This is a slightly revised version of a paper that will appear in the
proceedings of AI In Engineering, Toulouse, France, June 29 - July 1, 1993.

Behavior Based AI, Cognitive Processes,
and Emergent Behaviors in Autonomous
Agents

Henry Hexmoor, Johan Lammens, Guido Caicedo, and Stuart C. Shapiro
Department of Computer Science

226 Bell Hall

State University of New York at Buffalo

Buffalo, NY 14260

ABSTRACT

Behavior based AI [Brooks, 1990, Maes, 1990] has questioned the need for
modeling intelligent agency using generalized cognitive modules for perception
and behavior generation. Behavior based Al has demonstrated successful in-
teractions in unpredictable environments in the mobile robot domain [Brooks,
1985, Brooks, 1990]. This has created a gulf between “traditional” approaches
to modeling intelligent agency and behavior based approaches. We present an
architecture for intelligent autonomous agents which we call GLAIR (Grounded
Layered Architecture with Integrated Reasoning) [Hexmoor et al., 1992, Hex-
moor et al., 1993b, Hexmoor et al., 1993a]. GLAIR is a general multi-level
architecture for autonomous cognitive agents with integrated sensory and motor
capabilities. GLAIR offers an “unconscious” layer for modeling tasks that ex-
hibit a close aflinity between sensing and acting, i.e., behavior based Al modules,
and a “conscious” layer for modeling tasks that exhibit delays between sensing
and acting. GLAIR provides learning mechanisms that allow for autonomous
agents to learn emergent behaviors and add it to their repertoire of behaviors.
In this paper we will describe the principles of GLAIR and systems we have
developed that demonstrate how GLAIR based agents acquire and exhibit a
repertoire of behaviors at different cognitive levels.

1 Overview of GLAIR

What goes into an architecture for an autonomous agent has traditionally de-
pended to a large extent on whether we are building a physical system, under-
standing/modeling behaviors of an anthropomorphic agent, or integrating a se-
lect number of intelligent behaviors. The organization of an architecture is also
influenced by adopting various philosophical positions like Fodor’s modularity
assumption [Fodor, 1983], or a connectionist point of view, e.g. [McClelland

et al., 1986], or an anti-modularity assumption as in Brooks’s subsumption ar-
chitecture [Brooks, 1985]. The modularity assumption supports (among other
things) a division of the mind into a central system, i.e. cognitive processes
such as learning, planning, and reasoning, and a peripheral system, i.e. sen-
sory and motor processing [Chapman, 1990]. Our architecture is characterized
by a three-level organization into a Knowledge Level (KL), a Perceptuo-Motor
Level (PML), and a Sensori-Actuator Level (SAL). This organization is neither
modular, anti-modular, hierarchical, anti-hierarchical, nor connectionist in the
conventional sense. It integrates a traditional symbol system with a physically
grounded system, i.e. a behavior-based architecture. The most important dif-
ference from a purely behavior-based architecture like Brooks’s subsumption
architecture is the presence of three distinct levels with different representations
and implementation mechanisms for each, particularly the presence of an explicit
KL. Representation, reasoning (including planning), perception, and generation
of behavior are distributed through all three levels. Our architecture is best
described using a resolution pyramid metaphor as used in computer vision work
[Ballard and Brown, 1982], rather than a central vs. peripheral metaphor.

Architectures for building physical systems, e.g. robotic architectures [Al-
bus et al., 1981], tend to address the relationship between a physical entity
like a robot and sensors, effectors, and tasks to be accomplished. Since these
physical systems are performance centered, they often lack general knowledge
representation and reasoning techniques. These architectures tend to be primar-
ily concerned with the body, that is, how to get the physical system to exhibit
intelligent behavior through its physical activity. These architectures address
what John Pollock calls Quick and Inflexible (Q&1) processes [Pollock, 1989].

We define consciousness for a robotic agent operationally as being aware of
one’s environment, as evidenced by (1) having some internal states or represen-
tations that are causally connected to the environment through perception, (2)
being able to reason explicitly about the environment, and (3) being able to
communicate with an external agent about the environment.

Architectures for understanding/modeling behaviors of an anthropomorphic
agent, e.g., cognitive architectures [Anderson, 1983, Pollock, 1989, Langley et al.,
1991], tend to address the relationships that exist among the structure of mem-
ory, reasoning abilities, intelligent behavior, and mental states and experiences.
These architectures often do not take the bodyinto account. Instead they primar-
ily focus on the mind and consciousness. Qur architecture ranges from general
knowledge representation and reasoning to body-dependent physical behavior,
and the other way around.

