 

Example: 

ml( patient 
attr 

modality 

line-intersection 
m2( atrb-cls 

atrb 
logical) 

(5.l.3.3.18) 
feature-type 
accidental) 

The "atrb" arc may point to one of the base nodes { semantic, accidental, conventional}. The 

modality arc may point to any of the representation systems that have been discussed in chapters 

3.3.1-3.3.11. Finally, the patient arc may point to any feature from the list of common features of 

symbolic representations presented in chapter 3.3. 

Although attributes of features are not supplied with mappmg functions we will indicate 

how a structure like example (5.l.3.3.18) might be used by a graphical generator function. Tn 

drawing a wire plan, it is considered good style not to have any unnecessary intersections. We 



137 

have mentioned psychophysical evidence [Wal87J that there are good reasons for this "stylistic" 

decision. If a graphical generator function would create layouts on its own (an idea to which we 

will return), it should prefer a solution with fewer intersections over a solution with more intersec 

tions. This "advice" is embodied in above case frame, if one assumes that the display function 

tries to minimize the number of accidental features it is producing. 

The actual use of above vague description in a display algorithm would imply an abstract 

graphics machine that is able to create alternative designs, do a "readback" of their graphical 

features and evaluate them comparatively. This requires at least an additional vision component. 

The field of AI is just about approaching problem settings of this complexity, but has not reached 

them yet. Nevertheless, it has hopefully become clear that the previously presented feature 

analysis is a valuable tool for future research in AI. 

The last attribute to be mentioned is "importance". We will make use of this attribute in 

the section on superlatives below. Importance is clearly a relative attribute. It will be expressed 

most likely about a component in a structured object. 

Example: 

ml( patient pcm-chip 
attr m2( rel-atrb-cls importance 

atrb important 
ref-set board-I) 

modality logical) 

(5.1.3.3.19) 

This expresses the fact that the "pcm-chip" is an important component of the structured object 

"board-I". 

5.1.3.3.5. Inheritability of Attributes 

Some observations on inheritance and inheritability will be offered in the sections on hierar- 

chies (5.1.3.4, 5.1.3.5). In this section it will simply be pointed out that attributes might or might 

not be inheritable, and that this item of information is dependent on the attribute itself and can 

be communicated in a simple sentence. Therefore the linearity principle requires that it should be 



138 

representable in the system in a simple declarative structure. 

Syntax: 

inheritable <attribute-class> (5.1.3.3.20) 

Semantics: 

Above structure expresses the assertion that < attribute-class> is an inheritable attribute. 

It will be explained later that if an object has attributes such that their <attribute-class>es 

are not marked by the inheritable case frame then they are not considered for being propagated 

down a (part) hierarchy. If an attribute class is marked by structure (5.1.3.3.20) then all attributes 

will be applied not only to objects for which they are asserted, but also to all their parts. 

Example: 

ml( inheritable size) (5.1.3.3.21) 

If a user asserts about an object with parts that it is of a large size, then he will expect all parts to 

be scaled correspondingly. We will discuss this important observation in detail in the section on 

parts (5.1.3.4). 

5.1.3.3.6. The Representation of Superlatives and Comparatives 

The representation of superlatives falls out naturally from our representation of attributes. 

The attribute value has to be one of the two atomic concepts { minimum, maximum}. The 

<reference-set> will usually have to be specified. The representation of comparatives is a varia 

tion of the representation of superlatives however it is syntactically not an attribute representa 

tion. This is the case, because we conceive of attributes as referring to one single object, while a 

comparative connects two object. Therefore the <reference-set> has to be replaced by a 

<reference-patient>, and the equal importance of <patient> and <reference-patient> is 



139 

expressed by integrating them at the same structural level. Finally the attribute values used will 

be different, and we express this by using a different case frame and a different syntactic variable. 

Syntax: 

<comparative> 
patient 
rel-atrb-cls 
comp-atrb 
ref-patient 
modality 

<patient> 
< attribute-class> 
<comparative-attribute-value> 
<reference-patient> 
<modality> 

(5.1.3.3.22) 

Semantics: 

The <comparative> case frame expresses the fact that <patient> has the comparative attribute 

value <comparative-attribute-value> belonging to the attribute class <attribute-class> with 

reference to a <reference-patient>. <reference-patient> must be replaced by a member of the 

same epistemic class as <patient>, i.e. both must be <iobject c-s or <Torrn '>s or <iclass c-es or 

< feature >s. < comparative-attribute-value> describes attribute values like "larger", "hotter" 

etc. 

The representation of the attribute class "importance" together with the comparative and 

superlative representation can be used by the abstract graphics machine to decide about the order 

of drawing components of an object. This "orderly" drawing was something that was requested 

by one of Grice's pragmatic maxims. 

5.1.3.4. Part Hierarchies 

Part hierarchies have been of fundamental importance in a number of different areas of 

artificial intelligence. Knowledge representation [PaS81] has dealt with them as well as hardware 

modeling in maintenance [Tai87J and research in computer vision [Bie87,Ley86]. 

Our interest in part hierarchies is of course oriented towards the needs of NLG and 

knowledge based graphics. vVe want to know how part hierarchies can help to decide what content 

to put on the screen of an NLG system and how to organize it, to be optimally useful to a viewer. 



140 

In KBUIMS (knowledge based user interface management system) design this complex of problems 

has been referred to as "presentation planning" [AMS88]. 

In the chapter on pragmatics of graphical representations (3.1) it has been pointed out that 

part hierarchies permit the pragmatic control of graphical displays, according to the Gricean 

maxim of quantity [Gri75]. 

Part hierarchies permit a first strategy to decide what to show and towards avoiding infor 

mation overload: don't show all the parts of a requested object. If a simple display is expected, 

just show an integral object. If a more informative display is expected, then show the integral 

object with its first level parts. Only if a complete display is expected, then show the integral 

object with all levels of its parts. In other words, decide what to display and control the complex 

ity of a display by selecting the number of levels of the part hierarchy that are shown on the 

screen. This assumption has lead us to distinguish three different types of part hierarchies [GeS87] 

which we will discuss in detail in this report. 

In our view of parts, we distinguish between "real" part hierarchies as opposed to assemblies 

and clusters. An analysis of different part whole relations based on sentence patterns has been 

described in [WCH87]. Differences between these two analyses will be pointed out (Section 

5.1.3.4.6). 

5.1.3.4.1. The Definition of Parts 

Before dealing with the different types of part hierarchies it is helpful to define what a part 

is. The components of a circuit board are definitely NOT typical parts. They have the pleasant 

property of a history where the parts (the components) have existed separately and were put 

together by a planned and complicated process. 

No definition can be based on this property because it is the exception rather than the rule. 

A child that gets born has arms and legs, and most people would agree that these are parts of the 

body, but at no time was a formal assembly done. Another example would be the cutting of a 



141 

screw from a cylinder of steel. After the end of the process the head of the screw will undoubtedly 

be recognized as a part, but at no time was there any step of assembly involved. Switching to 

other domains, parts become even harder to characterize. A country can have different parts, but 

no clear boarder line can be drawn between them in many cases. The same thing applies to bodies 

of water like lakes and oceans. 

In some areas of language, parts are not spatial subunits at all, as is the case with the parts 

of an hour. (The use of the word "part" might be due to the visualization of an hour as the full 

disc of a clock). Another interesting example is a book. Books have two different part hierarchies 

which more often than not do not coincide. Pages are parts of a book, and so are chapters or 

paragraphs. But often a paragraph stretches over page boundaries. 

With all these different types of parts it becomes difficult to find a necessary and sufficient 

condition for the part relation. Winston et al. [WCH87]. characterize being a part by "the ele 

ments of inclusion and connection" [p. 438). We want to add a criterion to this characterization, 

namely we think of parts as smaller than their corresponding wholes. 

For abstract objects it is necessary to talk in terms of a mapping function that transforms 

them such that a spatial measuring function or a counting function can be applied to the image. 

Such a mapping function always selects a salient feature that is common to whole and parts. We 

will formulate this in the following necessary condition for being a part. 

If an object P is part of another object W, then a mapping m and a function f exist such 

that m and f fulfill the following four conditions. (1) m is a mapping function that can be applied 

to both P and W and which transforms the same salient feature of both of them into a spatial or 

into a countable representation. (2) f is a measuring function which assigns a measure of size or a 

count to the mapping of W as well as to the mapping of P. (3) The size assigned by f to the map 

ping of vV must be larger than the size assigned by f to the mapping of P. 

J( m( P)) < f( m( W)) (5.1.3.4.1) 



142 

( 4) The sum of the measures or counts of the mappings of all immediate parts of an integral object 

is smaller or equal to the corresponding measure or count of the mapping of this object. If there 

are k immediate parts this can be formulated as follows. 

'[) f( m( P;)) S J( m( W)) (5.1.3.4.2) 
i - I 

The reason for the use of the sign s will be explained with an example. If we consider a forest 

and apply a count function f, then the sum of trees will be exactly equal to the number character 

izing the forest. If we use an area function instead, the sum of the areas of the trees will be 

smaller than the area taken by the whole forest. 

5.1.3.4.2. A General Purpose Part Representation 

We will now introduce an overarching representational structure that covers the three 

different types of part hierarchies that we have found necessary to distinguish. 

Syntax: 

object 
modality 
part-relation 
sub-object 

<object> 
<modality> 
< real-assem-clu > 
<object-2> 

(5.1.3.4.3) 

Semantics: 

Above structure asserts that <object-2> stands in the part-relation to <object> which is 

specified by <real-assem-clu> and is valid in the modality <modality>. <real-assem-clu> may 

be one of the base nodes { real-part, sub-assembly, or sub-cluster}. 

5.1.3.4.3. Real Parts 

In the realm of graphical deep knowledge an object P is defined to be a "real" part of 

another object W if the following conditions are fulfilled: 



143 

(I) The object Pis considered part of the object Win the real world. 

(2) Both the object W as well as the object P have a form, i.e. they are both by themselves 

displayable and can be displayed simultaneously. 

(3) The display of W without the display of P creates a "useful" image. 

The last criterion is of course up to the eye of the beholder and cannot be formalized any 

further. The purpose of this definition is obvious: for real parts the complexity of a display can be 

limited by showing only the integral object without its parts, and without in this way creating an 

"amputee". For this purpose we assume that the form of W shows some sort of sketch that is 

suggestive of the object and all its parts without showing the parts in too many details. For a 

structural circuit board display this sketch will be identical to the outline of the dominating part, 

the printed wiring board. 

We will now present the correct instantiation of the general purpose part case frame. 

object 
modality 
part-relation 
sub-object 

<object> 
<modality> 
real-part 
<object-2> 

(5.1.3.4.4) 

Structure (5.1.3.4.4) expresses the fact that <object> has <object-2> as its real part, 

under the modality <modality>. Objects with many parts will be represented by many asser 

tions of the same type. 

If requested to display the object <object> at a low level of graphical complexity, then this 

is interpreted as a requirement to display <object> alone. If required to display <object> with 

complete information, then <object> and also <object-2> are displayed, even if <object-2> 

was not explicitly requested. 

Example: 

ml( object 
modality 
part-relation 

board-I 
function 
real-part 

(5.1.3.4.5) 



144 

sub-object multiplier-I) 

m2( object board-I (5.1.3.4.6) 
modality function 
part-relation real-part 
sub-object adder-I) 

Above structures represent a board called board-I which has two parts, an adder called adder-I 

and a multiplier called multiplier-I. 

5.1.3.4.4. Assemblies 

In the realm of GDK an object P is defined to be a ''sub-assembly" of another object W if 

the following conditions are fulfilled: 

(1) The object Pis considered part of the object Win the real world. 

(2) Both the object W as well as the object P have a form, i.e. they are both by themselves 

displayable and can be displayed simultaneously. 

(3) The display of W without the display of P creates an image never desirable for the user. 

An object, like W in the above definition, that has sub-assemblies is called an "assembly". 

An assembly may also have real parts. An example from the domain of circuit board maintenance 

will clarify the changed condition. In a purely functional representation the pins of an integrated 

circuit will not be displayed at all, they will just be implied by the wire that connects the pin to 

another circuit. In maintenance such a display is not sufficient, because the pin as well as the con 

necting wire can be defective. Therefore one would want to display both of them separately, and 

this is usually done by a little rectangle, representing the pin and called the port of the component. 

In fact it has even been argued [Tai87] that the contact point itself should be seen as an abstract 

object. 

Now it would make no sense to display a component and the wire leading to it, but omit the 

port that creates the connection between these two objects. In other words, whenever a display of 

the component is required, one automatically also wants the ports shown. A representation of 



145 

ports as real parts of the component is therefore not advisable, because a user could specify a com 

plexity limited display which would show the component but omit its parts. Therefore the ports 

have to be made sub-assemblies of the component. 

The Fig. 5.1.3.4.1 shows a logical representation of a multiplier with its ports. The follow 

ing structure shows the representation of assemblies which differs only slightly from the represen 

tation of parts. 

object 
modality 
part-relation 
sub-object 

<object> 
<modality> 
sub-assembly 
<object-2> 

(5.1.3.4.7) 

A proposition node dominating above structure expresses the fact that <object-2> is a sub 

assembly of <object> in the modality <modality>. In other words it is a graphically insepar 

able part. 

For display purposes the sub-assembly structure in a sense overrides user requests for low 

complexity displays. If the display of the object <object> is requested, then display of <object- 

Mult 

Fig. 5.1.3.4.1: A multiplier and its ports (logical representation). 



146 

2 > is automatically effected, even if the user has asked for a display of low complexity. 

Example: 

ml( object 
modality 
part-relation 
sub-object 

gate-1 
function 
sub-assembly 
port-2) 

(5.1.3.4.8) 

m4( object 
modality 
part-relation 
sub-object 

gate-1 
function 
sub-assembly 
port-1) 

5.1.3.4.5. Clusters 

In the realm of GDK an object P is defined to be a "sub-cluster" of another object W if the 

following conditions are fulfilled: 

(1) The object Pis considered part of the object Win the real world. 

(2) The object P has a form, while the object W usually has no form at all in the real world but 

has an assigned symbolic form. 

(3) It is never desirable to display P and W together. 

An object, like W in the above definition, that has sub-clusters is called a "cluster". A clue- 

ter may not have real parts or sub-assemblies, although some of the sub-clusters may be real parts 

of another object. Several .sub-clusters are said to "form a cluster" if they are all and the only 

sub-clusters of a cluster. Clusters are standing nearer to what one could call an abstraction hierar 

chy, than the other two types of part hierarchies. The definition given here corresponds to an 

improvement of the definition of clusters presented in [GeS87]. In our original definition symbolic 

forms were always and only boxes, and this fact was not represented in the knowledge base. This 

is quite satisfying for technical applications, however, if one wants to replace a cluster of trees in a 

map by a green blob, then this blob will not usually be a rectangle. This improved definition per- 

mits one to associate a symbolic form with every super-cluster, as a "real" form is associated with 



147 

every real super-part, and store it in the knowledge base. 

The case frame used is a specialization of the general purpose part representation. 

object 
modality 
part-relation 
sub-object 

<object> 
<modality> 
sub-cluster 
<object-2> 

(5.1.3.4.9) 

A structure .as the one above asserts that <object> has <object-2> as a sub-cluster, under the 

modality <modality>. 

If the drawing of <object> is requested in complete detail and <object> is a cluster, then 

only its sub-clusters will be drawn. If the drawing of <object> is requested at an appropriately 

reduced complexity level, then such a request is interpreted as a command to display the symbolic 

form of the cluster itself, but not its sub-clusters. 

It is permissible to have an object with real parts, such that some of those parts form one or 

more clusters. However it is required that all the parts forming a cluster have to be at the same 

level in the real-part hierarchy, and clusters themselves may not be hierarchical. With this 

mechanism the user gets one additional level of control over the complexity of the display. He can 

either request the display of an object, or the display of the object and its parts, or the object and 

its parts, however, with all the objects forming clusters replaced by these cluster. This is con 

sidered a display of intermediate complexity. 

A complete example from the domain of circuit boards will now be represented. Fig. 

5.1.3.4.2 shows a board with a number of components. It becomes immediately clear that there is 

more regularity on this board than just a one level part hierarchy. It is quite obvious that a 

number of components stands in a relation to each other which is replicated three times on the 

board. 

Each one of the three groups of components represents a functional unit dealing with one 

channel of a signal processing unit. However there is no object "channel processor" with its own 

form. The group of components that is functioning in a certain way is an object only in an 



148 

- 

Fig. 5.1.3.4.2: An example board. 

abstract sense, and no specific symbol can be introduced for it. But how does this relate to part 

relations and display complexity? 

It has been a long standing tradition in electrical engineering to describe complicated circuits 

by means of block diagrams which display each functional group of components as one so called 

black box. This method of display eliminates details and complexity. Sometimes these boxes are 

drawn around the components in the wire plan, but usually only empty boxes and their int.er con- 

nections are drawn. 

The GDK approach to this display problem is t.o represent all components as real parts of 

the whole board, but to summarize corresponding groups of objects as clusters. If a complete 



149 

display of a device is required, then the clusters are not displayed at all. However, if a simplified 

display is requested, then components that are sub-clusters of a cluster are collectively replaced by 

the representation of the cluster. Fig. 5:1.3.4.3 shows the block diagram for Fig. 5.1.3.4.2. One of 

the structures that express the sub-cluster relation for the given example might look as follows. 

ml( object 
modality 
part-relation 
sub-object 

cluster-I 
function 
sub-cluster 
pcm-chip-I] 

(5.1.3.4.10) 

The display of clusters of objects that consist of icons with connections, like circuit boards or 

SNePS networks, requires that all connections of cluster elements to non-cluster elements are 

Fig. 5.1.3.4.3: The block diagram for Fig. 5.1.3.4.2 



150 

replaced by connections that impinge on the non-cluster element and the symbolic representation 

of the cluster. 

5.1.3.4.6. A Comparison of Taxonomies 

In this section we will analyze the relations between our analysis of part hierarchies and the 

one in [WCH87] which stands in spirit quite near to our ideas. Our distinction between different 

part hierarchies has been motivated by the necessities of creating a graphical representation of an 

object with parts. In summary the super object of a real-part relation may be displayed alone or 

with its parts. The super object of a sub-assembly relation may be displayed only with its parts. 

Finally the super object of a sub-cluster relation may be displayed only symbolically when its 

parts are not displayed. The taxonomy of Winston et al. has been motivated by the use of the 

word "part" in language. They distinguish ·between (1) component/ integral part, (2) member / 

collection, (3) portion / mass, (4) stuff/ object, (5) feature / activity, and (6) place/ area. (1) 

corresponds in most cases to our real parts, and in some cases to sub-assemblies, depending 

whether one wants to permit the object displayed without details of its parts. (2) corresponds 

quite well to sub-clusters. (3), (4), and (5) are not covered by our analysis for the following rea 

sons. (3) talks about parts that are created by a separation process, for instance cutting a pie, 

while we are thinking in terms of an assembly process. The picture of a pie is not created by 

drawing all its slices! (4) deals with sub-parts on the molecular level ("stuff"), which we do not 

intend to display, unless material boundaries coincide with real sub-part boundaries. (5) deals 

with a metaphorical temporal use of the term "part" while we are talking about material parts. 

(6) seems well covered by our notion of sub-assemblies. Winston et al. write "places cannot be 

separated from the areas of which they are a part" (p. 426). 



151 

5.1.3.4. 7. Are there more Graphically Interesting Part Relations? 

The three described part relations for graphical deep knowledge leave one with the question 

whether there might be other part relations of interest. It turns out that one can organize these 

three relations in a table and then systematically extend the table to check for other candidates. 

The first line in the table should be read as follows. A real part is characterized by the fact that 

the part may be drawn by itself (a Yin the P column); the whole may be drawn by itself (a Yin 

the W column), and both may be drawn together (a Yin the T column). 

W(hole)P(art) T(ogether) 
--------------------------------------------------------- 
Real Part y y y 
Assembly N y y 
Cluster y y N 
4 N N N 
5 N N y 
6 N y N 
7 y N N 
8 y N y 

Line 4 is obviously a useless combination. Nothing gets ever displayed. Line 6 is uninteresting 

because the whole is never displayed, and line 7 is uninteresting because the parts are never 

displayed. This leaves us with lines 5 and 8 as serious candidates. Line 5 implies that if one 

object, be it whole or part, is ever displayed the other one is also displayed. This expresses a sym- 

metrical relation, while part relations are hierarchical relations. 