We are interested in autonomous agents that are embedded in a dynamic
environment. Such an agent needs to continually interact with and react to
its environment and exhibit intelligent behavior through its physical activity.
To be successful, the agent needs to reason about events and actions in the
abstract as well as in concrete terms. This means combining situated activity
with acts based on reasoning about goal-accomplishment, i.e., deliberative acting
or planning. In the latter part of this paper, we will present a family of agents
based on our architecture. These agents are designed with a robot in mind, but
their structure is also akin to anthropomorphic agents. Figure 1 schematically
presents our architecture.

(unconscious)

Sensori-
Actuator
Level
(unconscious)

Knowledge K-level R ‘
Level processes & oo v
. B . !
(conscious) 3 representations P
. I
) b
rr I L
I ! I
‘ : |
N I
Perceptuo- PM-level ! 3
Motor ‘ processes & oo -
Level representations | v - P
|
I
I
I
d
|
I
I
I
I
|

—= Control flow
----= Daaflow

Alignment

Figure 1: Schematic representation of the agent architecture. Width
of control and data paths suggests the amount of information pass-
ing through (bandwidth). Sensors include both world-sensors and
proprio-sensors.

There are several features that contribute to the robustness of our architec-
ture. We highlight them below. For an in-depth discussion and comparison with
other architectures see [Hexmoor et al., 1992].

o We differentiate conscious reasoning from unconscious Perceptuo-motor
and sensori-actuator processing.

e The levels of our architecture are semi-autonomous and processed in par-

allel.

e Conscious reasoning takes place through explicit knowledge representa-
tion and reasoning. Unconscious behavior makes use of several different
mechanisms.

e Conscious reasoning guides the unconscious behavior, and the unconscious
levels, which are constantly engaged in perceptual and motor processing,
can alarm the conscious level of important events, taking control if neces-
sary. Control and generation of behavior are layered and not exclusively
top-down.

o Lower level mechanisms can pre-empt higher level ones. This is kind of
subsumption on its head, but everything depends on the placement of

behaviors in the hierarchy of course. We haven’t quite decided yet whether
inhibition should work the other way around as well.

e Thereis a correspondence between terms in the Knowledge Representation
and Reasoning (KRR) system on one hand, and perceived objects, prop-
erties, events, and states of affairs in the world, and motor capabilities on
the other hand. We call this correspondence alignment.

e The level at which any given behavior is generated and/or controlled is
not fixed, but can vary in the course of learning, or depending on the
particular goals and capabilities of the agent in question.

A major objective for GLAIR is learning emergent behaviors. Like Agre’s im-
provised actions [Agre and Chapman, 1987] and Brooks’s subsumption [Brooks,
1985] we believe complex behaviors emerge from interaction of the agent with its
environment without planning. However, previous work in this area hard-coded
primitive actions and did not attempt to learn the improvised behavior.

2 Consciousness

We identify the Knowledge level with consciously accessible data and process-
ing; the Perceptuo-Motor level with “hard-wired”, not consciously accessible
processing and data involved with motor control and perceptual processing; and
the Sensori-Actuator level with the lowest-level muscular and sensor control,
also not consciously accessible. The distinction of conscious (Knowledge) levels
vs. unconscious (Perceptuo-Motor and Sensori-Actuator) levels is convenient
as an anthropomorphic metaphor, as it allows us to separate explicitly repre-
sented and reasoned about knowledge from implicitly represented and processed
knowledge. This corresponds grosso modo to consciously accessible and not con-
sciously accessible knowledge for people. Although we are aware of the pitfalls
of introspection, this provides us with a rule of thumb for assigning knowledge
(and skills, behaviors, etc.) to the various levels of the architecture. We believe
that our organization is to some extent psychologically relevant, although we
have not yet undertaken any experimental investigations in this respect. The
real test for our architecture is its usefulness in applications to physical (robotic)
autonomous agents.

There are also clear computational advantages to our architectural organi-
zation. A Knowledge Representation and Reasoning system as used for the
conscious Knowledge level is by its very nature slow and requires lots of compu-
tational resources. The implementation mechanisms we use for the unconscious
levels, such as PMA, are much faster and require much fewer resources. Since
the three levels of our architecture are semi-independent, they can be imple-
mented in a (coarse-grained) parallel distributed fashion; at least each level may
be implemented on distinct hardware, and even separate mechanisms within the
levels (such as individual reflex behaviors) may be. Our Robot Waiter agent,
for instance (section 6.2), uses distinct hardware for the three levels.