Line 8 becomes interesting if one wants to refer to holes (sic!) as parts. It is obviously 

difficult to draw a hole without the surrounding object. Therefore it is permissible to draw the 

outline of an object and the object with its hole, but not the hole by itself. Similarly, the peak of 

a mountain cannot be drawn without a mountain. One reason why we did not include this type of 

part hierarchy in our analysis was the awkwardness of expressing this relation in natural language. 

Consider for example a sentence like "The piece of Swiss cheese has eight holes as its parts". 

Nevertheless; in areas like solid modeling [Req80] holes are considered as parts, and if we would 

shift our focus from NLG to solid modeling representations we would need to deal with line 8 as a 



152 

part relation. 

5.1.3.4.8. Modalities and Parts 

It has been pointed out before that modalities are used universally to discriminate between 

different modes of representation, most notably logical and physical representations. One might 

doubt that this is really necessary for part hierarchies, but there are at least two interesting cases 

where differences between logical and physical displays occur. The first case has been alluded to 

before: integrated circuits very often contain a number of components, in a single (physical) box 

of a device. In the logical representation all the components are separate objects and might even 

be parts of different functional units. 

The other case occurs when having to refer to drawn parts of a wire. Imagine a functional 

circuit board diagram, as shown in Fig. 5.1.3.4.4. A user talking with a program about this cir 

cuit board could refer to the "upper part" of wire-7, because wire-7 in the Fig. is cut by wire-6 

into two different parts. However this diagram is a logical diagram. The intersection of the two 

wires wire-7 and wire-6 is an artifact of the functional representation. In the physical representa- 

tion no intersection can exist! 

In other words the logical representation of the circuit board has a part structure which is 

not contained in the physical structure and not even necessary in the logical structure. It is an 

accident of a specific layout of the logical representation and as such created only by the process of 

routing. If a system wants to understand the above reference to an "upper part", it has to main 

tain a part representation under two different modalities. In addition it will have to create the 

correct part assertion at drawing time, by reading back the picture that it drew. We have previ 

ously pointed out that readback of diagrams drawn by the system is an exciting perspective, how 

ever not within reach of this current investigation. 



153 

upper part 

cut point 

lower part 

Fig. 5.1.3.4.4: An example board with wire parts. 

5.1.3.4.9. The Inheritability of Attributes in a Part Hierarchy 

We will now turn to the problem of the inherit.ability of attributes along a part hierarchy. 

Consider the at.t.ribute of "faultiness", which is very popular in the domain of circuit board 

maintenance. At the beginning of a maintenance session it. is known that a whole board is faulty. 

The purpose of the maintenance session is t.o narrow down the fault to a single or possibly a few 

faulty component.s and acquit. all the others. To inherit the attribute of faultiness would com 

pletely defeat the purpose of the maintenance system! 

However, in creating a picture from predefined components, another view emerges. It is the 

nature of (om) graphics primit.ives that they do not. represent an object. in a size invariant format. 



154 

In other words, the form-function of an object always implies a size. To assert in the network that 

one wants a scaled multiplier, this operation has to be represented as an attribute of the picture of 

the multiplier. 

If a whole board is to be scaled, then all of its parts also have to be scaled. In that case it is 

obvious that one wants to inherit an attribute from an object to its parts. So two attributes have 

been shown, an inheritable one, and a non-inheritable one. This is the reason why inheritability of 

an attribute has to be asserted explicitly. Also note again that this is inheritance along a part 

hierarchy, not along a class hierarchy, a technique that has not been used in the KR literature. 

(We know of one approach that permits inheritance to any "grouping" [Smi83] including parts.) 

The case frame for asserting inheritability has been presented and completely described in the sec 

tion on attributes (5.1.3.3). 

The necessity of inheritance along part hierarchies is a very important and interesting 

finding, because it forces us to raise some criticism about the KL-ONE family of knowledge 

representation [BrS85]. KL-ONE and its descendents comprise the currently most popular family 

of network based knowledge representation systems in the field. The basic assumption made by 

these systems is that knowledge representation environments should include a taxonomic reasoner 

that is operating on a class hierarchy (IS-A hierarchy). The KL-ONE interpreter automatically 

takes care of inheritance (better: role inheritance) along this class hierarchy. However it does not 

supply a general purpose inheritance mechanism for other hierarchies, like part or containment 

hierarchies. As we have shown, it is a reasonable request to ask for inheritance along part hierar 

chies, and it seems that a knowledge representation system should treat different inheritance 

hierarchies consistently. 

SNePS, a propositional network-based knowledge representation system, does not supply any 

automatic inheritance, but supplies the ability to write path-based inference rules. An interpreter 

for such rules is implemented. It is the responsibility of the user to incorporate any required 

inheritance in his specific network interpreter. This is consistent with SNePS' status as a network 



155 

at what Brachman has called the "logical level" [Bra79]. However, knowledge representation sys 

tems at the "epistemic level" (like KL-ONE) should give due consideration to uniform treatment 

of other major ontological hierarchies. 

5.1.3.5. The Class Hierarchy 

5.1.3.5 .. 1. The Class Inheritance Mechanism 

The oldest known principle of knowledge organization, especially for network based systems 

is the class hierarchy [CoQ69,CoL75,Qui68]. Class hierarchies permit the elimination of redun 

dant storage of attributes with members of a class, because if every member has a certain (the 

same !) attribute associated with it, it is possible to store the attribute with the class instead of 

storing it with every single member. This elimination of redundancy has been based on the princi 

ple of cognitive economy, which, however, has gotten under some attack long time ago [Con72]. 

Considering the number of active elements in the human brain and the speed of many knowledge 

based AI programs, one also tends to advise AI researchers to make any effort to waste space and 

gain time, if human-like intelligence is to be achieved. 

Nevertheless class hierarchies have not lost their appeal to AI researchers. By concluding 

that a certain object belongs to a class, it becomes possible to assert a large number of (default) 

attributes about this object, without having to derive or perceive them. This ability is advanta 

geous in dealing with situations that require fast decisions (like tigers). If one has to verify that 

this specific member of the class of tigers is dangerous, it will be too late. 

The use of a class hierarchy has mostly been discussed in the sections on forms and positions. 

It has been shown that objects can inherit their forms and their positions along the class hierar 

chy. The latter is the case if the position is a relative position and all members of a class are parts 

at the same relative position relative to their reference objects. For the exact structures used refer 

to the chapter on positions (5.1.3.2). 



156 

The class hierarchy used is NOT a tangled hierarchy and thereby avoids a number of well 

known problems with multiple inheritance [ReC81]. For instance a conflict would arise if an 

object could be a member of two different classes each of which might have a different form. The 

two main case frames for class hierarchies will be repeated here: 

Syntax: 

<subclass> 
sub-class 
class 
modality 

<membership> : 
object 
type 
modality 

(5.1.3.5.1) 
<class-I> 
<class> 
<modality> 

(5.1.3.5.2) 
<object> 
<class> 
<modality> 

Semantics: 

(5.1.3.5.1) is a case frame, such that any node dominating it asserts that <class-1> is a sub-class 

of <class>. (5.1.3.5.2) is a case frame, such that any node dominating it asserts that <object> 

is a member of the class <class>. The arc labels "type" and "class" are used as synonyms. 

Reasoning based on the transitivity of the <subclass> case frame permits to deduce that 

< class-I > is a sub-class of any super-class of <class>, etc. If drawing of an <object> is 

required and its form and/or relative position are not directly associated with it, above structures 

can be used to localize a form or relative position. 

Example: 

ml( sub-class logical-component (5.1.3.5.3) 
class 
modality 

component 
function) 

Modalities are of interest in class hierarchies if one wants to talk e. g. about the class of all round 

components which might have the class of all circular components as sub-class. An object that has 

a round symbol in a functional display might very well be a square in its structural representation, 

and therefore be a member of a different class. 



157 

5.1.3.5.2. Class Constructs and Categorization Theory 

One of the most interesting lines of work in the field of cognitive psychology is the develop 

ment of categorization theory. The literature reports three different approaches to categorization 

[SmM81] the classical approach, the probabilistic approach (prototype theory) and the exemplar 

approach. The classical approach has been but totally rejected from a cognitive point of view. It 

requires that every member of a class is described by necessary and sufficient conditions. 

The prototype view has been developed by Eleanor Rosch [Ros78]. A "prototype" is a sum 

mary description of all the members of a class, and members are considered typical if they are 

similar to the summary description, and untypical if they are different from the summary descrip 

tion. However, even untypical members will be more similar to their prototype than to the proto 

type of any other cat~gory. 

An early knowledge representation system that incorporated the notion of prototype has 

been KRL-0 [BoW77a,BoW77b]. Recently some SNePS modeling of Rosch's work has been 

reported in the literature [PeS87]. 

The third theory of categorization is the exemplar view. The exemplar view differs from 

prototype theory in the following way. Prototype theory describes categories by one summary 

description which is not necessarily identical to any existing member of the category. Exemplar 

theory on the other hand postulates the use of one or more stored real exemplars of the category, 

in other words no summary description exists. 

The exemplar view of categorization permits an interesting twist to the problem of inheri 

tance. Consider an object with no specified form that belongs to a class hierarchy. Classical 

inheritance (and our algorithms represented so far) would search up in the hierarchy until at some 

higher level a form is encountered. However it might happen that no form is found anywhere in 

the hierarchy. It is our interpretation of exemplar theory that it would be valid to do a down 

search in the hierarchy for an object that belongs to the same class as the current focus object, and 

to inherit an existing form with up-and-down inheritance. 



158 

The idea of up-inheritance is not popular in AI. It is either ignored or explicitly prohibited. 

For instance, knowledge representation of the NETL style [Fah79], which is based on marker pass 

ing, prohibits the idea of inheritance according to an up-and-down-movement because if one would 

permit markers to move up and down in the network the whole network would eventually be 

marked. 

One is tempted to interpret up-and-down inheritance by considering the first step (the up 

inheritance) as a form of generalization or inductive learning. However, this is not what we have 

in mind, because the representation of the class itself is not changed by a step of up-and-down 

inheritance. If a class should have many members only one of which has a form, and if this form 

should be changed after one application of up-and-down inheritance, then the second application 

of this inheritance rule will supply the new form, not the old form. Were we talking about a step 

of generalization, then the class would preserve the form after the first use of up-inheritance.'! 

Are we then making a decision for the universal use of exemplar inheritance and against pro 

totype theory? Clearly this is not our intention, because up-and-down inheritance is only used 

when no sufficient form is associated with the class used for inheritance i. e. when our version of a 

summary description fails. 

In addition we have limited the use of up-and-down inheritance in two other ways. Up 

search is done only from the lowest level, the level of the individuals, to the level immediately 

above it, i. e. to the lowest level of classes. If there is no other member in this class, or if the other 

members do not carry the desired information, then up-and-down inheritance fails. One can argue 

that this does not make complete use of the class hierarchy, but it seems like a reasonable 

compromise, because humans use hierarchies that are flat and bushy. Rosenfeld has even argued 

that it is not necessary to view operations on hierarchies as recursive to an arbitrary depth, 

because this constitutes an unnecessary effort if one has only a flat hierarchy. 12 

11 This is not necessarily true if one wants to deal with generalization combined with truth maintenance. 
12 Azriel Rosenfeld, talk 4/28/87 SUNY at Buffalo, on Recognizing Unexpected Objects. 



159 

Secondly, up-and-down inheritance is used only for information that is urgently needed, and 

not as the default case. In a graphics system the one item of information that is obviously needed 

most is the form of an object, for which no "reasonable defaults" can be supplied. We will now 

formally define up-and-down inheritance which we also refer to as exemplar inheritance. 

Definition 5.1.3.5.1: Exemplar Inheritance. 

If an individual is missmg information about an important property, and the class it is 
immediately a member of is missing the same property, then the property may be inherited 
from any of the other members of this class. 

In our domain only "forms" are considered important, and we have therefore decided not to 

represent the fact that a property is important by an explicit assertion. 

It is not yet clear what happens when several members of a class have different, forms. vVe 

will argue now that this is unlikely for two different reasons. (1) Form is a salient feature of class 

members. In fact Rosch [Ros78] has shown that for base level and sub-ordinate13 categories a pic 

torial representation is maintained such that there is a strong correlation between prototypicality 

of a new member and the area overlap between the prototype and the new member. In other 

words, if two things look very different, it is quite unlikely that they belong to the same category. 

(2) It is also quite unlikely that a user would tell an NLG system about many different individuals 

that they have a certain (the same!) form, and then, as an afterthought, tell that all these indivi 

duals belong to the same class. Classes are (among other things) used to minimize communication, 

so such a behavior would completely defeat this purposes. 

It is likely that a user initially thinks of one object only and assigns it a form. When the 

second object of the same class occurs in the interaction he will notice that he can save himself a 

lot of typing if he tells the system of the class. At this point he should not be forced to tell the 

system that the class has the same form as the one member that he already introduced. But if the 

13"Chair" would be a base level category, "kitchen chair" a sub-ordinate category, and "furniture" a super-ordinate 
category. 



160 

form is actually different, then he will have to tell this fact. So the system is quite safe to rely 

that it receives complete but not redundant information, i. e. the system relies on pragmatic max- 

ims! 

Should the unexpected happen, and different members of the class have different forms, then 

several strategies are possible. Random selection (which is what is currently implemented), selec 

tion of the most common form, or selection of the most recently mentioned form are reasonable 

choices. 

5.1.3.6. Periodicity 

Periodic structures built up from simple constituents can be described in simple words and 

therefore (linearity!) deserve to be represented by a simple knowledge structure. Fig. 5.1.3.6.1 

shows a structure that is periodic in one dimension. The case frame for this structure is: 

Syntax: 

<periodicity> (5.1.3.6.1) 
object 
constituent 
inter-pos 
const-number 
modality 

<object> 
<object-form> 
<vector> 
<number> 
<modality> 

Semantics: 

Above case frame asserts that <object> consists of <number> occurrences of <object-form> 

that have relative positions between each other that are defined by the vector <vector> in the 

modality <modality>. <object-form> must be either an <object> or a <form>. 

This structure is similar in flavor to a cluster, except that all sub-clusters have the same 

form and relative position and no separate concept node for the sub-objects exists. The usefulness 

of this structure for drawing purposes is obvious. If the display of <object> is requested, then it 

is necessary to display <number> occurrences of <object-form>. The first <object-form> is 



161 

Fig. 5.1.3.6.1: A one dimensional periodic stru cture. 

placed according to the position of <object> . Al l other <object- fo rm>s are placed by adding 

the vector < vecto r > to the position of the <object- fo rm> placed immediately befo re. 

The <periodicity> cas e frame introduces the problem of uninst.an t.iated individuals 

[Fah79 ]. It refers to a number of objects fo r which no individual concept nodes exist. Should t.he 

user want. to refer to any single member of a periodical stru cture, the following new stru cture has 

to be generated by the NL parser. 

Syntax: 

< mentioned-ind iv> : 
object 
one-of 

(5.1.:3.G.:2) 
<object> 
<object-2> 



162 

modality <modality> 

Semantics: 

The object <object> is one of the objects that are described by <object-2> as a summary 

representation. This relations holds only in the modality <modality>. 

As a side note we would like to mention that the problem of uninstantiated individuals occurs in a 

different guise in the representation of plurals. Upon hearing somebody mention 500 horses, not 

all of them will be represented individually in the listener. 

Example (periodical structure): 

m2( object row-of-pcm-channels (5.1.3.6.3) 
constituent pcm-channel 
inter-pos m5( coord-sys world-I 

component 
m4( direction X 

measure ml( value 1 
unit inch)) 

component 
m3( direction y 

measure m2( value 0 
unit inch))) 

const-number 5 
modality function) 

This case frame describes an object called "row-of-pcm-channels" which is made-up of 5 pcm 

channel forms whereby the individual channels have reference points in relative positions to each 

other which are described by the vector (1 0). Two dimensional patterns can be constructed by 

requiring <object-form> to be instantiated as <object-2> only and by making <object> a 

constituent of another periodical structure. Fig. 5.1.3.6.2 shows the pattern that is created after 

adding the following structure: 

m4( object 
constituent 
inter-pos 

board-of-channels 
row-of-pcm-channels 
m5( coord-sys world-I 

component 
m4( direction X 

(5.1.3.6.4) 



103 

Fig. 5.1.3.6.2: A two dimensional periodic structure 

5.1.3.7. Angle 

measure ml( value 0 
unit inch)) 

component 
m3( direction y 

measure m2( value 2 
unit inch))) 

const-nurnber 2 
modality function) 

Our analysis has assumed the existence of primitive objects which are spatially combined. 

This does not leave a lot of opportunity for using angles, because angles apply normally to sub- 

primitive units like lines. For completeness a case frame will be specified that. expresses an angle 

between two linear objects. This case frame specifies the angle between two lines or line segments. 



164 

Syntax: 

object 
angle 
ref-obj 
modality 

<line-I> 
<angle-measure> 
<line-2> 
<modality> 

(5.1.3.7.1) 

Semantics: 

The angle between the objects <line-I> and <line-2> under the modality <modality> is 

<angle-measure>. <angle-measure> was defined previously (Structure 5.1.3.2.7). <line> 

describes a <form> or <object> consisting of one line segment only. 

5.1.3.8. Pragmatic Hierarchies 

We have so far mentioned part hierarchies and class hierarchies which are widely used in AL 

Assemblies which are operationally different from parts, but strongly related have been intro 

duced. Later on clusters were presented which relate to part as well as abstraction hierarchies. 

Some researchers in AI have used topic hierarchies [HaS86] and containment hierarchies [Fah79]. 

Goal hierarchies are ubiquitous in the planning literature, starting with PAM [ScA77J. Using the 

representation of comparatives and the attribute of importance a partial order can be introduced 

for the importance of all elements of a class, or all elements of a cluster. It seems natural to raise 

the question if there are any relations between these different sorts of hierarchies. 

Miller and Johnson-Laird review literature concerning unifying factors between different 

hierarchies [MiJ76]. It is claimed that part hierarchies ( they call the part relation "partonymy") 

are a more abstract version of containment hierarchies. Miller and Johnson-Laird say that 

"Drawings of the parts of an object will be parts of the drawing of the object, that is they 
will be located inside it; to the extent that part-whole relations can be represented graphi 
cally, the part-whole hierarchy must be isomorphic with a locative-inclusion hierarchy." 

Winston et al. [WCH87] refer to parts as meronyms and to the associated wholes as holonyms. 

Part relations are meronymic relations. They interpret part relations as semantic inclusion 



165 

relations in a taxonomy that has class relations and spatial relations at the same level. 

Class hierarchies have been introduced to AI for reasons of cognitive economy. However, 

their real benefit seems to be the speed up of communication that they permit. One can say useful 

things about all members of a class, without having to pay the price of mentioning all of them. If 

no intensional description of the class exists and one wants to say many things about this class, 

then one can still save time, even if one complete transfer of an extensional class description is 

necessary. Similar observations are true for part hierarchies, containment hierarchies, and impor 

tance hierarchies. One might want to say something about all the parts of an object, about all the 

cities in a certain area, or about all the important components on a circuit board. Because of 

these commonalities we refer to all such hierarchies as pragmatic hierarcliies, 

Although all these hierarchies relate a super-unit to a number of sub-units, it has not been 

found useful to combine them into a single case frame. Doing that would remove a number of 

important distinctions. Classes are never drawable, while objects are. If the "class" arc and the 

"object" arc would both become "super-unit" arcs, then this distinction would only be expressed 

by the relation itself and would eliminate declarative knowledge from the network and move it 

into the interpreter. Similarly, a "sub-unit" arc would not express the distinction between part 

relation and class membership, which would lower its value to a pre-Brachmanic is-a arc. In 

short, there seems to be no value in expressing this very general commonality of all pragmatic 

hierarchies in a knowledge base. Relation clement theory [WCH87] that analyses semantic relations 

according to their features would permit us to deepen the level of our representation so that com 

monalities between different pragmatic hierarchies are expressed, something we have not found 

necessary for GDK. 

5.1.4. Knowledge Compilation 

Our presentation of KR for NLG will be concluded with a short look at knowledge compila 

tion. Anderson [And83] describes applications of knowledge compilation to production systems. 



166 

He distinguishes two different steps of compilation. In the first step of his production rule based 

system, a number of production rules that are executed in close sequence is combined into a single 

production rule. This process is called composition. 

In the second stage this new production is transformed into executable code by a process of 

proceduralization. Knowledge compilation achieves the speed and reliability of a procedural sys 

tem while still maintaining the flexibility and generality of a declarative system. Knowledge com 

pilation models the process of extended human training that finally leads to the execution of rou 

tines without any thinking. 

The theory of graphical deep knowledge as presented in this investigation invites the intro 

duction of a comparable method of knowledge compilation. AB has been made clear in previous 

sections, the display of a complicated object with many attributes and many parts is achieved by a 

time intensive search which retrieves the specified parts and the specified attributes, does inheri 

tance of attributes to parts (if necessary) and of forms and sometimes positions along class hierar 

chies, and finally applies the attributes to the resulting forms and displays them one by one. 

AB opposed to Anderson's system there are no productions used anywhere, nevertheless it is 

possible to introduce a two step methodology of knowledge compilation. The first step consists of 

creating assertions about forms and absolute positions of objects on the screen. These objects will 

have their attributes already "frozen in", and no relative position evaluation, no part expansion, 

and no inheritance has to be done. Finally all these objects on the screen are made sub-structures 

of a new object representing the complete screen content. This structure represents a first step of 

knowledge compilation, because in the case of an identical display request as the one that resulted 

in creating these structures (and under the additional assumption that no new attributes have 

been asserted) the pictorial structure of the repeated request will be identical to the pictorial struc 

ture of the initial call. 

The second step of knowledge compilation, the proceduralization, can also be modeled easily. 

One should remember that all the form functions are constructed from a small set of primitives 



167 

(like lines, arcs, text, etc.). Sequences of these primitives create the structure of all the form func 

tions, for objects as well as for icons. The representation of a screen situation by assertions about 

the icons of the configuration at hand can be conflated into a single large graphics procedure by 

chaining the primitives of all icons together. 

This operation creates a structure with all the properties of a proceduralization. The simple 

execution of this procedure will create a display identical to the previous one, but the actual draw 

ing will happen many times faster than the drawing from the declarative representation. On the 

other hand, if all declarative knowledge is wiped out (by whatever cause), the procedural represen 

tation will not maintain anything like object identity of parts, part relations between them, their 

attributes, or their relative positions. In other words it becomes impossible to query the represen 

tation about these items of information. This is a typical characteristic of procedural knowledge. 

Cognitive agents .have problems to explain how they perform activities maintained only procedur 

ally, like riding a bicycle. 



168 

5.2. Reasoning 

For my thoughts are not your thoughts, neither are your wa.ys my wa.ys, 
saith the Lord. For as the heavens are higher tha.n the earth, so are my 
wa.ys higher than your wa.ys, a.nd my thoughts than yo1tr thoughts. 

Isaiah 55, 8-9 

The major reason for introducing the notion of graphical deep knowledge as separate from 

graphical knowledge has been the interest in doing reasoning about graphical structures. There 

are two types of reasoning that have been established in the literature. The more common notion 

of reasoning is based on a declarative representation (knowledge representation), often founded on 

a logic based theory. The other type is analogical reasoning. We will concentrate on logical rea- 

sonmg. 

5.2.1. Logical Reasoning about GDK Structures 

The first step of making a corpus of representations accessible to logic based reasoning is to 

transform it into a well formed declarative format with a defined syntax and semantics. It has 

been the approach of this investigation to limit the procedural representations which at some point 

are not avoidable in graphics to a small area, namely to iconic primitives. All conceptual relations 

between these iconic primitives are represented declaratively. 

The second step is to define rules of reasoning that can operate on the given structures. One 

of the strong points of SNePS is its ability to represent more sophisticated rules than other AI sys 

tems. The following piece of SNePSUL code shows a rule that says that anything that is left of 

something has this object to its right. 

(build avb ($x$y$z) 
thresh 1 

(5.2.1) 

arg (build object 
relpos 

*x 
(build coord-sys world-I 

component 
(build direction X 

measure (build value left 



169 

rel-to *y 
modality *z) 

arg (build object *y 
relpos (build coord-sys world-I 

component 
(build direction X 

measure (build 

unit left-right))) 

value right 
unit left-right))) 

rel-to "x 
modality *z)) 

This can be used in a situation where the position of one object A is known, and in addition it is 

known that A is left of an object B, however nothing (else) is known about the position of B. A 

person would immediately conclude that B is to the right of A, and a system claiming any form of 

intelligence should do the same thing. The above rule will enable it to do so. 

The reading of the rule is, that for all x.y.z if one of the two following arguments is true, 

then the other one must be true too, or: otherwise both of them are false. The two arguments 

express leftness of x relative to y and rightness of y relative to x. In other words, this representa- 

tion is an equivalence between the two arguments, but it is achieved as a specialization of a con- 

ceptual generalization of equivalence which holds for any number of arguments [Sha79a]. 

The three terms $ x, $ y, and $ z introduce three new variable nodes. These are nodes that 

can match any other node in the network. All occurrences of "x, *y, *z refer back to these same 

variable nodes. The "avb" arc expresses universal quantification of the variable nodes it is point- 

ing to. This is a predefined system arc. The "thresh" arc points to the number indicating how 

many of the following arguments have to be true in order to require all of them to be true. The 

"arg" arcs finally point to the structures that have to be true (or false). Both "thresh" and "arg" 

are also predefined SNePS arcs. 

Unfortunately, node-based reasoning is not sufficient for the arithmetic operations that, are 

used in position computations. Unless one wants to implement all of arithmetic in SNePS, there is 

no other way to do it than to escape to the implementation language, i.e. LISP. Concerning the 

slow speed of'rule based reasoning, SNePS offers an alternative reasoning mechanism, called "path 



170 

based inference", that can be used for many of the reason mg tasks indicated m the previous 

chapter on GDK structures. 

Path based inference in SNePS assumes that one has a node of a well specified category 

available (typically an "object") and follows the arcs that are pointing to this node backwards 

until one hits a node describing unknown and interesting information (for instance a "form" or 

one coordinate of a position). The well specified case frames of GDK assure that if the required 

information exists at all in the network, then it will be reachable by a well defined path. Paths 

can be described by a sublanguage of SNePSUL, as explained in [ShS83], but we will limit our- 

selves to an example. 

(find (5.2.2) 
(compose 

form-! 
( domain-restrict 

( modality function) 
class) 

(kstar 
(compose 

class- ! 
( domain-restrict 

(modality function) 
sub-class))) 

type- ! 
( domain-restrict 

(modality function) 
object)) 

pcm-I) 

The "find" function denotes a retrieval operation from a SNePS network. Two arguments are 

supplied to this operation, a modality (namely "function") which is used at three positions in the 

find call, and an object, namely "pcm-I". All other symbols in (5.2.2) correspond either to arcs of 

GDK case frames, or to keywords of the path sublanguage of SNePSUL. The goal of this opera 

tion is to retrieve a form for pcm-1. Figure 5.2.1 will be helpful in understanding this example. 

The "compose" keyword introduces a path. A path is constructed from its tail to its head, 

therefore we start with a "form-" arc that would emanate from our requested result, should it 

exist. (Remember that an arc with a minus after its name is an ascending arc). The exclamation 



171 

form 

sub-class 

object class 

modality 

modality 
modality 

Fig. 5.2.1: An example structure for pathbased inference. 

mark indicates that we are looking for an assertion, i. e. it would not be sufficient to find a correct 

structure if it would only describe a hypothesized proposition. The "(domain-restrict (modality 

function) ... " piece expresses an additional constraint on this assertion: it must dominate a node 

"function" by way of a "modality" arc. Finally our path leaves the assertion node along a class 

arc. This time no negation is specified, because the pa.th actually runs parallel to the arc. 

The "kstar" keyword indicates that the structure that is parenthesized together with it, can 

be repeated 0, 1 or arbitrary many times, i.e. it is a Kleene * operator. The potentially omitted or 

repeated structure consists of a reverse "class" arc "class-", followed by a "sub-class" arc. As 

before, this piece of path can be passed only if the node dominating it is asserted("!"). and if it. is 

also dominating a modality arc pointing to a "function" node. Finally the structure must. ter 

minate with a "type" arc which is traversed in the reverse direction, and an "object." arc that 

coincides with the head of the path which is pointing to "pcm-1 ". Like before, mod alit.y and 

assertional status must be correct, otherwise t.he path traversal fails. 



172 

For use in a graphical generator function the described path is encapsulated in a LISP func 

tion, with "pcm-1" and "function" consistently replaced by LISP variable names. Because of the 

SNePS unquote convention14 it is necessary to enforce an additional level of LISP evaluation. For 

the computation of a typical position several such paths will be necessary: one for a relative x 

coordinate, one for a relative y coordinate, and two for x and y coordinates of a reference object 

(which could themselves be relative to another object ... ). The final operation is then arithmetic, as 

opposed to logical: relative coordinates have to be added. 

14Atoms are not evaluated unless they are specifically unquoted. 



CHAPTER 6 

IMPLEMENTATION 

AB is the custom for an Al dissertation, large parts of the theory developed in the previous 

chapters have been implemented. Natural language parsing is done by using a semantic grammar 

[BuB79] based on the ATN formalism [Woo70] [Bat78] [Pal85]. The used ATN is part of the stan 

dard SNePS distribution [Sha82]. 

The grammar written for this investigation categorizes input into assertions, questions, and 

commands. Assertions result in building GDK structures that represent the language utterances. 

Questions activate retrieval operations and return the results of these operations, sometimes com 

bined with a canned phrase. Whenever possible, questions also activate calls to the display func 

tion, such that replies are given graphically as well as with language. Commands always activate 

calls to the display or the screen erase function. 

During natural language input a user might refer to a "form" which is unknown to the sys 

tem. In this case, the grammar invokes a graphics editor ( called Readform) that permits the user 

to design the referenced form icon. After exiting the editor, the user will find himself again in the 

language interaction environment. Alternatively the graphics editor may be invoked directly from 

LISP to create necessary form icons before initiating a natural language dialogue. 

Diagram display is performed by a program called "TINA" (which stands for "TINA Is No 

Acronym"). Inside of LISP a user can invoke TINA as a function and pass the objects he wants to 

see as arguments. A number of options are provided, for instance a user can select how many lev 

els of the pa.rt hierarchy of the object should be displayed. 

There exist two versions of the combined parser/TINA program. The version that imple 

ments the theory shown in the previous chapters is running at USC/ISI on an HP 320 workstation 

with color graphics. SNePS as well as TINA are coded in Common LISP. The necessary graphics 

173 



174 

primitives are implemented as foreign function calls referring to C procedures which are part of 

the X window environment. Earlier work which is based on a weaker set of GDK structures, and 

which was reported in [GeS87] has been implemented in Franz LISP on a VAX 11/780 at SUNY at 

Buffalo, using a "GIGI" graphics terminal and a set of LISP graphics primitives originally written 

by Z. Xiang. This earlier version also contains the "Intelligent Machine Drafting module" which 

will be described later on. In this chapter we will first show a few examples of calls to the "TINA" 

program, to demonstrate some of the possible options. Then we will show a number of annotated 

demonstrations of the combined parser /TINA environment. The graphics output will be demon 

strated by screen dumps. After that we will briefly discuss "Readform" the graphics editor. In 

the final section of this chapter we will explain the use of TINA for maintenance purposes. 

6.1. The TINA Display Program 

The TINA display program expects a calling argument that specifies one or more objects to 

be displayed, and a knowledge base containing graphical deep knowledge about these objects. The 

basic calling format is as follows: 

( tina [global-options] { [local-options] {object}}) 

Hereby the following conventions are used: "[]" describes optional elements; "{}" describes one 

or more repetitions. "object" stands for a node representing an object in the system, i. e. an 

<object> of our theory. 

Global options may be :fill :environ, and :world and only one of these may occur in one com 

mand. :fill and :environ specify two modes of display that will be discussed in the examples below. 

:environ also takes a sub-option called :upto which will also be explained with an example. The 

":world" option specifies that all given objects can be expected to have concrete positions asserted 

in the network. This option permits skipping tests that would lead to fuzzy positioning routines. 



175 

Local options have to be given in a specified order and the following are permissible: .wm 

dow, :modality, :mark, :level. A :modality always has to appear after a :window but before a 

:mark or :level option. :modality permits to select a modality different from the default modality 

which is ":function". :window takes four numeric parameters that define a sub-window for 

display. :mark graphically marks the object following it. Finally, :level tells the system the 

number of levels in the part hierarchy that should be displayed. 

(tina DlMl) (6.1.1) 

This is the simplest possible call. An object named DlMl will be retrieved. TINA will search 

through the knowledge base to find form information about DlMl (section 5.1.3.1). After that, 

attribute information will be retrieved. As has been explained in the chapter on attributes 

(5.1.3.3), this knowledge will be used as a set of functionals which modify the form of the object. 

The next step is position retrieval. The chapter on positions (5.1.3.2) contains a large number of 

possibilities how the position case frame can be instantiated, but in most cases one can assume 

that a position will be stored as a numerical relative position such that a chain of relative posi 

tions can be constructed which finally refers to the screen coordinate system. By applying the 

modified form function to the x and the y value of this position, DHvil is made to appear on the 

screen. 

( tina D lMl D 1M2) (6.1.2) 

This second example is given only to illustrate the fact that variable numbers of parameters may 

be used. 

(tina :level 2 DlMI) (6.1.3) 

Part hierarchies have been explained in detail in the chapter on parts (5.1.3.4). The :level option 

describes how many levels of objects in the part hierarchy below the given object are requested. In 

this case it is specified that D lMl and one level of its parts are requested. 



176 

(tina :level O DIMI) (6.1.4) 

(6.1.4) has been implemented for completeness purposes and describes an empty call, because O lev 

els i.e. not even the object itself, are displayed. 

(tina :level 1 DIMI DIM2) 

(tina :level 1 DIMI DIM2 :level 2 DIAI) 

(6.1.5) 

(6.1.6) 

The above two examples show the range of validity of a local option. It extends to the beginning 

of the next option. Global options apply to the whole command. In designing this calling syntax, 

an attempt was made to model UNJX1 options, rather than having a proliferation of parentheses. 

( tin a :fill D IMI) (6.1.7) 

The :fill option activates an image transformation. It permits the display of an object optimally, 

by using all the space available. For this purpose a scaling/shifting step is interpolated into the 

display operation. This step blows up or reduces and relocates a requested object such that it 

optimally fills a given default window and that no distortion of the given shape is effected. The 

default window used is the right half of the screen. The :fill option is a global option in that it 

applies to the whole call. The fill option is a special case of the :window option, which permits to 

select a sub window of the graphics window at calling time: 

(tina :window 100 100 200 200 :level 1 DIMI) (6.1.8) 

However there may be several :window options in one call, but only one :fill option. 

(tina :mark DIMI) (6.1.9) 

The user can specifically request the emphasized display of an object. The :mark option is imple 

mented ( depending on the type of graphics hardware available) by turning blinking mode on for 

1 UNIX is (of course) a trade mark of AT&T Bell Labs. 



177 

the time the specified object is displayed. If the given graphics hardware does not permit any 

blinking the mark operation is executed by repeatedly overdrawing of the object while slightly 

(one pixel) displacing the object in the process of overdrawing. This creates a triple line width for 

all horizontal and vertical lines and makes the component more conspicuous. The mark imple 

mentation is also used in the :environ implementation as specified below. 

(tina :environ :level 1 DlMl) (6.1.10) 

The environment option has been especially useful for circuit board display. Showing a whole cir 

cuit board on a single small screen will not result in too much detail for each object. On the other 

hand, showing a single component of a circuit board is next to useless, because connectivity condi 

tions have to be preserved. The environment option solves this dilemma by splitting the screen 

into two parts. The left half of the screen is :filled with the requested object. The right half of the 

screen is :filled with the integral object of which the requested object is a part. 

The user specifies only the component for the left window. The environment is found 

automatically by doing an up-search along the part hierarchy. Note that the same part hierarchy 

is now used in the opposite direction, and therefore proves already as more powerful than any pro 

cedural object representation. 

Also the display does two more things to help the user orient and to eliminate irrelevant 

information. First of all it :mark's the requested component inside of the reference object. 

Secondly, when searching the part hierarchy up the program uses a sibling strategy of display 

which moves one level back down from every superior level found in the search. This means that 

an object is displayed with its siblings, and so is its immediate super-object, but the siblings of the 

super object are not farther expanded. This creates a representational structure as shown in Fig. 

6.1.1. The :environ mechanism has been developed in the chapter on pragmatic maxims of quan- 

tity (3.1). 

(tina :environ :upto 2 :level 1 Dl Ml ) (6.1.11) 



178 

e Requested Object 

El9 Displayed in :environ mode 

0 not displayed in :environ mode 

Fig. 6.1.1: The environment display. 

It has not been made clear so far, but the upsearch through the part hierarchy is unlimited. If the 

user knows that there a.re too many levels of hierarchy between the object requested and the ma.in 

object of the system, he can limit the upsearch length. This is done by the sub-option :upto to the 

:environ option. 

(tina. :environ :upto O :level 1 DlMl) (6.1.12) 

This is a special case that suppresses the display of the environment altogether. It is not usefully 

different from the :fill parameter, but it is useful if display is itself called from another program 

with a LISP variable as parameter, and this variable is possibly set to zero. .cnviron is a global 

option, however it permits only one focus object, so the distinction is of little interest. 

(tina r (car object-list))) (6.1.13) 

(6.l.13) shows the interface that. SNcPS supplies to get at. the LISP evaluator. Objects displayed 

so far were concepts of the SNePS representational system. Here a node is accessed as a LISP 

atom. ( Of course LISP at.orns are the implemcn tat.ion a.I basis for SNePS nodes too). 



(tina (find object- m50)) 

179 

(G.1.14) 

This shows another version of SNePS access, TINA is called on the result of a knowledge base 

search. "find" is the SNePS function that retrieves a node according to a pattern, not the Com 

mon LISP "find" function. 



180 

6.2. Example Runs 

In this section we will present a number of annotated demonstrations of the combined 

parser/TINA program. We will show the interaction in the text section and interpolate figures of 

screen dumps wherever necessary. User input is always preceded by a prompt consisting of a colon 

and two greater signs(: > > ). Annotations are given in square brackets. 

Demonstration 1 

[ This demonstration introduces a few of the basic capabilities of the system. It solves a challenge 
problem that was presented by Norm Sondheimer at IJCAI 1981, at the Panel on the use of "Point 
ing" in user interfaces. The problem solved is, that we have a system with access to a database of 
ships and information about their state. All ships that are in a non-operational state should be 
displayed upside down. This change in presentation policy is to be achieved by a natural form of 
interaction, preferably by "telling the system".] 

> >screen-coord-sys is a screen coordinate system with s-x s-y in screen 

[ The program assumes the existence of a coordinate system called screen-coord-sys. However, the 
user is free to assign names to the coordinate axes.] 

PARSED 

> > The assumed modality is function 

[ Instead off orcing a modality into all sentences we declare one in the beginning.] 

PARSED 

> >one inch corresponds to 73 pixels 

[Different display devices differ in their resolution, and we can inform the system about the current 
resolution. Isotropic hardware is assumed, however.] 

PARSED 

> > the view of screen-coo rd-sys is front 



181 

ftlext fdlot [y [ank fpult pfollyline [b Iox cl I'[rc le falrc [r Icdr aw [z l 
[rn l ar k fplolyi:-on [c lo lo r fulndo flload [co lny fshlift felxit [s lave fql:lt 

: >>one inch corresponds to 73 pixels 

PARSEO 

: >>the view of screcn-coord-sys Is front 

PARSEO 

: >>ship-t Is a ship 

PARSEO 

>; >>the fora of• ship Is ship-fora 

»¥03 3J{IMJIU:1 i I i i i i i i i i i i i ii i i i i i I i I i ii i ii ii i i I i I ii i i ii i i i I i i i l i i i i i i i i i i i I i i i i t 

Fig. 6.2.1 

[ This is necessary in case a term like "behind" is 11sed, even if a plane coordinate sys km has been 
defined. Above four sentences define a sort of preamble that o c c urs in most demos and that will not 
be repeated any more.] 