2.1 Perceptuo-Motor Automata

At the perceptuo-motor level, the behaviors resulting in physical actions are gen-
erated by an automaton, which we will call a PM-automaton (PMA) [Hexmoor
and Nute, 1992]. In other words, PMA are representation mechanisms for gen-
erating behaviors at an “unconscious” level. PMA is a family of finite state ma-
chines represented by <Rewards, Goal-Transitions, Goals, Action-Transitions,
Actions, Sensations>. Goals, Rewards, and Goal-Transitions in a PMA can be
empty. The simplest class of PMA is when all three of these elements are empty.
Below is the list of combinations of tuples, each defining a class of PMA.

o < NIL, NIL, NIL, Action-Transitions, Actions, Sensations>
o <NIL, Goal-Transitions, Goals, Action-Transitions, Actions, Sensations>
o <Rewards, NIL, NIL, Action-Transitions, Actions, Sensations>

¢ <Rewards, Goal-Transitions, Goals, Action-Transitions, Actions, Sensations>

Actions are a set of primitive actions. Sensations are a set of atomic (i.e.,
nondecomposable) percept types in a PMA. For example, a percept type for
a mobile robot that walks in building hallways can be its distance to the wall.
In Air Battle Simulation (ABS), relative distances from the enemy in X, Y,
and 7 azxes are percepts. We assume that all possible situations for a PMA can
be specified by one or many Sensations, i.e., percept types. We call a pattern
of Sensation types that are used for input to a PMA a Situation. In ABS,
<distanceX, distanceY, distanceZ, orientation> is a Situation. Henceforth, we
will refer to values of a situation input to a PMA as Situation instances. In ABS,
<close-front, close-right, close-above, parallel> is a situation instance. Goals
are descriptions of desirable conditions for a PMA. Goals are used to partition
a PMA. Rewards are static goodness values associated with situations. These
are determined apriori to PMA execution and remain unchanged throughout.

Action-Transitions (AT) are transformations that generate behaviors for ex-
ecution, (see Figure 2). The simplest ATs are mappings of Sensations — Action.
Below is a list of AT types. ATs can be disabled by inhibiting them. This is use-
ful when the agent wants to override unconscious behaviors generated by PMA
with conscious behaviors generated by the knowledge layer.

Figure 2: An action transition is shown on the left and a goal tran-
sition is shown in the right.

al —al gl —= g3

e Sensations — Action

e Previous action X Sensations — Action

e Goal x Sensations — Action

e Tendency X Sensations — Action

e Previous action x Goal X Sensations — Action

e Previous action x Goal x Tendency x Sensations — Action
e Tendency x Goal x Sensations — Action

ATs may consider goals as antecedents. ATs may consider previous actions in
deciding what to do next. We may take into account an estimated accumulated
reward for actions. We call the latter, tendencies. Tendencies are computed
using reinforcement based learning techniques [Sutton, 1988].

Goal-Transitions (GT) are transformations that update goals when the cur-
rent goal is satisfied. GT is Goall x Sensations — Goal2 where Goall and Goal2
are goals.

The PMA maintains the current goal. When the latest sensations along with
the current goal match an action transition, that action transition activates an
action which is then executed.

The primary mode of acquiring a PMA is intended to be by converting plans
in the knowledge level into a PMA by a process described in [Hexmoor and
Nute, 1992]. In the following section, we describe a stepwise learning scheme for
acquiring PMA transitions.

Y

3 Knowledge Migration from “conscious” to “un-

conscious” Level

Knowledge in GLAIR can migrate from conscious to unconscious levels. In
our application Air Battle Simulation (ABS) described later in this paper (see
[Hexmoor et al., 1993a] for detals of this system) we show how a video-game
playing agent learns how to dynamically “compile” a game playing strategy
that is initially formulated as explicit reasoning rules at the Knowledge level
into an implicit form of knowledge at the Perceptuo-Motor level, a PMA.

When the knowledge level determines an action for execution, it reaches
the PM-level. At the PM-level, this knowledge is learned in the form of PMA
transitions. The idea is that the next time circumstances make this action ap-
plicable, it can be selected for execution without having to resort to “conscious”
processes.