PARSED 

> >ship-1 is a ship 

[ This creates an assertion that "ship-1" is a member of a class called "ship". The ATN does not 
use a lexicon, and both words sh.ip-1 and ship are completely 1111known lo the .system.] 



182 

PARSED 

>>the form of a ship is ship-form 

[ This sentence asserts that the form of every member of the class "ship 11 is "ship-]. orm ". The class 
is known from the previous interactions, but "ehip-] orm 11 is again new to the system. Because this 
form is not yet known, the user is put into the "Read/ orm " editor that permits the creation of a 
form. This editor is menu based and uses mostly single letter commands. The first screen dump 
{Fig. 6.2.1} was done after entering the main menu of Headform. The upper part of the screen is 
the graphics window, the lower part is the interaction window which runs under GNU Emacs. The 
next three screen dumps {Fig. 6.2.2 to Fig. 6.2.4} show intermediate states in icon creation. After 
exiting Read] arm, the user returns automatically to natural language interaction.] 

Keep making new lines, choose the same spot twice to end 

: ))one Inch corresponds to 73 pixels 

PARSED 

: ))the view of ,crecn-coord-sys Is front 

PARSED 

: >>•hlp-1 ,. • •hip 

PARSED 

»o 
: ))the form of a shlp 1, ship-for~ 

™rn•aw.iq,111111:t·li<·J 1111111 11111111111111111111111111111111111111111111111111 11111111 

Ji'ig. 6.2.2 



183 

PARSED 

> > ship-I is at 200 300 on the screen 

[ This sentence asserts a position for ship-1.] 

PARSED 

> >clear the screen 

[ Now the graphics window is erased.] 

DONE 

> >please show ship-1 

[Ship-1 is displayed at its correct position, not the one where the icon was created. This is the 
situation in Fig. 6. 2. 5] 

DONE 



184 

Do you want this object (f]illcd [u]nfillcd (d]eletcd 

~0 / ~--~ 

D 

: >>ship-1 Is & ship 

PARSEO 

: ))the tor• ot ~ ship Is ship-for• 
»o 
»o 
»I 
))1 
»I 

"404·314-J&IIO,_ ™W3..lll#WW.lll,ii iii /:J,BH·H ii l Iii ii Iii ii I iii iii i Iii i I l ! I Iii i I I Iii ii Iii i Ii! iii ii Ii Ii Iii I I Ii!> 

Fig. 6.2.3 



185 

Defined object 

,, 
»u 
»e 
>>ship-fortA 
SHIP-FORM 

PARSED 

: »I 

»¥C3··'i+f&lltt:1 ™™DRMMJ'i,ii iii i;[,J33·i·li Iii iii iii iii iii i 11 iii iii iii I Iii iii iii iii Iii iii iii ii\ ii Iii iii i iii J 

Fig. 6.2.4 



186 

> > the state of ship-I is c4 

[Now an attribute is asserted about ship-L. The system has no knowledge about the meaning of 
either "state" or "c411

• 04 is the official Navy terminology for "non-operational".] 

PARSED 

> >state is expressed by rotate-jg and 180 represents c4 

[ Now "state 11 receives meaning by binding it to a modifier function and "c4 11 receives meaning as 
an argument to this function.] 

PARSED 

> >show ship-I 

[Ship-1 is redisplayed, and this time the attribute is correctly incliuled. In other words, we have 
solved the challenge problem. This is the situation in Fig. 6.2.6] 



187 

• ,l,1~11 j.J.. ~ &\. --- --- \.IH ....... .:.\.. ...... 

PARSED 

: >>cle~r the screen 

OONE 

DONE 

: »I 

7110#··'1-J.fMJltr:1 mraE™*W-f'lrii iii ]:f,)33·1·ii iii Ii Iii iii iii iii i I I iii iii l iii iii i Iii i I Iii iii i ii LI iii Iii iii iii i I 

Fig. 6.2.5 



188 

I 
0 
0~ 

1• 
DON€ 

: ))the ct&tc of chlp-1 le c4 

PARSED 

: >>st~te le exprecsed by rot&te-Jg &nd 180 represents c4 

PARSED 

: ))chow chlp-1 

000€ 

: )) 
"IC! 3\-¥ 1-&ilft:1 tJl.!.li.ll li:l.!rnWWWJ·l,ii ii I l:t,)43·\.! iii i I Iii! iii iii i I Iii iii ii l i Ii I Iii iii iii i 11 iii Iii Iii iii iii ii I I I I I I 

Fig. 6.2.6 



189 

Demonstration 2 

[ This is a small continuation of the previous demo. fl shows tliat all the asseriions made to the 
system are accessible to questioning.] 

> >what is the form of ship-I? 

[ The system responds in lwo different ways. It prints tlie name of the f onn, and it also demon 
strates the form by drawing ship-L (Fig. 6. 2. 7).] 

I 0 
0~ 

,. 
SHIP-fORN 

: )) 

7110~ 3!-t JC.jltt) lf:l!Ej;IIE:L!!!ill•»wJ111ii iii H·IJ3·l iii Iii ii l iii ii I! iii Iii iii l i l i ! Iii iii iii iii iii ii Iii iii Iii i l I I l i Iii 

Fig. 6.2.7 

SHIP-FORM 



190 

> >what is the state of ship-I? 

C4 

: > >where is ship-1? 

(200 300 "relative to" screen-center) 

: >>what are the members of ship? 

[This is the state of Fig. 6~2.8] 



191 

I 
0 
0~ 

: ))where is ship-1? 

(200 300 "rel•tive to" SCREEN•C€NTER) 

: >><flh~t •re the ~c~bers of ship? 

SH!P· 1 

: >>I 

m&O~·'FI 1&110:1 IPl!EiAm.D*#ll;ij,ii iii f:f,ll(·l··l l iii I I iii iii iii Iii iii i ! iii iii iii I I I Iii I I I I Ii Iii l Iii Ii Ii I Ii iii ii 

Fig. 6.2.8 



192 

SHIP-1 

> >elmer-rnontgomery is a ship 

PARSED 

> >elmer-montgomery is here 

"'(~o _I D 

: ))cl~er-CK>ntgo.cry Is & ship 

PARS(O 

: >>et~er-aontgoc.ery Is here 

(501 296) 
PARSEO 

: »I 

7110~·'13 EAJIU:l ll=19f.1:.ME:illimWMWJ111li iii i=t·I13·i·i i I I Iii Iii Iii ii Ii Iii 1 ii Ii Iii ii l iii i I I Iii iii i Iii Iii iii iii iii i 11 ii J 

Fig. G.2.9 



["here" activates the graphics cilt'sor read-out routine. After selecting a position the elmer 
montgomery is immediately drawn and the position is printed out. Tliis i.s shown in Fig. 6. 2. 9] 

(501 296) 

PARSED 

> >what are the members of ship? 

[ Now there are two members, and the system reacts appropriately (Fig. 6. 2.10 ). ] 

I 0 
0~ 

."'(~o ___,/ 
D 

(ELMER-MONTGOMERY SHIP-1) 

: » 

"403 -'i3 l&Jlttl 4l:l!fj:JIQ31DWMW;111il i ! i /:f,)33·! ii Iii iii Ii I Ii! i Iii Iii I l iii Ii I l I I I Ii I Iii! 1 iii I! i Iii i I Iii i Ii l iii i I 

Fig. 6.2.10 



194 

(ELMER-MONTGOMERY SHIP-1) 

: > > erase the screen 

DONE 

: >>how would elmer-montgomery look with state c4·? 

(M96! OBJECT (ELMER-MONTGOMERY) ATTR (M20)) 

node dismantled. 

[Above simple form of hypothetical reasoning is implemented by building and then erasing a struc 
ture asserting the c4 attribute. The two lines after the request are responses from the SNePS erase 
function. See Ag. 6.2.11] 

so 

: > >show elmer-montgomery 

[Now the ship is displayed in its normal position again. We did not tell the program that the 
elmer-montgomery actually JS c4. See Fig. 6. 2.12 for this final screen dump.] 



195 

I 0 
0~ 

: ))how would el~er-nontgo~cry look with st~te c4? 
(NS61 OBJECT (ELNER-NONTGOMERY) ATTR (N20)) 
nodC dis~~ntled. 

so 
»I 

t ¥ 03-' j.J.JMJlttl 6l=IIIE1'ME:illlmWMW41l,ii l l ! i:J,Ji{·l·I' i Iii iii illiiiiiiiiiiiiiiiiiliiiiiiiiiilliiiiiiiilliiiiiii iii/I 

Fig. 6.2.11 

DONE 



195 

: ))how woutd c(~cr-~ontgomery took with st~tc c4? 
(M961 OBJECT (ELMER-MONTGOMERY) ATTR (M20JJ 
node disa4ntlcd. 

so 
))show elSW!r-MOntgoaery 

DONE 

: »I 

IPl!iE1:Mlill.rmWXWJtj,ii iii \:t·l13d.\ iii! iii i Ii Ii Iii iii i Iii ill iii iii iii iii iii Iii ii Iii iii i Iii iii iii ii Ii 

Fig. 6.2.12 



197 

Demonstration 3 

[ This demo as.smnes that a number of electronic form primitives have already been defined. A 
screen coordinate system. is also known. fl demonstrates several features, most importantly reason 
ing with a merological syllogism, i. e. parts of a part of an object are also p arls of th.e object.] 

> > the form of a board is xboard 

PARSED 

: > > b2 is a board 

PARSED 

: > > b2 is at 2 6 inches on the screen 

PARSED 

: > >show b2 

[Ag. 6.2.13] 

DONE 

> > b2 has and-I and and-2 as parts 

[Parts are introduced at this point.] 

PARSED 

: > >and-1 and and-2 are members of and-gate 

[A one level class hierarchy is built.] 

>>the form of an and-gate is xand 



198 

PARSED 

: ))b2 Is• bo~rd 

PARSED 

: ))b2 Is 4t 2 6 Inches on the screen 

PARSED 

: >>show b2 

DONE : ». m11L ,t1.J.EMJ1tn RCI!..fLIIE1.!!!;£D•»Mftliii Iii J;[,)3(,1 i Iii i \ i Ii I iii i l I Ii Iii ii I I I l I I I Ii I I! ii Iii iii iii iii ii Li i Ii I I (i i Ii I 

Fig. G.2.13 

PARSED 

> >and-I is at 1 -1 inches relative to b2 

PARSED 

[A relative p ositioti relative lo a reference object is given.] 

> >and-2 is at 1 -3 inches relative to b2 



199 

PARSED 

> > erase the screen 

DONE 

> >show us b2 

[Simply asserting parts of an object does not influence the reaction to a natural language request J or 
display. This is shown in Fig. 6. 2.14 ] 

PARSED 

: >>~nd-2 J~ •t 1 -3 Inches rcl•tivc to b2 

PARSED 

: >>cr•se the screen 

00"( 

>>show- us b2 
I 

n1c~ 1111w1m CI!.ll.llElli!llll>»W•i\11i i :f,Ji{·!-1 Iii iii I! l I 1 I I I I l I I l Ii! l I Iii Iii I Ill! iii Ii I I I I Ii l ii Iii ii ! ii Iii ii 

Fig. G.2.14 



200 

DONE 

: > > clear the screen 

DONE 

: > >show 2 levels of b2 

[By using the part hierarchy as selection mechanism, a display of b2 with its parts is generated. 
Refer to Fig. 6. 2.15] 

DONE 

: > > the form of a port is xport 

PARSED 

: >>port has upper-in-port, lower-in-port and out-port as sub-classes 

[A two level class hierarchy is built. The class "port" has three eub-clcssee: upper inports, lower 
inports and outports.] 

PARSED 

: > >upper-in-port has and l-inp l and and2-inpl as members. 

PARSED 

: >>lower-in-port has and l-inpz and and2-inp2 as members. 

PARSED 

: > >out-port has and l-outp and and2-outp as members. 

[J\1embers of the sub-classes are asserted.] 



201 

=D- 

=D- 

DONE 

: >>show us b2 

DONE 

: ))clear the screen 

DONE 

>>show 2 level$ of b2 

! 

jj\\lliiiiiiilliiiiii!Il iiiiiiiiiiiiiiiiiiiiiiiiiiif 

Fig. 6.2.15 

PARSED 

> >and-1 has and I-inp l and a.n d l-j np? and and I-out.p as parts 

PARSED 

> > an d-S has andz-inp l and and2-inp2 and andz-outp as parts 

[A third level in the part hierarchy i.s introduced. an d l-inp l is a part of aiul-L, and therefore it is a 
second order p ari of b2.] 



202 

PARSED 

>>members of upper-in-port are at -30 -5 relative to their super-part 

PARSED 

: >>members of lower-in-port are at -30 -25 relative to their super-part 

PARSED 

>>members of out-port are at 60 -15 relative to their super-part 

[Above three sentences create relative positions that arc associated with three classes and that may 
be inherited to individuals.] 

PARSED 

> > erase the screen 

DONE 

> > display 2 levels of and-1 

[ and-1 and its ports arc displayed. Fig. 6. 2.16 shows this.] 



203 

PARSED 

: >>~embers of out-port are at 60 -15 relative to their super-p~rt 

PARSED 

: >>erase the screen 

DONE 

I 
>>display 2 levels of and-1 

7lJQ§ .I j.J.fMJlff:1 CI!.fTIIIE:ill..UD•»o,q,)i i l i :t,Ji<·I Iii iii l I Iii ii l i I I! Iii ii Ii I Ii I I Iii i Ii Iii ii! iii iii iii iii ii I I l Ii j iii ii l 

Fig. 6.2.16 

DONE 

> > clear the screen 

DONE 

> >display 2 levels of b2 

[The parts of and-1 are not d1 .. 5p{ayed, because they are on the third level! (Fig. G.2.17).] 



204 

=[)-- 

=[)-- 

DONE 

: ))displ&y 2 levels of •nd-1 

DONE 

DONE 

I 
))displ•y 2 levels of b2 

™™*»W,ij,0\--i--i-_;:f.JU·liiiliiiliiii!iiliiiii ili!iiiiiiiii!iiiiiliililiiiiiliiiiili.liiiiiil 

Fig. 6.2.17 

DONE 

>>erase the screen 

DONE 

> > display 3 levels of b2 

[b2 with all its parts and the parts of its parts are displayed. In other words, this time the parts of 
an.d-L are displayed. Fig. IJ. 2.18 shows this. J 



205 

: ))displ~y 2 levels of b2 

DONE 

: >>cr~se the screen 

DONE 

))displ~y 3 levels of b2 
I 

n;o3 •1-1EMJ1rrn CD.fi:.IIE:lli3.ill##Jla111ii IH·liHiiiii ii ili!ii iii iii! iiiliiiiiii /iii iiiii!i!iiiiiii ii ii 

Fig. 6.2.18 

DONE 

> > clear the screen 

DONE 

>>fill 100 100 300 300 wit.h and-1 

[ This introduces another feature of the .system. Object.scan be displayed in sub-windows and will be 
stretctied su.cli that the window is opti111ally Ji.lied, h.ou-ever the x/y ratio of the objecl size 1.·.s main 
tained. (Fig. 6.2.19}.] 



206 

DONE 

> > clear the screen 

DONE 

> >show and-1 with its environment 

[ This demonstrates "environment mode". It shows an object, its super-part and its siblings. In 
fact it shows also the first level parts of the object and the siblings of its sup er parts, up to the main 

- -t' -., - - - - - 

OONE 

: >>clc•r the Screen 

OONE 

))fill 100 100 300 300 with ~nd-1 
I 

:ixc~ 'Ft R1J1m U!.ll.liu.::IillWWW,q,aj iii :[,ti3·1 Iii ii I! ii! i iii! i l i I I I Iii ii! Iii iii iii ii Iii iii i l i Iii iii i Iii l iii iii i J 

Fig. 6.2.19 



207 

object. However, the latter cannot be observed here, because the part hierarchy is too flat. The 
AND gate in the left window corresponds to the AND gate in the right window which is marked by 
"thickening". On some terminals this correspondence can be expressed by bhnking instead of 
"thickening". The garbage collection has been edited out from the text. (Fig. 6. 2. 20 )] 

DONE 

> > clear the screen 

DONE 

=0- 

OONE 

: ))cle•r the screen 

OONE 

: ))sho.,, .and-1 with_lts cnvironnent 
,,, GC st.irting 
,,, GC 2: time 3S5000 milliseconds 
~;; GC 96084 st.a.btc, 303698 .ictive, 7347814 recovered, 7357793 free 
I 

n,c~ !I-tuurma j,jjjjjjjjjjjjj jjj iiiiilii !iiiii!liiiiiiliiiiiiii 

Fig. 6.2.20 



208 

>>what are all the parts of b2? 

[Here the merolo qicol syllogism rs demonstrated. The question es answered textually and graphi 
cally. {Fig. 6.2.21}] 

(AND-1 AND-2 ANDl-INPl AND1-INP2 AND1-0UTP AND2-INP1 AND2-INP2 AND2-0UTP) 

>> 

PARSED 

: >>ctc•r the ~crcen 

DONE 

: ))wh•t e r e •It the o e r x s of b2? 

(AND-1 AND-2 AND1-1NP1 AN01-lNP2 AN01-0UTP AN02-1NP1 ~~02-lNPZ ANOZ-OUTP) 

: »I 

7110~ 'Ft tCJIUbA# F&lI.!..ELatrnDR»M;ij,)l l I I J:f·IB·I ii I I ti I Iii! i I t I I: Ii Ii I I! I Iii i Ii I Ii l i I I Iii iii l I Ii! ii ii l Ii I Iii i I 

Fig. 6.2.21 



209 

Demonstration 4 

[ The same coordinate system as in the previous demonstration.s is aesumed. This demonstration 
shows the use of two modalities and demotistrates the effect of 1tsing a sub-a.ssembly instead of a 
real part.] 

> > the form of and-I is xand 

PARSED 

> >and-1 is at 3 3 inches on the screen 

PARSED 

> >show and-I 

DONE 

: > >the assumed modality is structure 

[The standard modality is now changed.] 

PARSED 

> > the form of and-I is struct-and 

[It is necessary to supply a completely new form and position in the new modality.] 

PARSED 

> > and-I is at 1 1 inches on the screen 

PARSED 

> >show and-I 



210 

[ This is a structural display, and completely independent from. the functional display. (Fig. 6'. 2. 22). J 

> >clear the screen 

DONE 

>>the assumed modality is function 

[Now we are switching back to the previous modality.] 

PARSED 

: ))&nd-1 ls &t 1 1 Inches on the screen 

PARSED 

: ))~ho« .. nd-1 

: »I 

»¥Cl-'1-tl&llfl1 (Pl!fjAE:1:!.UD*AWJ'l,11 Iii H·IB+i iii iii iii iii iii iii iii iii iii iii iii iii I I I Iii iii i I Iii iii iii iii iii iii 

Fig. 6.2.22 



211 

DONE 

> > show and-I 

[All functional information is still maintained. Therefore we now get the familiar display of an 
AND gate. Fig. 6. 2. 23] 

DONE 

> > port-L, port-2 and port-3 are sub-assemblies of and-I 

=D- 

: >>cle&r the ccreen 

PARSED 

: ))show &nd-1 

DONE 

: »I 
(-i:IIIEiMrn:rrmwww;•J1il ii I j;f,)13·1 j t j j iii ii j ii j i j j iii [ j i 11 i j j I I I 11 iii i j j i I I I I Iii i j j I Ii j j I I I Ii I I 11 I I 

Fig. G.2.23 



212 

[ Sub-nsecmblies are different from "real-parts" that were used before.] 

PARSED· 

: >>the form of a port is xport 

PARSED 

: > > port-I and port-2 and port-3 are members of port 

PARSED 

: > > port-1 is at -30 -5 relative to and-1 

PARSED 

: > > port-2 is at -30 -25 relative to and-1 

PARSED 

: > >port-3 is at 60 -15 relative to and-I 

PARSED 

: > >show 2 levels of and-1 

[Fig. 6.2.24] 

PARSED 

: > > clear the screen 

PARSED 

: > >show 1 level of and-I 



213 

PARSED 

: ))show 2 levels of ~nd-1 

DONE 

: »I 

,,o~ •1:J-E&Mrm <·S=l!EJMtL:tuD#WM4ij,ii ii I i:J·l43+i iii Iii iii 11 I 11 Ii I Iii i i_i iii iii iii iii iii Ii I l iii iii iii I I I I I I 11 I I I I I I 

Fig. 6.2.24 

[Note that the di.splay is identical to before! S11b-a.s.se111blies are non separable p arts! Fig. 6.2.25) 



214 

: })s:ho..- 1 level of .tnd-1 

DONE 

: »I 

71&0# -•13 E&itm CPl!f1At:'.ifilm#W-i11,ii I I I /;f,113·1·1 iii l iii iii iii! ii Iii ii Ii I Iii iii iii iii ii Iii iii iii iii Iii iii I I I 11 I Iii i 

Fig. 6.2.25 

Demonstration 5 

[A.s in the previous demos, a screen coordinate .system and modality are established first. This 
demo sliouis the difference between plane and screen coordinates, and it also sh ouis examples of 
fuzzy po.sitioning.] 

> > the form of and-I is xand 

PARSED 

> > the form of my-or-gat.e-99 is xor 



215 

PARSED 

>>the form of the-second-not is xnot 

PARSED 

> > and-1 ts at 3 4 inches on the screen 

PARSED 

=D- 

PARSED 

: ))the-cecond-not Is &bove &nd right of &nd-1 

PAASEO 

: ))cho« &nd-1 &nd the-cecond-not 

: »I 

n&C! ·!t-3-l&ilrr:l (\:iflEtJirmDRMWJlt,ii ii [!:f,]i3·1·1 iii iii i Iii i Iii iii ii iii iii iii iii iii iii iii iii Iii iii iii iii iii iii ii iii 
s«itch to buffer: (dcf.autt dc1M>3) 

Fig. 6.2.26 



216 

> > my-or-gate-99 is left of and-I 

PARSED 

> > the-second-not is above and right of and-1 

PARSED 

: > >show and-I and the-second-not 

[ The basic placing algorithm operates the fallowing way. The extent of the object for which only 
fuzzy information is available is located such that the empty strip between the two objects has the 
same width and/ or length as the empty strip between the placed object and the screen border. 
"Extent" hereby denotes the smallest enclosing box. Fig. 6.2.26 shows the result of this placing.] 

DONE 

: > >show my-or-gate-99, and-I and the-second-not 

[Fig. 6.2.21] 

DONE 

: > >fill 400 100 600 200 with and-I 

DONE 

: > >where is and-I 

[Note that the reply corresponds to the pixel values of the inch ualues specified by the user. One 
inch corresponds to 13 pixels. The given position was (3 4) inches. 3 * 13 = 219; 4 * 13 = 292.] 

(219 292 "relative to" SCREEN-CENTER) 

: > >where is the picture of and-L? 

[Note in Fig. 6.2.28 that the system marks the actual position with a little plus sign at the upper left 



217 

=D- =0- 

: >>show ey-or-g~te-991 ~nd-1 &nd the-second-not 

DONE 

: »I 

Switch to buffer: (dcf<1.ult dcino3) · m&d!·-t.14-DUltrn L·Pi!E1AU!!!iE:DWWM;'l,ii i I I J:f,\13+1 i I 11 I I I Ii Iii Iii i I I I Iii Ii I I I I I 11 Iii ii I Iii ii 11 Ii Ii I I I I I I I I I I Iii 

Fig. 6.2.27 

corner of the body of the AND gale. This is helpful, because it shows where the reference point of 
the object is. Afore importantly note that this position is different from the one reported before. 
The system makes a difference between the position of an icon and the position of the object that it 
displays. This clarifies the difference between a plane coordinate and a screen coordinate value. 
Whal the user refers lo as screen coordinates are in fact plane coordinates, because the system 
might change them for a :fill operation. Real screen coordinates are for positions of icons. Posi 
tions of icons are never asserted by the user but are a side effect of drawing an object. The system 
keeps a whole history of screens and the forms and positions of icons on them. So the answer (460 
180) represents the position of the icon of an d-L relative to the lower left corner of the qrapliics win 
dow. ] 

( 460 180) 



218 

Demonstration 6 

[ The usual coordinate system definition is assumed. This is a short demonstration that shows why 
it niakes sense lo have an object "behind" another object, even if only a plane coordinate ·system is 
11sed.] 

> > the form of iconl is forml 

[Iconl is a vertical blue rectangle FILLED white. Actually the graph£cs system does not permit lo 
fill a rectangle with a different color than its border line, but this problem can be bypassed by speci 
fying a second slightly smaller white rectangle which is filled. This white rectangle is of course 

(219 292 •relAtlve to• SCREEN-CENTER) 

: ))where Is the picture of and-1 

(460 180) 

: »I 

n&Ol '13 AUILA L:Pl!E1Jlt-1:!.rmW¥11;11,11 iii =f·IJ<·l ill ii l l I I iii ii ill iii i I l i I I Iii Ii Ii Iii iii\ if i l lli iii iii iii iii ii ti i I iJ 

Fig. 6.2.28 



219 

invisible on while background.] 

PARSED 

: > >iconl is at 200 300 on the screen 

PARSED 

: > > the form of icon2 is form2 

[Icon2 is a horizontal blue rectangle FILLED white.] 

PARSED 

: > > icon2 is behind iconl 

PARSED 

: > > clear the screen 

DONE 

: > > show iconl ind icon2 

[ icon2 is drawn first, which results in icon1 overdrawing it later, and this creates the behind effect. 
(Fig. 6. 2. 29 )] 



220 

OONE 

: >>show icon1 ~nd icon2 

OONE 

: »I 

,E:i!fi:Jllti:J..m•AW,11,11 i Ii ):f.JJH·d i Ii Iii ii Iii i Ii! Ii l l i Iii Iii i l i l i Iii iii Iii i I Iii! iii l Iii iii ii I Iii Ii 

Fig. 6.2.29 



221 

DONE 

> > clear the screen 

DONE 

> >show icon2 and iconl 

[ This demonstrates that the drawing order is independent of the request order. (Ag. 6.2.30 )] 

DONE 

> > clear the screen 

DONE 

: > > the form of icon3 is form3 



222 

DONE 

: >>sho~ icon1 •nd icon2 

DONE 

: ))clc~r ~he screen 

DONE 

II 
>>show lcon2 •nd leant 

"' 03 'Fi EMJID:lli e,£:l!EJJ1™1•»W,ll,il I I I l;[·liH·I Iii iii I Ii l ! i ! ! 1 i I l ii I I !iii liiiillii iii! li!iiiiiiiiiiil 

Fig. 6.2.30 



223 

[ icon3 is a blue circle with white fill.] 

PARSED 

> > icon3 is in front of icon! 

PARSED 

> > erase the screen 

DONE 

> >show icon3 and icon! 

[ The circle overdraws the vertical rectangle, creating the behind effect. (Fig. 6. 2.31}] 

DONE 

> > erase the screen 

DONE 

: > > show .icon l , icon2 · and icon3 

[Icon3 overdraws icon1 which in turn overdraws icon2. The latter fact is visible dynamically, how 
ever does not come out in the final result. (Fig. 6.2.32}.] 

DONE 



224 

: ))icon3 is in front of icon1 

PARSED 

: >>er~se the screen 

DONE 

: >>show lcon3 ~nd lcon1 

DONE 

: »I 

lfl!E1Aru!.!lll•W11;11,ii ii I l:f,)13·1 ii I Ii I! i Iii iii iii iii iii i ."iii iii I Iii iii Iii i iii iii ii Iii Iii i Ii Iii ii ii 

Fig. 6.2.31 

Demonstration 7 

[ This demonstration shows the use of clusters. A screen coordinate sy.stem with. a top view ts 
defined.] 

> > the form of wood is wood-form 

PARSED 

>>wood is at 2 6 inches on the screen 



225 

DONE 

: ))erase the screen 

DONE 

I 
))show icon11 lcon2 ~nd icon3 

"IO f:i.·! 14 14# lrmr:.:i;;mamCi,[]l[]:Ja:! [fjI;;:.PlfirmDJ~!;·UJ[l•E»DM[;,[!JI jjJ,jfl\::tl ::1 :t:!}[::fr:J·lul!{·:l:1 :t\:t:X 1c1c1::::1::t1 ::1 :t:I Ci 1c1::::1::t1 ::1 :t:I Cl c1::::1::t1 ::1 :Ci Cl ::::1::tl::tl ::1 :Cl 1c1::::1::t1 ::Cl Cl c1::::1::t1 ::1 :t:i CiiCl::::i::tl ::1 :t:i Cl 1::::1::::1::i:1 ::1 :C:I CiiCl::::i::tl ::1 :C:i CiiCll 

Fig. G.2.32 

PARSED 

> > clear the screen 

DONE 

> >show wood 

[Fiq. v.2.33] 



226 

PARSED 

: >>wood Is &t Z 6 Inches on the screen 

PARSED 

: >>clc~r the screen 

DONE 

))show wood a 

n&O~·'J{EMJktr:1 4f:l!E1:..111Ellli.ill»MM,'!,ii I l I J;[,)1(·\··i Iii i iii i Lili i I Ii I Iii ill I I I I Ii Ii Iii Iii ii I I Iii JI iii iii i Ii Iii iii i J 

Fig. 6.2.33 

DONE 

> > wood has tree 1, tree2 and tree3 as sub-dusters 

[ We limit ourselves lo three trees lo keep rnn times rea.sonable.] 

PARSED 

> > treel is at :30 -30 relative to wood 



227 

PARSED 

> > treel, tree2, and tree3 are members of tree 

PARSED 

> > tree2 is at 60 -30 relative to wood 

PARSED 

: > >the form of'a tree is tree-form 

PARSED 

: > > tree3 is at 30 -60 relative to wood 

PARSED 

> > clear the screen 

DONE 

> > show us wood 

[ Only the "map area 11 of wood is displayed. Adding information about trees has no effect. (Fig. 
6.2.34}] 

DONE 

> > erase the screen 

DONE 

> > show 2 levels of wood 



228 

TREE-FORM 
»q 
»y 
PARSED 

: >>trcc3 is at 30 -60 rc1~tl~c to wood 

PARSED 

: >>clear the screen 

DDNE 

: ))sho..- us wood 
I 
"303 '(-tf&lltn 4J:l!f1:..IIIE:t:.l!ill•AW;ji!,ii i Ii H·133·1· i l iii i Iii i ! ii I l I Iii iii ii l iii iii iii iii iii iii ii! ii Iii Ii 1·1 i l iii i I 

Fig. 6.2.34 



229 

++ 
+ 

DONE 

: ))sho"H us wood 

DONE 

: >>er~sc ~he screen 

DONE 

))sho• 2 levels of wood 
I 

n1o~··!·l-t eurm IPl!tfiMill!.il:lllfA-Jl,lt,ii iii :[,I3"! i l iii l i I I I I Ii l jjj\jjjj]/lliiil!liiliiiiiiiiiiiiilii !llillii 

Fig. 6.2.35 



230 

!Now ONLY the trees arc shown. The map a rco. is not di.splayed. (Fig. 6.2.35).] 

DONE 

> >show wood 

[Note that NO clear command uias given. Only the map area will be drawn, but the trees are 
already there from before, so Fig. 6.2.36 shouie the combined picl1tre.] 

++ 
+ 

00.'IE 

: ))sho~ 2 levels of wood 

: ))sho.c wood 

DON£ 

: »I 

7'103 't3 IAJIIT:1 41=1!f.jJl™10&0,'l,)i! ;f,)l(·l ::1111 illi!li jjjjjjjj jj i!ill!lli!illll!llllll]jj]ll! j j j I] J 

Fig. 6.2.36 



231 

Demonstration 8 

[ The ustuil coordinate system definition. is assumed. This is a small variation of demonstration 6, 
and it shows that it mckes sense to postulate a view, even if only one plane coordinate system is 
used.] 

>>the form of iconl is form-I 

[ Iconl is a vertical blue rectangle filled white.] 

PARSED 

: > >iconl is at 200 300 on the screen 

PARSED 

: > >the form of icon2 is form-2 

[Icon2 is a horizontal blue rectangle.] 

PARSED 

: > > icon2 is behind iconl 

PARSED 

: > > show icon I and icon2 

[Icon2 is drawn first, which results in iconl overdrawing it later, and this creates the behind effect. 
(Fig. 6. 2. 37)] 

DONE 

: > > clear the screen 

DONE 



232 

r -· 

D 

PARSED 

: ))show icon1 ~nd icon2 

DONE 

: »I 

Z&PA·,t-Ji£&11ffl ™EUl.tc:DRM-M4'1,ii I I I i:f,Jli·hl I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I Iii ii I I I I 11 ii I I I I I Iii iii Iii . ~ . . . . . . - ' 

Fig. 6.2.37 

: > >the assumed view of scr een-coord-sys is top 

(M4! VIEW (FRONT) COORD-SYS-P (SCREEN-COORD-SYS) LEFTNESS (USER)) 

node dismant.led. 

[ The pr eino us view is er ased from the nehvork.] 

PARSED 

> >show iconl, icon2 



233 

[Now icon2 is displayed ABOVE iconl, because the user has expressed his desire to conceive of the 
[unu:e as a lop view, in which the Lenn behind has to be interpreted differently. [Fi«. (i. 2. 38}] 

DONE 

: ))the &ssu~cd view of scrccn-coord-sys Is top 
~::~ ~:~:..~~~~~~) COORO-SYS-P (SCREEN-COORO-SYS) LEFTNESS (USER)) 

PARSEO 

: ))s:ho« icon1, lcon2 

OONE 

Li.!I.LaE:LlliDWAWJll,li Ii I J;f,Il(·J.·I ii i I iii iii iii i 11 I Ii Ii I Iii I I 111 Ii I I I 11 Ii Iii i I I I I Iii i I I I I i Iii I I I I I I 

. . ... ... . . ··.· - .·. I· .. ~--~ . : .. ·'···:. , .. ,· .. ·· ., ·; ,·. . . ·:::· 

Fig. G.2.38 



234 

Demonstration 9 

[ This demo requires not only a coordinate system, but also a few initial assertions that describe 
where "top", etc. are in the given window. It demonstrates the u.se of these "fuzzy absolute posi 
tions".] 

> >screen-coord-sys is a screen coordinate system with s-x s-y in screen 

PARSED 

>>The assumed modality is function 

PARSED 

> >one inch corresponds to 73 pixels 

PARSED 

>>the view of screen-coord-sys is front 

PARSED 

> > top is at 400 500 on the screen 

PARSED 

> > center is at 400 250 on the screen 

PARSED 

> > bottom is at 400 0 on the screen 

PARSED 

>>left is at O 250 on the screen 



235 

PARSED 

>>lower-left-corner is at O O on the screen 

PARSED 

> >the form of and l is xand 

[Here the "interesting part" starts.] 

=D- 

Fig. G.~.39 



236 

PARSED 

> > and l is at the top of the screen 

PARSED 

> >show and l 

[ Terms like "top" are interpreted as being near to the edge which in this case denotes the upper 
window border. Nearness is interpreted as dividing the given space by the extent of the object 
according to a ratio of 1:5. (Ag. 6.2.39)] 

DONE 

> > clear the screen 

DONE 

: > >the form of orl is xor 

PARSED 

: > >orl is at the lower-left-corner 

PARSED 

[A corner position is interpreted as a 1:5 ratio in both directions. This is shown in Fig. 6. 2.40] 

: > >show orl 



237 

=D- 

: >>or1 Is: &t the tower-lcft-co~ncr 

))show or 1 

Fig. 6.2.40 

Demonstration 10 

[ This demonstration sh ouis a sp ecial case of sub-clusters, na111ely sub-clusters that are at the same 
time real-parts of an object. The usual screen coordinate .system ezisis. j 

> > the form of board l is xboar d 

PARSCD 

>>board! is at 2 6 inches on the screen 



238 

PARSED 

> >show board I 

[Fig. 6.2.41] 

PARSED 

>>the form of and I and and2 is xand 

PARSED 

: >>,how bo.ird1 

DONE 

: >>the fora of and1 and .ind2 Is x.ind 

PARSED 

: >>the for• of or1 ~nd or2 ls xorl 

71&03 ·! I-¥ f&ilf 1·1 ™™•»W.'!rli Iii H·lJ{·l iii Ii I Ii Li I Iii i Iii i Ii l Ii 1 ti l i ! i Iii i Ii! ii I I 1 Iii iii ti iii i 1 Ii! Ii Ii It l I 

Fig. 6.2.41 



239 

PARSED 

: >>the form of orl and or2 is xor 

PARSED 

: > > and l is here 

(203 358) 

PARSED 

: > > a.nd2 is here 

(307 356) 

PARSED 

: > >orl is here 

(202 228) 

PARSED 

: > >or2 is here 

[Placing untl: "here 11 for an object of known form results in immediate display. (Fig. 6. 2.42 ). ] 

(309 227) 

PARSED 

: > > board l has andl and and2 as parts 

PARSED 

: > > board l has orl and or2 as parts 



240 

=D-=D- 

=D-=D- 

; (202 228) 
PARSED 

: >>or2 Is here 

(309 227) 
PARSED 

: »I 

,10~ ·'14 IAJIU:1 tI!..ft.llll t.:L:l!rnWWW1111,ii iii H·li<·I· i Iii i l i iii i I Iii iii i Ii ii l iii l iii iii iii iii\ Li Iii i Iii Iii i I Iii Iii ii I 

Fig. 6.2.42 

PARSED 

: >>the form of modulel and modulc2 is lit.tle-box 

PARSED 

> > clear the screen 

DONE 



241 

: > >show board l 

[The result of this display call adds nolliitu; interestin q. It is [uet needed for further placia«. We 
omit the corresponding figure.] 

DONE 

: > > modulel is here 

(159 387) 

PARSED 

: > > module2 is here 

(159 241) 

PARSED 

: > > modulel has and I and and2 as sub-clusters 

PARSED 

: > > module2 has orl and or2 as sub-clusters 

PARSED 

: > > clear the screen 

DONE 

: > > show 1 level of board l 

[Fig. 6.2.43] 

DONE 

: > >show 2 levels of boardl 



242 

DONE 

: >>show 1 level of' bo .. rd1 

DONE 

: »I 

211 c~ ·!-J-J.JA..jftn ™trnD•WWt1J,I! ii i:f,JJ{·H ii I Ii Iii ii Ii Iii i Li iii\ i Iii i Ii Iii ii! iii iii iii iii i Iii iii Ii! iii i I J 

Fig. 6.2.43 

[Fig. 6.2.44] 

DONE 

>>clear the screen 

DONE 

> >show 1.5 levels of boar d l 



243 

=0--=D-- 

=D-=D- 

DONE 

: >>show 1 level of b o a r-d t 

DONE 

: >>cho• 2 levetc of bo,1.rd1 

DONE 

: »I 

"4C%·~FIEMJIU:1 tI.!.Et.llu:!!rnWaw;q,11 ii t i:t-133·1· ii I Iii i iii iii ii Iii iii iii iii iii iii iii i Iii ii Iii i I iii iii iii iii iii I 

Fig. 6.2.44 

[This demonstrates cluster-eummcrizction, If objects are at the same time real parts of an object A 
and form cluster» of another object B, then one can display the the object A and summarize its sub 
parts into clusters. The clueters are then virtu al p arts of the object. Summarization is activated by 
using a real n11111ber as level. (Fig. 6.2.45).) 

DONE 



244 

DONE 

: >>cte.i.r the screen 

DONE 

. ))show 1.5 levels of b c a r-d t 
I 

»10~ .. !({f&iltn ™™•ww,11,111111:t·Iii·l··\11111111111111111111111111111111111,11111 111111111111111111111111 

Fig. 6.2.45 

Demonstration 11 

[This demonstration shows the use of a 3-d world coordinate system.) 

> > rnyxyz is a world coordinate system with w-x w-y w-z in myworld 

[Note! This 1s different from the usual ureen coordinate system.') 