4 Learning Tendencies

Reinforcement based learning [Watkins, 1989] is a successful technique that is
used for learning action consequences, also known as action models. In learning
action models, we assume a Markovian environment. That is, the agent believes
the world changes only due to its own actions. In contrast to learning action

models, we are interested in modeling behavior generation by agents that func-
tion in dynamic environments. The impact of the agent’s action for the agent
depends on the situations in which actions are applied and on other agents’ ac-
tions. Other agents’ actions are nondeterministic. Furthermore, we assume that
the agent is computationally and cognitively resource bound. We assume that
the agent needs time to think about the best action and in general there is not
enough time. In such an environment, we want the agent to observe interactions
with the world in order to learn what actions tend to be successful in light of its
goals and prevailing situations. This is useful when the agent has to arbitrate
among multiple applicable actions.

Given a PMA action transition with multiple actions, each action is given a
goodness value. After an action is executed, the reward for the agent is a function
of the agent’s own action plus whatever other agents have done to result in the
new situation. Using reinforcement based learning, the goodness values are
updated to reflect rewards received and predictions about goodness of resulting
actions. However, unlike action models, convergence to optimal action selection
is not guaranteed. Instead, applicability of actions can only be said to follow
tendencies to act, i.e., what has worked in the past. We are experimenting with
two variations of learning tendencies. The first is to assess rewards for each new
situation reached after executing actions. This is somewhat unrealistic in that
often the problem space is large and not completely understood (here we treat
situations as problem states). Providing rewards in each situation is equivalent
to providing a large body of knowledge about the environment. In the second
variation, only a select number of situations are known to be significant so there
is a reward for reaching that situation. Most other states are insignificant. In
this variation, goodness values of actions are updated only when a significant
situation is reached.

5 Learning Emergent Routines

We endow the agent with a minimal number of primitive actions and sensations.
Our basis for this minimality and choice of primitive actions is physiological. In
other words, in our modeling a computer agent, we will choose actions that are
physically basic for the robot as primitive actions for the computer agent. We
then instruct the agent to perform tasks and in the midst of accomplishing them,
we expect the agent to notice basic behaviors (i.e., routines) emerge. An example
of an emergent behavior we explore is when a mobile robot learns moving toward
an object. Emergent behaviors are learned and consequently used in the agent’s
repertoire of actions.

We assume that the agent does not know about long term consequences of its
actions. Over a finite number of actions, when the agent observes a substantially
improved situation, chances are he has found a successful Routine. We record
such detected Routines and as they recur, we increase our confidence in them.
When our confidence in a Routine reaches a certain level, a concept is created at
the Knowledge level of GLAIR for the routine and from then on, this routine can
be treated as a single action at that level, [Hexmoor, 1992]. Learning routines
is closely related to the second variation of learning tendencies as we discussed

in the previous section. Instead of learning action goodnesses, to learn a routine
we record the sequence of actions between a significantly bad situations and a
significantly good situation.

6 Applications of GLAIR

6.1 A simulation study: Air Battle

We have written a program, Air Battle Simulation (ABS) [Hexmoor et al.,
1993a], that simulates World War I style airplane dog-fights. ABS is an in-
teractive video-game in which a human player plays against a computer-driven
agent. The game starts up by displaying a game window and a control panel
window (Figure 3). The human player’s plane is always displayed in the center
of the screen. The aerial two-dimensional position of the enemy plane is dis-
played on the screen with the direction of flight relative to the human player’s
plane. The human player looks at the game screen to determine his airplane’s
position and orientation with respect to the enemy’s plane. (S)he then uses
the control panel to choose a move. A move is a combination of changing al-
titude, speed, and direction. When the human player presses the go button,
the computer agent also selects a move. The game simulator then considers the
human player’s move and the computer agent’s move to determine the outcome
of moves, and updates the screen and the accumulated damage to planes. ABS
simulates simultaneous moves this way. If a player’s plane is close in altitude
and position to the enemy plane, and the enemy is in frontal sight, the latter is
fired on automatically (i.e., firing is not a separate action). The levels of damage
are recorded in a side panel, and the game ends when one or both of the two
player’s planes are destroyed.

Py
INTACT
% INTACT

E|
TURN

T\Lﬁ%_,(l)

=

= ==

Figure 3: Air Battle Simulation game window and control panel (see
text).

Initially, the agent has not acquired a PMA, and uses conscious level reason-
ing to decide what move to make. Once transitions are learned and cached in
a PMA, the agent uses the PMA for deciding its next move whenever possible.
By adding learning strategies, a PMA is developed that caches moves decided at
the Knowledge level for future use. Learning can be used to mark PMA moves
that prove unwise and to reinforce moves that turn out to be successful. We

started ABS with an empty PMA and as the game was played, transitions of
the PMA were learned. Also as the transitions were learned, when similar situa-
tions occurred and there was an appropriate PMA response, the PMA executed
that action. As the game was played, we observed that the agent became more
reactive since the PMA was increasingly used to generate behaviors instead of
the Knowledge level.