PARSED 



245 

: > >The assumed modality is function 

PARSED 

: > > One inch corresponds to 73 pixels 

PARSED 

: > >screen-coord-sys is a screen coordinate system with s-x s-y in screen 

PARSED 

: > > The view of myxyz from screen-coord-sys is front 

[ This view corresponds to an orthogonal coordinate projection. J 

PARSED 

: > > chip-I is at :200 200 0 in the coordinate system myxyz 

PARSED 

> >the form of chip-L is xand 

PARSED 

: > > board l is at 100 400 10 in the coordinate system myxyz 

PARSED 

: >>the form of board I is xxboard 

[This time board1 is filled wh£te.J 

PARSED 



246 

> >show boar d I and chip-I 

[ We assume a z axis pointing away from the viewer. Therefore both olrjects are now visible. (Fig. 
6.2.46}] 

DONE 

>>the form of chip-2 is xor 

PARSED 

=0- 

• ))show bo&rd1 &nd chtp-1 

: » 

n,c~ •1:11&1101 tI!..ELIIE:L:iliUIWAWftJ,ilil ;f,JIHli!ii iiiliiiiiiiiiii iii Iii I l iii ii Ii I! Ii! i Ii Ii Iii iii l iii I! Iii ill 

Fig. 6.2.46 



247 

> > chip-2 is at 200 200 20 in the coordinate system myxyz 

PARSED 

> > clear the screen 

PARSED 

> >show chip-2 

=D- 

DONE 

: »•ho« chlp-2 

OONE 

: »I 

"103·'EtlCJltn ™U:!.LalRMW,q,jj Iii :f,Ii(·l li l l ill iii! iii Ii I l i I I I I I I I l I! i Iii iii IL iii iii iii iii ii Iii l iii iii 1 ti 

Fig. G.2.47 



248 

[ chip-2 is at the same position as chip-L, but it is behind it. Fig. 6. 2.4 7 sliouis chip-2.] 

DONE 

: > > clear the screen 

DONE 

: > >show boardl and chip-2 

[ Only the board is visible! The chip chip-2 ie overdrawn because its z coordinate is higher than the z 
coordinate of the board. {Fig. 6.2.48}] 

DONE 



249 

IUUNt. 

: ))show bo~rd1 ~nd ~hip-2 

DONE 

: »I 

T ¥ 0# ·' jfJWJlti1 ™mff#MWIPl,ii i Li f:t,ll<·H i l iii! ii!! i I l Iii iii ii I Iii iii Iii ii l iii ii Iii iii ii Ii I iii iii iii ii 11 i I 

Fig. 6.2.48 

Demonstration 12 

[ This is back to the u su al screen coordinate.s.] 

> >and-1 is at 2 2 inches on the screen 

PARSED 

> > the form of and-I is xand 



250 

PARSED 

: > >port-I, port-2 and port-3 a.re parts of a.nd-1 

PARSED 

: > > port-I and port-2 and port-3 a.re members of port 

PARSED 

: > >port-I is at -30 -5 relative to and- I 

PARSED 

: > >port-2 is at -30 -25 relative to and-I 

PARSED 

: > >port-3 is at 60 -15 relative to and-I 

PARSED 

: > > the form of a. port is xport 

PARSED 

: > > display 2 levels of and-I 

[Fig. 6.2.49] 

DONE 

: >>the size of a.nd-1 is large 

PARSED 



251 

:0- 

PARSED 

: ))displ~y 2 levels of ~nd-1 

OONE 

: »I 

m;c3 ·'-t+EMJrrm tI!..Eilllt:llli.lllWMW;q,ii l i l l:t-li3·H Iii i l i iii iii ! i I I I Ii l l j ' i j ii ii ii j j j ii j j i ' l j j i i i ' j ii Ii i " ll Ii 

Fig. G.2.49 

> >size is expressed by scalegr-jg and 2 represents large 

PARSED 

[This is an attribute assignment, analogously to "state" in Denionstr aiion 1.] 

> > clear the screen 

DONE 



252 

> >show 2 levels of and-I 

[ The gate has been scaled relative to the coordinate system. This results in making it larger, but 
also moving it away from its original position. But, note that the parts are where they were before! 
(Fig. 6. 2. 50). The system does not know that the "size" attribute is inheritable to parts.] 

DONE 

> >size is inheritable 

- - - 
PARSED 

: >>size Is expressed by cc.a.legr-Jg .and 2 represents l&rgc 

PARS(O 

: ))cle&r the screen 

: ))sho« 2 levels of .a.nd-1 
I 
71 J Q:3 -'J-1 IWJ ltt:l tI!llllru!!lll•MMJtJ,ii Iii =[·IJ{·l Ii Iii Ii Iii iii l Ii! i I l I I i Iii Iii iii Iii iii iii iii ii! i Iii i l I l i Iii iii i J 

rig. 6. 2 .. 50 



253 

[Now the system does knoui that "eize " is inheritable.] 

PARSED 

: > >erase the screen 

DONE 

: > >show 2 levels of and-1 

[Now parts are correctly scaled, because it has been asserted that size is an inheritable attribute! 
(F£g. 6.2.51}] 

DONE 



254 

- - - - - - 

PARSED 

: >>er&se the screen 

DONE 

I 
))show 2 levels ot &nd-1 

"*04·'Itf&ittr-1 m:ruaEllillDw:ww;111ii j j [ j;[,IJ3•)··i i j ! j I' j r j'' j i 'j I 11 ii' j I l i ! ! j i' j j l iii' iii j Iii i 'L j 'j I j Ii j i j [II i i' 

Fig. 6.2.51 

6.3. Readform, the Graphics Editor 

Readform is a program that permits a user to create the graphics code for an object by 

drawing the object. The result of a call to Readform in the VAX implementation is a new LISP 

function with two arguments, which, if applied to two coordinate values, will draw the original 

object in its original orientation, however with it's reference point at the position that is specified 

by the arguments of the function call. The reference point is specified by the user in the beginning 

of the object creation. 



255 

A5 pointed out repeatedly, any node in the network describing a form is at the same time the 

name of a LISP function. To do attribute modification it is necessary to recover the lambda 

expression containing calls to graphics primitives from this name. This can be done easily in 

Franz LISP, however, in the HP Common LISP implementation there is no operator to retrieve 

the lambda expression bound to an atom. It is possible to retrieve the function cell of a symbol, 

but the return value is a function descriptor only, not the actual lambda expression. Therefore it 

is necessary to store the graphics primitives invoked by a form function also in its value cell. In 

other words, the graphics primitives are stored in the value cell and the function cell of any sym 

bol used as a form concept. This makes the HP implementation less elegant and more remote 

from the original theory.2 

Readform works menu oriented and permits the user to create an object of lines, polygons, 

circles, disks, boxes, blocks ( = fiiled boxes), arcs, and text. A number of auxiliary options permit 

storing and yanking of intermediate structures, duplication, etc. Fig. 6.3.1 shows the screen of the 

Readform main menu. The VAX_ version of Readform was implemented by Bill Eggers, an under- 

graduate at SUNY at Buffalo.3 I ported VA,'( Readform to the X window environment and added 

all necessary graphics primitives. 

6.4. TINA used as Maintenance Interface 

The use of the TINA program as a graphics interface of the VMES project has been 

described in a number of earlier publications [GTS87,SST86, Tai87, TGS87]. Therefore only a 

short presentation will follow. The VMES system consists of a maintenance reasoner and a graph 

ics interface. The graphics interface is an application of the TINA program described in this 

report. The task of the maintenance reasoner is to identify a faulty component in a given device, 

usually a circuit board. The maintenance reasoner and the display program share a knowledge 

2 There is reason to believe that the original theory of forms and attributes would never have been developed under 
the limitations of HP Common LISP. It seems that Sapir and Whorf were right after all. 

3 Thanks t.o Bill who has devoted much time to make the program useful and (in his own words) "idiot safe". 



250 

ftlext _f d Io t fylank fpult pfollyline [b Io x cl i Ir c l e ralrc [r Ic dr aw fzlap 
rm lark fplolyKOn fclolor fulndo flload [c o l ny [s h ll f t [e Ixl t l s l ave fqluit 

Fig. 6.3.1: The readform menu. 

base realized as a SNePS network. 

During the process of identifying a faulty component in a device, the maintenance reasoner 

repreatedly updates the shared knowledge base. It categorizes components as being in a "default 

state", being in a state of violated expectation, being recognized fault)' or being suspected to be 

faulty. Information about any of these states is asserted in the network, using the attribute case 

frame described earlier on (Section 5.1.3.3.2). Whenever the maintenance reasoner wants to 

express changes in its state of knowledge about the analyzed device, it executes a call to TINA. 

TINA presents the current state of the maintenance process to the user. This is done by mapping 

attributes int'.o signal colors (red = faulty, blue = default, green = suspect, magenta = violated 

expectation). 

Typically a device will be displayed completely blue in the beginning. After finding a 

violated expectation, for instance a port that has a wrong voltage value, this port will receive an 

attribute "violated expectation". The device will now be blue, except. for the port in question 

which will be magenta. The maintenance reasoner then does a path analysis and finds all the com- 



257 

ponents that could be responsible for the violated expectation. Every one of these components is 

asserted as being "suspect", and redisplaying the device will show these components in green. 

Finally, by usmg additional information supplied by the user and additional reasoning, one or 

more components will be identified as faulty and asserted as such. This results in a display of the 

device in blue with the faulty component(s) in red. This display is the final result of the mainte 

nance run. By using the :environ option of TINA, it is possible to give the user a better idea what 

the current focus object of the maintenance reasoner is, and where this focus object is located in 

the overall diagram of the device. 

The procedural interface between maintenance reasoner and display program is extremely 

narrow; it consists of one single function only, which is of course TINA. All other communication 

is done through the shared knowledge base that both parts of the program have access to. Practi 

cal experience with this type of programming has shown that it is exceedingly easy to combine two 

independent modules. The maintenance reasoner and the graphics interface were developed 

independently, with no more than an agreement about shared case frames. Nevertheless, the two 

parts of the program were working together immediately, without requiring any integratory 

debugging. 

The most complicated device that was "maintained" with the combined maintenance rea 

soner/ graphics interface has been a 6 channel PCM board. In Fig. 6.4.1 a screen dump from a 

GIGI terminal is shown. The PCM board does analog/ digital coding and decoding, and its main 

components are inverters, transformers, and one PCM chip per channel. The large number of 

components and the limited quality of the involved hardware resulted in somewhat fuzzy icons for 

most of the components. 

B.5. Limitations of the Implementation 

In AI the theory is always one step ahead of the implementation, and we will use this section 

to indicate parts of the theory that have not been implemented. ( 1) "User leftness" versus "com- 



258 

r=r- 

~ ft.__ 

gJ- 
,,..-.. 

A A -- - 

~} 
....--.. 

A-} .A 

~ .. 

~ 
.A... -~ 

~l 
r+r- 

A - <j.- 

ill 
r---, 

R , . <h IA 
g_l 

Fig. 6.4.1: A screen dump of the PCM board. 

put.er left.ness" has not been implemented. The necessary str uct.ures are maintained though, and 

the necessary change to TINA follows closely t.he coding of "front" versus "top" view. (2) No 



259 

"current coordinate system" is maintained. The implementation of this feature would follow 

closely the "current attribute mapping" which is implemented. Only Cartesian coordinates are 

possible. However, "nearness" can still be expressed as described, substituting one of the Carte 

sian axes for the R axis. (3) For attributes only one case frame with one argument position is used; 

no differentiation between absolute and relative attributes has been implemented. The program 

nevertheless emulates the required behavior in most cases, because of the way the attribute map 

pings have been implemented. Attributes apply to objects only. Superlatives and comparatives 

are not implemented. ( 4) The discrimination between plane and screen coordinates is done by 

using an older representation for screen coordinates, and current screen coordinates for plane coor 

dinates. Due to the fact that screen coordinates are system maintained and always concrete abso 

lute coordinates, and because the user has no direct access to them, this incompleteness is com 

pletely transparent. (5) The representation of chains of fuzzy positions is certainly possible, but 

the graphical realization does not permit a number of cases and does not do a complete check for 

available space. Especially obstacles are not recognized. (6) Periodic structures are not imple 

mented. (7) The natural language interface is neither general nor robust. 



CHAPTER 7 

INTELLIGENT MACHINE DRAFTING 

In this chapter we will present a more specialized application of the GDK theory that has 

grown out of our work on circuit boards. The problem to be solved is the modeling of the 

behavior of a draftsman. This problem was introduced in [ShG86a] and [GeS87] and named the 

"Intelligent Machine Drafting Problem". Before explaining problem and solution in detail we will 

introduce a few non-GDK knowledge structures that will become necessary later on. 

7 .1. The Representations of Ports and Connections 

In the domain of circuit board maintenance electrical connections between wires and com- 

ponents are of special importance. The representation for ports and connections has been bor- 

rowed from a companion dissertation [Tai87]. Every port is either an inport, or an outport, or a 

biport. The signal flow through a device can be followed by entering the device at one of its 

inports and following it to a component inport and leaving the component through an outport, 

etc. till finally a device outport is found. Biports are ports of wires. They have received their 

name, because signals might flow through them in two different directions. 

Syntax: 

object in port-of <device> 
id <port-name> 

modality <modality> 
type PORT 

object out port-of <device> 
id <port-name> 

modality <modality> 
type PORT 

object bi port-of <wire> 
id <id-number> 

260 

(7.1.1) 

(7.1.2) 

(7 .1.3) 



261 

modality <modality> 
type PORT 

Concerning the semantics of these structures for maintenance purposes, refer to [Tai87]. 

Semantics: 

In all case frames shown above, the port is represented as a structured individual. The rest of the 

structure is a straight forward class membership assertion as given in (Structure 5.1.3.5.2). The 

structured port individual consists of an arc that describes the port type (inport, biport, or out 

port) and points to the <device> or <wire> it is a port of, and of an id arc that points to an 

<id-number> that permits to discriminate between all the ports of the same type and the same 

device. 

Example: 

m2( object m l] inport-of gate-I (7 .1.4) 
id inpl) 

modality function 
type PORT) 

In the example, the mner molecular node (ml) represents an object which is the inport of the 

object at the end of its "inport-of" arc (DI) and which can be differentiated from all other inports 

of this object by the id at the end of the "id" arc (inpl ). m2 represents the assertion that ml is 

an object of type PORT. 

Syntax: 

type 
modality 
object 

POCON 
<modality> 
contact <port-type-I> 

id 

(7 .1.5) 

contact < port-type-2 > 
id 

<object-I> 
<id> 
<object-2> 
<id-2> 

For the use of this case frame for maintenance purposes we have to refer the reader agam to 

[Tai87]. 



262 

Semantics: 

Above case frame asserts a connection by creating a structured individual of the class POCON. 

POCON stands for "Point Of Connection" and describes an abstract object that can best be 

understood as a representation of a soldering point between a port of a component and a port of a 

wire. The connection object itself is a structured individual with two structured sub-individuals 

describing the two ports. 

Above case frame differs from all other case frames reported so far. It is a summary descrip 

tion of several case frames, because <port-type-1> and <port-type-2> are slot names not slot 

fillers. < port-type-1 > will usually be either "inport-of" or "out port-of". < port-type-2 > will 

usually be "bi port-of". Because SNePS is set oriented, these two value assignments to the syn tac- 

tic variables <port-type-1> and <port-type-2> may be exchanged. The bottom line is that, one 

biport must be connected to either an in port or an outport., 

Syntax: 

equiv <port-type> 
id 
bi port-of 
id 

<object> 
<id> 
<wire-object> 
<id-2> 

(7 .1.6) 

equiv 

Semantics: 

Any node dominating the above structure (7 .1.6) expresses the identity between an abstract object 

"wire-biport" that is represented by its second sub-case-frame, and the concrete system inport or 

outport that is represented by its first sub-case-frame. For a deeper explanation of this structure 

the reader is again referred to Mingruey Taie's dissertation. 



263 

7 .2. Layout and Routing as Intelligent Activities 

Before the advent of sophisticated CAD equipment it was the normal way of life in an 

engmeermg company to have developers create (sometimes awful hand-) drawings of the circuits 

they wanted to be built. These diagrams then went to the draftsmen who created nicely laid-out 

wire plans following a few professional conventions. The draftsman does not have to understand 

the functioning of the device he is laying out! It is notable that the job of a draftsman has been 

considered a low intelligence job, so one should think that AI would have a ready made explana 

tion for "how to do it". 

On the other hand over 30 years of AI history have shown that the seemingly easiest prob 

lems, like recognizing a face, are often the most difficult problems, and while highly developed 

medical advisors (of the MYCIN family) [DBS85] have been built, we still have no comprehensive 

theory of solving many so called easy problems. It seems to us that it is precisely a "simple" job, 

like the job of a draftsman, which requires a lot of perceptual intelligence and is therefore difficult 

for a program to perform. 

It has been a part of this project to model the abilities of a draftsman in creating circuit 

board diagrams. The problem setting considered is slightly different from one a real draftsman is 

confronted with, because he, as mentioned before, usually bases his work on a hand drawing. In 

this research the IMD program receives the knowledge base equivalent of a part list, plus complete 

connectivity information, including the correct inports and outports of every component instead. 

At this point the question naturally arises, whether there is any formal theory of how to 

draw such circuit board diagrams. A look at textbooks for drafting yields a disappointment 

[Ren71]. One finds only a few conventions and vague explanations. Biesel, whose work concen 

trates on circuit board diagrams [Bie84] has collected other evidence for the vagueness of the state 

of the art in drafting. 

IlvID is an application of our theory of GDK, because a.11 that is needed for laying out (a class 

of artificially simple) circuit boards are part, class, form, attribute and inheritability assertions as 



264 

introduced before. What is omitted from GDK for lMD are position assertions, they are replaced 

by non GDK structures that describe ports and connections. 

7 .3. Intelligent Machine Drafting 

It comes as no surprise that Intelligent Machine Drafting is a hard problem. Therefore we 

have defined a small sub-class of circuit boards that will be used as the basis of our analysis. The 

class was designed around an artificial circuit board called the "adder-multiplier" that has been 

used in a number of publications on maintenance systems [DSH82,Dav84,DeK86, Tai87]. It was 

the purpose of this definition to supply a number of other (non-trivially different) circuits besides 

the adder-multiplier itself. 

Before we present the definition of the class of circuit boards we have defined and the theory 

for their display, we would like to add a refutation against a criticism that has been levied against 

lMD in the past. 

"You are just reinventing computer aided design!" 

Study of the CAD literature [MTA83, Shi83] shows that the problems solved here look in fact 

superficially similar to two famous CAD problems, namely the CAD layout problem and the CAD 

routing problem. But this similarity is only superficial. 

The goal of any CAD layout theory is to create VLSI chips or PvVBs (printed wiring boards) 

that fulfill certain physical requirements. Typical examples would be to keep the length of the 

clock lines short. This is necessary to ensure that all the chips on a board get the same clock sig 

nals. Another requirement would be to keep signal paths in general short, to keep connection 

wires broad enough to avoid energy loss in the wire, to minimize the overall area of the whole chip 

or board, etc. The resulting systems are usually complicated mazes. 

In intelligent machine drafting the goal is to create a representation that is easily readable 

and understandable by a person. Unnecessary corners in wires add irrelevant information and 



265 

should therefore be avoided. Circuits with a standard meanmg should be drawn in a standard 

established layout pattern. All these are not the goals of normal layout programs in a CAD 

environment. Summarizing we can say that CAD designers are interested in the layout of physical 

wire plans, while we are interested in logical wire plans. 

Similar claims as about layout can be made about routing. The fundamental problem for a 

routing program for a printed circuit board is to avoid any overcrossing of wires. If there is a 

danger of a crossing, a via to the second (or another) layer has to be taken. (Vias are the through 

connectors on a board that connect different layers of conducting strips). On the other hand, there 

is no problem with a wire passing through under an integrated circuit ( as long as it does not come 

too near to any of the pins of the circuit). In an IMD approach it is unacceptable to have a wire 

run through any other component. But of course wires may (and will) intersect each other. In a 

CAD program two wires may run parallel at the same x and y coordinates, as long as they are on 

different layers. In an IMD program there is only one layer, and two wires that are running paral 

lel have to have a minimum distance from each other. So the problem of logical routing as 

encountered in intelligent machine drafting is also fundamentally different from the problem of 

physical routing as encountered in CAD. 

We will now present the formal definition of the class of circuit boards that we want to 

analyze. This class of boards will be referred to as A *M*. 

Limitation 7 .3.1: 

Every device of the class A *M* consists of a main object with a one level part 

hierarchy. The main object as well as the parts have ports. 

Limitation 7 .3.2: 

Three types of ports are defined, inports, biports, and outports. It is assumed 

that components are of (approximately) rectangular form with sides high enough 

to place all inports on the left side and all outports on the right side of every com- 



266 

ponent. The same placing must be possible for the rnam object. Ports will be 

placed at the sides of the enclosing rectangle (extent) of the component. Bi ports 

have been introduced by [Tai87] and are used as ends of wires only. 

Definition 7.3.1: Column-I element. 

A column-I element is a component every input of which is directly connected to 

a system input of the main object. 

Definition 7.3.2: Column-n element. 

A column-n element is a component every input of which is directly connected to 

a column-j element, such that for all j, j < n, or to a system input of the main 

object. 

Definition 7 .3.3: Strict column-n element. 

A column-n element is called strict iff it is connected to at least one column-(n-1) 

element. 

Definition 7 .3.4: Strict column classification. 

A strict column classification of a set M of n components, M = { ei, e2, •.• , en} is 

an assignment of every component to a column k such that all elements in this 

column are strict-k elements. 

Definition 7 .3.5: kmax· 

kmax is the non empty column with the largest column number. 

Definition 7 .3.6: Signal Length. 

The signal length o-L(M) of a set of elements is identical to the value kmax· 

a L(M) = kmax· 

Definition 7 .3. 7: Signal Width. 



267 

The signal width er w(M) of a set of elements is defined as 

k max 

er w = { m/m =MAX( K; ) 
i-1 

& J(i is the number of elements in column k} 

Definition 7 .3.8: Extrapolated Physical Length. 

N 

PL= crL * MAX(X-Extension(e;)) 
i-1 

The X-Extension of a component is the length of the component m the x- 

direction. 

Definition 7 .3. g: Extrapolated Physical Width. 

This is defined in total analogy to Definition 7 .3.8 

N 

P w = er w * MAX ( Y-Extension( e;)) 
i-1 

In practice it is assumed that X-Extension and Y-Extension have a fairly limited 

range. (However they can be quite different from each other!). 

Limitation 7 .3.3: 

All elements have their inputs connected to either other outputs, or to mam 

object inputs. All elements have their outputs connected to either other inputs or 

to main object outputs. Connections between inputs (inports) and outputs (out 

ports) are always via a system of a wire with two biports. 

Limitation 7 .3.4: 

No feedback loops are permitted. In other words, all connections are gomg 

strictly forward. 

Limitation 7 .3.5: 

Ports are small, compared to component sizes. Ports are consistently of the same 



268 

size in the whole system. 

Limitation 7 .3.6: 

.i-:«:», 
P w < cY * Sw 

ex and cy are constant factors (> 0, < 1) that take care of the size of the ports 

and the necessary space for wiring. SL and Sw are the length and the width of 

the main object (or the permissible display surface). A typical value for c., would 

be0.6. 

Intuitively, the above limitations express a very simple condition. They make it possible to 

organize all the components on a display surface (a screen or a viewport on a screen) or inside of 

the main object, such that components which have the same signal distance from the main input 

can all be put above each other, and that all such arrangements of components can be placed next 

to each other without running out of available space. 

Refer to Fig. 7 .3.1 for clarification of these conditions. Fig. 7 .3.2 shows a few members and 

non-members of A *M* and gives reasons for the non-membership. 

The limitations and definitions given closely mirror the algorithm for displaying objects of 

the class A *M*. The first step consists of organizing all the components of the circuit into 

columns. The first column contains all components that are directly connected to system inputs. 

The second column contains all components that are directly connected only to elements of the 

first column or to inputs of the system, and so on. 

Columns are treated as pseudo objects and laid 



269 

Goard strict column-1 element 

f~·----:f--f------\ 

signal length = 3 

extrapolated physical length 

I LI' I 
7 

longest element 

wides element 

Fig. 7 .3. l: The A *M* conditions. 

k =3 
max 

T 

strict column-2 element 

signal width = 3 

extrapolated physical width 



A member 

A non-member: Extrapolated 

Physical Length too large 

Fig. 7 .3.2: Members and non-members of A *M* 

270 

A non-member: Extrapolated 
Physical Width too large 

A non-member: 
Feedback prohibited 



271 

out physically next to each other. The main principle that is used for this operation is the equ al 

spacing principle. If there a.re k columns then the net length of all columns is subtracted from the 

available space, and the difference is divided into k+ 1 blank strips which are equally distributed 

between the columns. Analogously objects are equally spaced inside of their corresponding 

columns. Ports for all components are laid out using the same equal spacing algorithm. This time 

the ports are equally spaced over the height of their corresponding components, inports on the left 

side, outports on the right side. 

Wire ports (bi-ports) are laid out such that they line up exactly with in ports from the left 

side and with outports from the right side, and such that they overlay with system inports and 

outports. It has now become clear why it is necessary to represent the distinction between 

different types of ports and the connections between adjacent ports. Fig. '.i-3.3 shows wires with 

their bi-ports and how they are combined with other ports. 

The router first attempts to place a vertical line in the middle of the two ports nearest to 

each other that belong to neighboring columns. This is another application of the equal spacing 

biports 

(placed to abutt their corresponding in/out ports) 

·outport 
wire 

in port 

Fig. 7 .3.3: The layout of bi ports. 



272 

principle. If the resultant line approaches any of the already laid out wires in a parallel way with 

a distance of less than a fixed Lambda (measured in pixels), then this solution is retracted, and 

another solution Lambda to the left of the original vertical line is attempted. If this also fails, 

then a step Lambda to the right is attempted. If this fails, then Lambda is temporarily doubled, 

and the same steps a.re repated, until the vertical wire would come too near to either of the 

columns. If that happens the router gives up. 

Once the vertical line is established, the router tries to connect every port belonging to this 

line by a horizontal wire. If this is impossible (because an already existing wire is too near) then 

the router attempts a backtracking strategy resulting in an impulse structure (Fig. 7 .3.4) instead 

of the former horizontal wire. The routing process involves two levels of backtracking at this 

stage, but it might nevertheless fail. 

In the current implementation of the router no column jumps are supported (Fig. 7.3.5), 

although column jumps are permitted by the definition of the class A *M*. It should be noted that 

no claims about original research in routing are made. Excellent work has been done on routing 

obstacle 

result of backtracking 

first routing attempt 

Fig. 7 .3.4: The result of router backtracking. 



273 

Fig. 7.3.5: An example for a. column jump. 

algorithms, and we see no reason to compete with people who have made it their job to design 

routing programs [Shi83]. On the other hand, we would like to remind that other existing routers 

cannot be adapted uncritically, because we a.re (as noted before) interested in a cognitive layout 

with different permitted crossing conditions than the ones valid for physical routing programs. 

7 .4. The IMD Grammar 

A separate grammar was written for the IMD system. It permits the following operations by 

natural language. 

{1) Creation o·f an object. The user can build objects of a. subset of the class A*M* by natural 

language utterances. The limitations relative to A *M* consist. mainly of a limited branching 

factor for connections. 

(2) Display requests for created objects. 

The I11D grammar does not contain a "query branch", 1. e. no questions about a laid out device 

can be asked. The following piece of text. shows an implemented set of natural language utter 

ances that, will build up the whole structure of the (in)famous adder-multiplier. This text has not 



274 

been edited in any way and is the original demo file that creates the necessary structure. The call 

to (nl) in the beginning activates the natural language interface from SNePS, while the term 'end 

at the end returns to normal SNePS interaction. 

(nl) 
DI is a board 
DIMI is a multiplier 
DIM2 is a multiplier 
DIM3 is a multiplier 
DIAI is an adder 
DIA2 is an adder 
DI has 3 in ports 
DI has 2 outports 
DIMI has 2 inports 
DIMI has l outport 
DIM2 has 2 inports 
DIM2 has 1 outport 
DIM3 has 2 inports 
DIM3 has 1 outport 
DIAI has 2 inports 
DIAI has I outport 
DIA2 has 2 inports 
DIA2 has I outport 
connect input I of DI with input I of DIMI and input I of DIM2 
connect input 2 of DI with input 2 of DIMI and input 1 of DIM3 
connect input 3 of DI with input 2 of DIM2 and input 2 of DIM3 
connect output L of DIMI with input 1 of DlAl 
connect output I of D1M2 with input 2 of DlAI and input I of DIA2 
connect output 1 of D1M3 with input 2 of D1A2 
connect output I of DlAI with output I of DI 
connect output 1 of D1A2 with output 2 of Dl 
DIMI, DIM2, DIM3, DIAI, and DIA2 are parts of DI 
wires are parts of DI 
the form of a board is xboard2 
the form of a multiplier is xmult2 
the form of an adder is xadd2 
the form of a PORT is xport 
show DI 
'end 

(7.4.1) 

The result of the above input is indicated in Fig. 7.4.l .1 

1 This is not a screen dump. At the time ofwr iti ng this chapter no access to a dump facility was available. 



275 

Fig. 7.4.1: The laid out Adder-Multiplier 



CHAPTER 8 

FUTURE WORK 

The rnam direction into which we wish to develop this research is towards a knowledge 

based user interface management system (KBUTh1S). So far it is not possible in our system to 

define a menu by a combination of natural language and mouse movements, and to link the menu 

choices to procedures that should be executed on buttoning one of them. However, it is clearly in 

the range of our paradigm to achieve this effect. The basic goal and unique characteristic of this 

approach is the complete integration of the language used to interact with the user interface and 

the language used to interact with the user interface management system. 

Our second main objective is to extend our approach more towards the work of Kosslyn 

[Kos81b] and to permit "readback" from the generated diagrams to be used for question answer 

mg. Specifically we are interested in explaining the examples given by Waltz [W al80] that 

engender surprise in a listener. A preliminary analysis shows that only close interaction between 

propositional and analog representations can cope with this problem. 

The current implementation invites improvements in a number of directions. It is not possi 

ble to capture dynamic phenomena, for instance one cannot move icons on the screen. The 3-d 

abilities of the program are very limited. Some combinations of fuzzy position expressions are 

possible, but others will not result in correct diagrams. Finally, the language interface is not gen 

eral enough, and the program as a whole is not very robust. 

Intelligent Machine Drafting is certainly a completely open field, and we have only scratched 

the surface of it. Larger, more realistic device classes are necessary, as well as faster algorithms 

and imagery like "visual debugging". Concerning the Readform program there have been several 

276 



277 

preliminary attempts to integrate knowledge handling directly into the graphical object creation.1 

This should be aided by integrating Readform better with the rest of the program. 

1 An initial version of such a program was written by one of my undergraduate students, Carl Mercer. 



CHAPTER 9 

CONCLUSIONS 

The purpose of this dissertation has been to analyze the knowledge necessary for Natural 

Language Graphics. The notion of Graphical Deep Knowledge has been introduced and used as 

the leading theme throughout this dissertation. Graphical Deep Knowledge has been defined as 

declarative knowledge that is projectively adequate as well as deductively adequate. 

Based .on general observations about knowledge representation the First and Second Funda 

mental Conjecture about Knowledge Representation have been formulated. The First FCoKR 

describes the limitations of knowledge representations applied to real as opposed to toy domains. 

The Second FCoKR connects knowledge access and knowledge acquisition by claiming the useful 

ness of a common indexing mechanism for both these areas, called an internal relevance criterion. 

The language side of Natural Language Graphics has led to the formulation of another 

important principle of knowledge representation, namely the Linearity Principle. The Linearity 

Principle permits to guide the development of differentially adequate knowledge representation 

systems by adding constraints for choosing between different possible representational structures 

for the same linguistic input. 

The presented constructs of Graphical Deep Knowledge have been introduced in a frame like 

notation for SNePS semantic networks. For each construct the syntax was given in this case 

frame format, and a descriptive semantics was supplied. In addition procedural effects of intro 

duced structures have been explained informally. The constructs of GDK will now be summarized. 

Form descriptions are based on primitive forms (icons) which themselves consist of graphics 

primitives of a LISP graphics package. They are linked to objects by appropriate case frames, or 

inherited by objects from classes with an associated form. If no form can be derived this way for 

an object, exemplar inheritance (a. k. a. up-and-down inheritance) is attempted. We have argued 

278 



279 

that the latter is a viable technique based on the exemplar view of categorization that should be 

used if no summary description is available for a class of objects. 

Concrete (numerical) as well as fuzzy positions can be represented. All positions are relative, 

although the screen can be used as a reference object, creating de facto absolute positions. Refer 

ence objects of position specifications can be given explicitly or deduced from a part hierarchy. 

Positions can be inherited along the class hierarchy. Coordinates can be given in absolute units, in 

body coordinates, in body coordinates of the reference object, or in body coordinates of any other 

known object. Different coordinate systems can be defined, and projections explicitly selected. 

Natural language utterances in reference to objects in a plane can nevertheless express a view 

referring to a third dimension. Such utterances are correctly interpreted. 

Attributes of objects have been differentiated into intrinsic, accidental and invisible attri 

butes. Attributes of pictures have been differentiated into representative, symbolic, accidental, 

and situational. Case frames for relative and absolute attributes have been introduced. Knowledge 

structures have been introduced that permit to map object attributes into pictures attributes. The 

actual mapping mechanism of an abstract graphics machine is hereby explicated as a functional 

that transforms form-comprising functions into new form-comprising functions with an mcor 

porated attribute. Attribute classes with two, three, and zero attribute values have also been 

described by variations of the attribute case frame. To permit changes in the graphical realization 

of an attribute, attribute mappings are maintained in a "CURRENT-MAPPING" pointer. 

Display modalities permit the separation of a large and unstructured network. It has been 

shown that this mechanism is equivalent to a partitioned network, however it is superior in its 

drawability, is consistent with the rest of the representational system, and is more parsimonious 

than a partitioned network. 

Part hierarchies, as used in many AI systems, have been replaced by three different part-like 

hierarchies, namely Real Parts, Assemblies, and Clusters. The (non-intuitive) relations between 

modalities and part hierarchies have been shown: even the division of an object into parts depends 



280 

on the modality. Inheritance of attributes is possible along the part hierarchy of the system. The 

inheritability of a specific attribute can be expressed declaratively. 

SNePS based logical reasoning in the spatial domain has been discussed. The reasomng 

facility used in our implementation is called path based inference and permits to describe paths of 

arcs to derive necessary information about objects. All knowledge retrieval for graphics genera 

tion as well as question answering is based on such paths. 

One major area of practical application of the work described is the design of intelligent 

interfaces. In the domain of maintenance systems the use of TINA, our graphics program, was 

shown as a graphics interface to the VMES (Versatile Maintenance Expert System). The natural 

language graphics interaction as well as the usefulness of the structures of GDK were demon 

strated with a large number of interactive trial runs and with screen dumps. 

A second CAD-like interface based on the same theory was also introduced, which however 

differs from a CAD system in trying to optimize the "readability" of a pictorial representation. 

With this interface the completely new field of Intelligent Machine Drafting was defined, and a log 

ical (as opposed to physical) layout program as well as a logical router were described that fulfill 

the requirements of Intelligent Machine Drafting. A formal definition of the artificial device class 

A *M* was given that has been used as the domain for layout and routing. 

In the section on philosophy and Natural Language Graphics it has been shown that the Gri 

cean Maxims of cooperative communication can be used as guidance to graphics design, and as a 

touchstone that reveals how far current graphics systems are away from human like communica 

tion. Of special importance for practical applications are the maxims of quantity and the maxim 

of manner ("be orderly"). The latter is the case because graphics systems are much less con 

strained in the order they can create representations than natural language generators and order 

can be used to exhibit an understanding of the drawn object. 

A new maxim for technical languages was introduced, the Maxim of Unnecessary Variation. 

Two sub maxims, consistency and conservativity have been discussed. Based on this new maxim it 



281 

has been criticized that most symbolic graphical representations in most areas of science are intro 

duced without an explicit explanation which of the features of the representation are semantically 

meaningful, conventional, or accidental. A number of different symbolic representation systems 

have been analyzed according to this feature classification. It has been argued that only by expli 

citly representing such feature classifications, a system can achieve understanding of the diagrams 

it is drawing. 



282 

REFERENCES 

[AMG84a] G. Adorni, M. D. Manzo and F. Giunchiglia, "From Description to Images: What 
Reasoning in Between?", European Conference on AI, Pisa, 1984. 

[AMG84b] G, Adorni, M. D. Manzo and F. Giunchiglia, "Natural Language Driven Image 
Generation", COLING 84, 1984. 

[All86] B. P. Allen, "Constructing User Interfaces with a Rule-Based User Interface 
Management System", in AAA! 86 Workshop on Intelligence in Interfaces, B. Neches 
and T. Kaczmarek (editor), August 14, 1986, 31-36. 

[Alm87] M. J. Almeida, Reasoning about the Temporal Structure of Narratives, Dept. of 
Computer Science, State University of New York at Buffalo, ( dissertation), 1987. 

[AnB75] A. Anderson and N. Belnap, Entailment: The Logic of Relevance and Necessity, 
Princeton University Press, 1975. 

[And83J J. R. Anderson, The Architecture of Cognition, Harvard University Press, Cambridge 
MA, 1983. 

[AMS88J Y. Arens, L. Miller and N. Sondheimer, "Presentation Planning Using an Integrated 
Knowledge Base", Architectures for Intelligent Interfaces: Elements and Prototypes, 
Monterey Workshop, March 1988. 

[Arn86] R. Arnheim, New Essays on the Psychology of Art, University of California Press, 
Berkeley, CA, 1986. 

[BaB82] D. H. Ballard and C. M. Brown, Computer Vision, Prentice Hall, 1982. 
[Bat78] M. Bates, "The theory and practice of augmented transition network grammars", in 

Natural Language Communication with Computers, vol. 63 , L. Bole (editor), Springer, 
Lecture Notes in Computer Science, New York, 1978, 191-259. 

[BMR82] I. Biederman, R. J. Mezzanotte and J. C. Rabinowitz, "Scene Perception: Detecting 
and Judging Objects Undergoing Relational Violations", Cognitive Psychology 14 
(1982), 143-177. 

[Bie87] I. Biederman, "Recognition-by-Components: A Theory of Human Image 
Understanding", Psychological Review 94, 2 (1987), 115-147. 
H. D. Biesel, On encoding functional and schematic description of complex systems, 
Dissertation at Rutgers Univ., publ. by University Microfilms International, Ann 
Arbor, MI, 1984. 

[BoW77a] D. G. Bobrow and T. Winograd, "Experience with KRL-0: One Cycle of a Knowledge 
Representation Language", IJCAI-77, 1977, 213-222. 

[Bie84] 

[BoW77b] D. G. Bobrow and T. Winograd, "An Overview of KRL, a Knowledge Representation 
Language", Cognitive Science 1, l (1977), 3-46. 

[Bol77J D. Bolinger, Neutrality, Norm, and Bias, 1977. 
[Bra79] R. J. Brachman, ''On the Epistemological Status of Semantic Networks", in 

Associative Networks, N. Findler (editor), Academic Press, New York, 1979. 
[BFL83] R. J. Brachman, R. E. Fikes and H. J. Levesque, "KRYPTON: A Functional Approach 

to Knowledge Representation", Computer 16, 10 (1983), 67-73. 
[BFL85] R. J. Brachman, R. E. Fikes and H. J. Levesque, "Krypton: A functional approach to 

Knowledge Representation", in Readings in Knowledge Representation, R. J. 
Brachman and H. J. Levesque ( editor), Morgan Kaufmann Publishers Inc., Los Altos, 
California, 1985, 411-439. 



283 

[BrS85] R. J. Brachman and J. Schmolze, "An Overview of the KL-ONE Knowledge 
Representation System", Cognitive Science 9, 2 (1985), 171-216. 

[BrK77] D. C. Brown and S. C. Kwasny, "A Natural Language Graphics System", OSU 
CISRC-Tech. Rep.-77-8, Dept. of Computer and Information Science, The Ohio State 
University, 1977. 

[BrC81] D. C. Brown and B. Chandrasekaran, "Design Consideration for Picture Production in 
a Natural Language Graphics System", Computer Graphics 15, 2 (July 1981), 174-207. 