We are exeprimenting with reinforcement based learning, emergent routines,
and other learning techniques such as experimentation as a form of learning
[Shen, 1989]. We are also interested in developing experiments that will help in
psychological validation of GLAIR and the learning strategies used in ABS. As
of this writing ABS is fully operational.

6.2 A physical implementation: the Robot Waiter

We are developing an experimental setup in which a robot arm will set a din-
ner table in various configurations, guided by input from a color camera and
controlled by a host computer.

The physical setup includes a dinner table, a supplies table containing kitchen-
ware, a Puma 260 robot arm, a CCD camera, a PC-based color frame grabber,
and a Sun 4/260 workstation host computer. In a later phase of this project,
we hope to replace the Puma 260 robot arm with a larger Puma 560 model.
Figure 4 represents the setup.

Supplies
O
Dinner table
RoB|[1 % I = | 7]
260
Puma
Ctrl Box
sensory
| subsystems
\
Sun PC
4/260 486
KL & PML SAL

Figure 4: The Robot Waiter physical setup.

The human operator instructs the agent to set the table for dinner, break-
fast, etc., specifying by named color which objects to choose from the supplies
table (color is not a sufficient feature to recognize objects, as each type of ob-
ject is available in several colors). The camera is mounted in a fixed position
overlooking both tables and the robot. This testbed provides a dynamic, yet

controllable, environment in which an agent is placed so as to facilitate empirical
studies of its behavior. The places, number, kind, and color of objects is not
fixed, and unannounced human intervention in the domain is allowed while the
robot is carrying out its task.

We call the agent for this project the Robot Waiter (RW). RW is being de-
veloped in accordance with the principles of the GLAIR architecture. Figure 5
schematically presents its structure. The categorizer uses domain constraints to
determine what objects are in the visual field. It can also be told to look for a
certain object, e.g., a red cup. The sensory memory acts as an attentional regis-
ter, keeping track of the object that is being manipulated or is to be inspected.

Knowledge :
Level Task B Situation
(conscious) : Planner Assessor
i 3
1
... e
:
_ Manipulation [&====-===-==----= > Sensory
Perceptuo P PvA Memory
Motor H K
Level : \l' R
(sub-conscious) Path -] Domain | _-f Object
: Constructor Constraints Categorizer
------------------------- s S . NS
/,’ 1
H ”/ 1
Sensori- Manipulator | -~~ Camera
Actugtor : (& sensors) (early vision)
Level

(sub-conscious)

—= Control flow

----= Dataflow

Figure 5: Schematic representation of the Robot Waiter GLAIR-
agent.

Actions are transmitted from KI. to PML, e.g., look for a red cup and pick it
up. Once the sensory memory contains an object matching the object desired,
actions involving that object can be understood at the PML. For instance, once
a red cup is discovered and recorded in the sensory memory, an action like pick
it up is expanded by a PMA into robot arm tasks to reach for the cup, grasp it,
and lift it. A PMA is a implementation mechanism for routine activities at an
“unconscious” level, [Hexmoor and Nute, 1992, Hexmoor et al., 1992, Hexmoor
et al., 1993a]. Each task involving a robot motion is subsequently submitted
to the path constructor. Some motions may have to be decomposed to visit
intermediate points in order to avoid fixtures in the environment. The path
constructor generates path segments for each robot motion. Fach path segment
generated by the path constructor is transmitted to the SAL for execution.

RW incorporates an embodied model of color perception and color naming,
modeled after the physiology of human color perception. This model allows the
agent to (1) name colors shown to it, and express a typicality judgement, (2)

10

point out examples of named colors in its environment, and (3) learn new names
for colors. This model provides the perceptual grounding for a set of basic
color terms [Berlin and Kay, 1969] represented at the Knowledge level. The
color domain was chosen as a case study for embodied perception because of
the relative abundance of psychological, psychophysical and neurophysiological
data in the literature [Lammens,]. It is a complex enough domain to allow
the usefulness of embodiment for computational models of perception to be
demonstrated, yet feasible enough to be implemented in actual autonomous
agents. As of this writing, the Robot Waiter project is partially implemented.