[BrM87] B. Bruce and M. G. Moser, "Case Grammar", in Encyclopedia of Artificial Intelligence, 
S. C. Shapiro (editor), John Wiley, New York, 1987, 333-339. 

[BuB79] R. R. Burton and J. S. Brown, "Toward a Natural Language Capability for 
Computer-Assisted Instruction", in Procedures for Instructional System Development, 
H. O'Neill (editor), Academic, New York, 1979, 273-313. 

[Car70] J. R. Carbonell, "AI in CAI: An Artificial Intelligence Approach to Computer-Assisted 
Instruction", IEEE Transactions on Man-Machine Systems MMS-11, 4 (December 
1970), 190-202. 

[ChM85] E. Charniak and D. McDermott, Introduction to Artificial Intelligence, Addison 
Wesley, Reading, Mass., 1985. 

[CoQ69] A. M. Collins and R. M. Quillian, "Retrieval Time from Semantic Memory", Journal 
of Verbal Learning and Verbal Behavior 8 (1969). 

[CoL75] A. M. Collins and E. F. Loftus, "A Spreading Activation Theory of Semantic 
Processing", Psychological Review 82, 6 (1975). 

[Con72] C. Conrad, "Cognitive Economy in Semantic Memory", Journal of Experimental 
Psychology 92, 2 (1972), 149-154. 

[DSH82] R. Davis, H. Shrobe, W. Hamscher, K. Wiechert, M. Shirley and S. Polit, "Diagnosis 
Based on Description of Structure and Function", Proceedings of AAAI-82, Aug. 1982, 
137-142. 

[Dav84] R. Davis, "Diagnostic Reasoning Based on Structure and Behavior", Artificial 
Intelligence 24 (1984), 347-410. 

[DBS85] R. Davis, B. Buchanan and E. Shortliffe, "Production Rules as a Representation for a 
Knowledge-Based Consultation Program", in Readings in Knowledge Representation, 
R. J. Brachman and H. J. Levesque (editor), Morgan Kaufmann Publishers Inc., Los 
Altos, California, 1985, 371-387. 

[DeK86] J. DeKleer, "Reasoning about Multiple Faults", Proceedings of the Fifth National 
Conference on Artificial Intelligence, Philadelphia, PA, 1986, 132-139. 

[EaL86] P. Eades and A. J. Lee, "Perception of Symmetry", 67, University of Queensland, St. 
Lucia, March 1986. 

[Fah79] S. E. Fahlmann, NETL: A System for Representing and Using Real- World Knowledge, 
MIT Press, Cambridge, Mass., 1979. 

[Fil68] C. J. Fillmore, "The Case for Case", in Universals in Linguist£c Theory, E. Bach and 
R. T. Harms (editor), Holt, Rinehart, and Winston, New York, 1968, 1-88. 

[FoD83] J. D. Foley and A. V. Dam, Fundamentals of Interactive Computer Graphics, Addison 
Wesley, 1983. 

[Fri84] M. Friedell, "Automatic Synthesis of Graphical Object Descriptions", Computer 
Graphics 18, 3 (1984), 53-62. 

[Fri72] N. H. Frijda, "Simulation of human long-term memory", Psycho!. Bid!. 17 (1972), 1- 
31. 



[GaS86] 

[GeS87] 

[GTS87] 

[Ger85] 

[GLM78] 

[Gri75] 

[Gri78] 

[HaS86] 

[Har72] 

[Hay77] 

[Hen79] 

[Her86] 

[Hin79] 

[IDv1R88] 

[Hul85] 

[Jam83] 

[Kad86] 

[KeB81] 

[Kir64] 

[KoS77] 

284 

B. R. Gaines and M. G. L. Shaw, "From Timesharing to the Sixth Generation: the 
Development of Human-Computer Interaction (Part 1)", International Journal of Man 
Machine Studies 24 (1986), 1-27 .. 

J. Geller and S. C. Shapiro, "Graphical Deep Knowledge for Intelligent Machine 
Drafting", Tenth International Joint Conj erence on Artificial Intelligence, August 
1987. 

J. Geller, M. R. Taie, S. C. Shapiro and S. N. Srihari, "Device Representation and 
Graphics Interfaces of VMES", Applications of Artifical Iritelligence in Engineering, 
August 1987. 

J. S. Gero, Knowledge Engineering in Computer Aided Design, North Holland, 1985. 
R. D. Giustini, M. D. Levine and A. S. Malowany, "Picture Generation Using Semantic 
Nets", Computer Graphics and Image Processing 7, 1 (1978), 1-29. 
H. P. Grice, "Logic and Conversation", in Syntax and Semantics: Speech Acts, vol. 3 , 
P. C. J. L. Morgan (editor), Academic Press, New York, 1975, 41-59. 
H. P. Grice, "Further Notes on Logic and Conversation", in Syntax and Semantics 9: 
Pragmatics, P. Cole (editor), Academic Press, New York, 1978, 113-127. 
J. Haan and L. K. Schubert, "Inference in a Topically Organized Semantic Net", 
Proceedings of the Fifth National Conference on Artificial Intelligence, Los Altos, CA, 
1986, 334-338. 
L. D. Harmon, "Automatic Recognition of Print and Script", Proceedings of the IEEE 
60, 10 (October 1972), 1165-1176. 
P. J. Hayes, "In Defence of Logic", IJCAI-77, Los Altos, CA, 1977, 559-565. 
G. G. Hendrix, "Encoding Knowledge in Partitioned Networks", in Associative 
Networks, N. Findler (editor), Academic Press, New York, 1979. 
A. Herskovits, Language and Spatial Cognition, Cambridge University Press, 
Cambridge, UK, 1986. 
G. E. Hinton, "Some demonstrations of the effects of structural descriptions in mental 
imagery", Cognitive Science 3, 3 (1979), 231-250. 
J. Hollan, J. Miller, E. Rich and W. Wilner, "Knowledge Bases and Tools for Building 
Integrated Multimedia Intelligent Interfaces", Architectures for Intelligent Interfaces: 
Elements and Prototypes, Monterey Workshop, March 1988. 
J. J. Hull, "Word Shape Analysis in a knowledge based system for reading text", 
Second IEEE Conj erence on Artificial Intelligence Applications, 1985. 
A. Jameson, "Impression Monitoring in Evaluation-Oriented Dialog. The Role of the 
Listener's Assumed Expectations and Values in the Generation of Informative 
Statements", Proceedings of the Eighth International Joint Conference on Artificial 
Intelligence, Karlsruhe, 1983, 616-620. 
R. R. Kadesch, "Subjective Inference with Multiple Evidence", Artificial Intelligence 
28, 3 (1986), 333-341. 
G. Keren and S. Baggen, "Recognition Models of Alphanumeric Characters", 
Perception and Psychophysics 29, 3 (1981), 234-246. 
R. A. Kirsch, "Computer Interpretation of English Text and Picture Patterns", 
Transactions on Electronic Computers 13 (August 1964), 363-376, IEEE. 
S. M. Kosslyn and S. P. Shwartz, "A Simulation of Visual Imagery", Cognitive Science 
1 (1977), 265-295. 



S. M. Kosslyn, Image and Mind, Harvard University Press, Cambridge MA, 1980. 
S. M. Kosslyn, "Research on Mental Imagery: Some Goals and Directions", Cognition 
10 (1981), 173. 

S. M. Kosslyn, "The Medium and the Message in Mental Imagery: A Theory", 
Psychological Review 88/ N.1 (January 1981). 
S. M. Kosslyn, "Stacking the Mental Image", Psychology Today, May 1985. 
H. J. Levesque and R. J. Brachman, "A Fundamental Tradeoff in Knowledge 
Representation and Reasoning", in Readings in Knowledge Representation, R. J. 
Brachman and H. J. Levesque (editor), Morgan Kaufmann Publishers Inc., Los Altos, 
California, 1985, 42-70. 

M. Leyton, "A theory of information structure II: A theory of perceptual 
organization", Journal of Mathematical Psychology 30 (1986), 257-305. 
J. Lyons, Semantics, Cambridge University Press, New York, 1977. 
R. MacGregor and R. Bates, "The LOOM Knowledge Representation Language", 
ISI/RS-87-188, USC/Information Sciences Institute, 1987. 

[MGP84] M. D. Manzo, F. Giunchiglia and E. Pino, "Space Representation and Object 
Positioning in Natural Language Driven Image Generation", International Conference 
on AI Methodfogy - Systems - Applications, AIMSA Varna (Bulgaria), 1984. 

[MaN78] D. Marr and K. H. Nishihara, "Visual Information Processing: Artificial Intelligence 
and the Sensorium of Sight", Technology Review, Oct. 1978, 28-49. 

[Kos80] 

[Kos81a] 

[Kos81b] 

[Kos85] 
[LeB85] 

[Ley86] 

[Lyo77] 
[MaB87] 

285 

[MaS83] J. P. Martins and S. C. Shapiro, "Reasonig in Multiple Belief Spaces",.Proceedings of 
the Eighth International Joint Conference on Artificial Intelligence, Karlsruhe, 1983, 
370-373. 

[McC83] G. McCalla and N. Cercone, "Approaches to Knowledge Representation", Computer, 
Oct. 1983, 12-18. 

[McD81] D. McDermott, "Artificial Intelligence meets Natural Stupidity", in Mind Design, J. 
Haugeland (editor), The MIT Press, Cambridge MA, 1981, 143-160. 

[MiR85] H. Mili and R. Rada, "A statistically built knowledge base", Expert systems in 
government, 1985, 457-463. 

[Mil56] G. A. Miller, "The magical number seven, plus or minus two: some limits of our 
capacity for processing information", Psychological Reoieio 63 (1956), 81-97. 

[MiJ76] G. A. Miller and P. N. Johnson-Laird, Language and Perception, The Belknap Press of 
Harvard University Press, Cambridge MA, 1976. 

[Min68] M. L. Minsky, "Matter, Mind, and Models", in Semantic Information Processing, M. 
L. Minsky (editor), The MIT Press, Cambridge, MA, 1968, 425-432. 

[Min75] M. Minsky, "A Framework for Representing Knowledge", in The Psychology of 
Computer Vision, P.H. Winston (editor), McGraw-Hill, New York, 1975, 211-277. 

[MTA83] H. Mori, F. Tomoyuki, M. Annaka, S. Goto and T. Ohtsuki, "Advanced Interactive 
Layout Design System for Printed Wiring Boards", in Hardware and Software 
Concepts in VLSI, G. Rabat (editor), Van Nostrand Reinhold, New York, 1983, 495- 
523. 

[Nea85] J. G. Neal, "A Knowledge Based Approach to Natural Language Understanding", 85- 
06, State University of New York at Buffalo, May 1985. 

[NeS88] J. G. Neal and S. C. Shapiro, "Intelligent Multi-Media Interface Technology", 
Architectures for Intelligent Interfaces: Elements and Prototypes, Monterey Workshop, 
March 1988. 



[NeK86a] 

[NeK86b] 

[Pal85] 

[PaS81] 

[PeS87] 

[Pin84] 

[PA085] 

[Qui68] 

[Re081] 

[Ren71] 

[Req80] 

[RPK85] 

[Riv87] 

[Rob86] 

[Ros78] 

[Sal72] 

[Sal73] 

[Sam86] 

[ScA77] 

[ScE86] 

[Sha71] 

[ShW76] 

286 

R. Neches and T. S. Kaczmarek, "Where should the intelligence in intelligent 
interfaces be placed", Proceedings of the Fifth National Conference on Artficial 
Intelligence, Philadelphia, PA, August 1986, 1151-1152. 
B. Neches and T. Kaczmarek, AAAI-86 Workshop on Intelligence in Interfaces, August 
14, 1986. 

P. W. Palumbo, "Two-dimensional heuristic augmented transition network parsing", 
The 2nd AI Applications conference, Dec. 1985. 

M. A. Papalaskaris and L. Schubert, "Parts Inference: Closed and Semi-Closed 
Partitioning Graphs", Proceedings of the Seventh International Joint Conference on 
Artificial Intelligence, 1981, 304-309. 

S. L. Peters and S. C. Shapiro, "A Representation for Natural Category Systems", 
Proceedings of the Tenth International Joint Conference on Artificial Intelligence, 
August 1987. 

S. Pinker, "Visual Cognition: An Introduction", in Visual Cognition, S. Pinker 
(editor), Elsevier Science Publishers, Amsterdam, 1984, 1-64. 

A. Poggio, J. J. G. L. Aceves, E. J. Oraighill, D. Moran, L. Aguilar, D. Worthington 
and J. Hight, "COWS: A Computer-Based, Multimedia Information System", 
Computer 18, 10 (Oct. 1985}, 92-103. 
M. R. Quillian, "Semantic Memory", in Semantic Information Processing, M. L. 
Minsky (editor), The MIT Press, 1968, 227-270. 
R. Reiter and G. Criscuolo, "On Interacting Defaults", IJCAI, 1981. 
B. A. Renton, Electrical and Electronics Drafting, Hayden Book Co., New York, 1971. 
A. A. G. Requicha, "Representation for Rigid Solids: Theory, Methods, and Systems", 
Computing Surveys 12, 4 (December 1980), 437-464. 
J. K. Reynolds, J.B. Postel, A. R. Katz, G. G. Finn and A. L. DeSchon, "The DARPA 
experimental multi media mail system", Computer, Oct. 1985, 82-91. 
I. Rival, "Picture Puzzling", The Sciences 27, 1 ( January 1987), 40-46. 
G. Robins, The NIKL Manual, USO/Information Sciences Institute, April 1986. 
E. Rosch, "Principles of Categorization", in Cognition and Categorization, E. R. B. 
Lloyd (editor), Lawrence Erlbaum, 1978, 27-48. 
G. Salton, "Dynamic Document Processing", Communications of the ACM 15, 7 (July, 
1972), 658-668. 
G. Salton, "Recent Studies in Automatic Text Analysis and Document Retrieval", J. 
ACM 20, 2 (April 1973), 258-278. 
T. Samad, A Natural Language Interface for Computer-Aided Design, Kluwer 
Academic Publishers, Boston, 1986. 
R. C. Schank and R. P. Abelson, Scripts, Plans, Goals and Understanding, Lawrence 
Erlbaum Press, Hillsdale, N.J., 1977. 
A. Schappo and E. A. Edmonds, "Support for Tentative Design: Incorporating the 
Screen Image .as a Graphical Object in PROLOG", Int. J. Man Machine Studies 24, 6 
(June 1986), 601-609. 
S. C. Shapiro, "The MIND System: A Data Structure for Semantic Information 
Processing", R-837-PR, United States Air Force Project RAND, Santa Monica, CA, 
August 1971. 
S. C. Shapiro and M. \t\Tand, "The Relevance of Relevance", Report 46, Indiana 
University, 1976. 



287 

[Sha79a] S. C. Shapiro, "Using Non-Standard Connectives and Quantifiers for Representing 
Deduction Rules in a Semantic Network", Presented in Tokyo at: Current Aspects of 
AI Research, Aug. 27-28, 1979. 

[Sha79b] S. C. Shapiro, "The SNePS Semantic Network Processing System", in Associative 
Networks: The Representation and use of Knowledge by Computers, N. V. Findler 
(editor), Academic Press, New York, 1979, 179-203. 

[Sha82] S. C. Shapiro, "Generalized augmented transition network grammars for generation 
from semantic networks", The American Journal of Computational Linquistics 8, l 
(1982), 12-25. 

[ShM82] S. C. Shapiro and A. S. Maida, "Intensional Concepts in Propositional Semantic 
Networks", Cognitive Science 6 (1982). 

[ShS83] S. C. Shapiro and T. SNePS Implementation Group, "SNePS User's Manual", SNeRG 
Bibliography #31, SUNY at Buffalo, Sept. 1983. 

[ShR86] S. C. Shapiro and W. J. Rapaport, "SNePS Considered as a Fully Intensional 
Propositional Semantic Network", Proceedings of the Fifth National Conference on 
Artificial Intelligence, 1986, 278-283. 

[ShG86a] S. C. Shapiro and J. Geller, "Artificial Intelligence and Automated Design", 1986 
SUNY Buffalo Symposium on CAD: The Computability of Design, Dec 6-7, 1986. 

[ShG86b] S. C. Shapiro and J. Geller, "Knowledge Based Interfaces", in AAA! 86 Workshop on 
Intelligence in Interfaces, B. Neches and T. Kaczmarek (editor), August 14, 1986, 31- 
36. 

[SST86] S. C. Shapiro, S. N. Srihari, M. Taie and J. Geller, "VMES: A Network Based 
Versatile Maintenance Expert System", Proc. of Lst International Conference on 
Applications of AI to Engineering Problems, New York, April 1986, 925-936. 

[Shi83] I. Shirakawa, "Routing High Density Printed Wiring Boards", in Hardware and 
Software Concepts in VLSI, G. Rabat (editor), Van Nostrand Reinhold, New York, 
1983, 452-479. 

[SmM81] E. E. Smith and D. L. Medin, Categories and Concepts, Harvard University Press, 
Cambridge MA, 1981. 

[Smi83] R. G. Smith, "STROBE: Support for Structured Object Knowledge Representation", 
IJCAI-83, August 1983, 855-858. 

[Smi85] B. C. Smith, "Prologue to Reflection and Semantics in a Procedural Language", in 
Readings in Knowledge Representation, R. Brachman and H. Levesque ( editor), Morgan 
Kaufmann, 1985, 31-39. 

[Son76] N. K. Sondheimer, "Spatial reference and natural-language machine control", 
International Journal of Man Machine Studies 8, 3 (1976), 329-336. 

[SpW86] D. Sperber and D. Wilson, Relevance: Communication and Cognition, Harvard 
University Press, Cambridge, MA, 1986. 

[SuT88] J. W. Sullivan and S. W. Tyler, Architectures for Intelligent Interfaces: Elements and 
Prototypes, ACM/SIGCHI, Monterey Workshop, March 1988. 

[Tai87] M. R. Taie, "Representation of Device Knowledge For Versatile Fault Diagnosis", 
Tech. Rep. 87-07, Dept. of Computer Science, SUNY at Buffalo, May 1987. 

[TGS87] M. R. Taie, J. Geller, S. N. Srihari and S. C. Shapiro, "Knowledge Based Modeling of 
Circuit Boards", Proceedings of the Asinu.al Reliability and Maintainability Symposfom, 
January 1987, 422-427. 

[Wal87] D. Walters, "Selection of Image Primitives for General-Purpose Visual Processing!', 
Computer Vision, Graphics, and Image Processing 37 (1987), 261-298. 



[Wal80] 

[WiR86] 

[WiB83] 

[Win72] 

[WCH87] 

[Woo70] 

[Woo87] 

[YTK84] 

[ZGY81] 

288 

D. L. Waltz, "Understanding Scene Descriptions as Event Simulations", A CL, 1980, 
7-11. 

J. M. Wiebe and W. J. Rapaport, "Representing De Re and De Dicto Belief Reports in 
Discoure and Narrative", Proceedings of the IEEE 74, 10 (October 1986), 1405-1413. 
Y. Wilks and J. Bien, "Beliefs, Points of View and Multiple Environments", Cognitive 
Science 7 (1983), 95-119. 

T. Winograd, Understanding Natural Language, Academic Press, New York, 1972. 
M. E. Winston, R. Chaffin and D. Herrmann, "A Taxonomy of Part-Whole Relations", 
Cognitive Science 11, 4 (1987); 417-444. 
W. A. Woods, "Transition Network Grammars for Natural Language Analysis", 
Comunications of the ACM 10 (1970), 591-606. 

W. A. Woods, "Knowledge Representation: What's Important About It?", in The 
Knowledge Frontier, N. Cercone and G. McCalla (editor), Springer Verlag, New York, 
1987, 44-79. 

M. Yokota, R. Taniguchi and E. Kawaguchi, "Language-Picture Question-Answering 
Through Common Semantic Representation And its Application to the World of 
Weather Report", in Natural Language Communication with Pictorial Information 
Systems; L. Bole (editor), 1984. 
F. Zdybel, N. R. Greenfeld,· M. D. Yonke and J. Gibbons, "An Information 
Representation System", Proceedings of the Seventh International Joint Conference on 
Artificial Intelligence, 1981, 978-984. 