6.3 A simulation study: the Mobile Robot Lab

The Mobile Robot Lab (MRL) is a simulation environment. The simulation is
relatively simple, but nevertheless provides a rich and realistic enough environ-
ment to function as a testbed for the development of physical GLAIR-agents.
A complete setup using MRIL consists of a GLAIR-agent, a simulator with an
incorporated description of a physical environment, and a graphical interface
(Figure 6). The room in which the robot moves has a polygonal floor plan and
vertical walls, and contains a number of solid objects with convex polygonal
bases and vertical faces, each with an associated user-defined spectral power
distribution (SPD).

Any number of robots may inhabit the room. They have two independently
driven wheels on either side, and two small support wheels underneath in the
front and the back. Furthermore a bumper bar front and back, with contact and
force sensors built in, and a color camera on top, parallel to the direction of the
driven wheels. The camera is fixed and mounted horizontally. The robot also
has a non-directional light with a user-defined SPD on top, which it can switch
on and off or flash.

The simulator interfaces with the agent and with the graphical interface. It
takes care of any I/O with the agent that would otherwise come from the sensors
and go to the actuators of a real mobile robot. It also takes care of any 1/0
with the graphical interface, needed to keep the graphical display of the robot
and its physical environment updated.

The simulator incorporates a simplified model of the physics of motion and
sensing for the mobile robot. It continually updates the position of the robot
depending on the rotation speed and direction of its wheels, and provides the
agent with appropriate sensory data about wheel rotation and contact with
objects. The simulator provides simulated camera input to the agent. Camera
input is simplified in that it consists of a 9x7 pixel array (square pixels), with each
pixel represented as an RGB triplet. This simplified camera view is computed
and passed to the simulator by the graphical interface, on the basis of the 3D
perspective views (see below).

The graphical interface provides a real-time view of the robot and the robot’s
environment, using data obtained from the simulator. It consists of a 2D display
showing a bird’s eye view of the room, the objects, and the robot in it, a sensors
and actuators monitor display, and a 3D perspective display that shows the
environment from the robot’s point of view.

The agent’s primitive actions are limited to independently controlling the

11

———~{ World model) P

robot eye' simage

Display commands

graphics simulator
Unix sockets
wheel commands
oveater
bumpers
wheeel speeds| Sensori-actuator
Level
—] PMRE PMA Perceptuo-motor
Level
stuam.on asseﬁment. Knowledge Level
Planning and reasoning
| System Interface | instruction
Displays —— data
(God' s eye,
robot eye)

MRL system diagram

Figure 6: MRL system diagram. It consists of a GLAIR-agent, a
simulator with an incorporated model of a physical environment,
and a graphical interface. Arrows represent direction of data flow
among the components.

speed and direction of rotation for each of the left and right wheel motors.
Actuation values for each motor increase/decrease by 1/10 foot/sec of wheel
circumference in forward and reverse direction. Brakes can be applied to each
wheel. We assume negligible acceleration/deceleration times.

As shown in Figure 6, the agent receives an image, bumper information,
and wheel speeds at the SA level. The image is subsequently foveated [Bandera
and Scott, 1989] to model foveation after advanced biological vision. (Foveation
produces high resolution at the center of the image and decreasing resolution
at the image periphery.) After some early vision processing, the processed im-
age data in the form of blobs as well as other sensory information reaches the
Perceptuo-Motor Reduction Engine (PMRE) which in turn assesses the situa-
tion perceived. This involves vision processing such as looming effects as well as
fusion of multiple sensory data. PMRE feeds PMA with the current situation
for generating learned reactions. Assessed situations reach the knowledge level
which may do further processing on the sensory data or use that information to
generated instructions for execution.

When the robot is in motion, it will use cues from its environment to guide

12

its behavior selections and subsequent learning. In order for the robot to guide
its behavior, we need to associate rewards with actions that result in desirable
sensations. For instance, if the robot wants (at the Knowledge level) to touch an
object and is taking actions to move towards the object, and the object is in the
left field of view and the robot moves left (increases its right wheel motor speed)
it will bring the object to the center of the field of view. The action of turning left
in this situation will be positively rewarded. The result of learning (sequences
of) actions will be recorded in PMA transitions. For instance, touching an object
evolves into a set of PMA transitions.

At the knowledge level, for each behavior, a triple of <A, S, R> will be
defined. A is the set of primitive actions, S is a set of sensations, and R is a set
of rewards. For example, for the behavior of touching, A = {left wheel forward
increase speed, left wheel forward decrease speed, right wheel forward increase
speed, right wheel forward decrease speed}; S = {object is bigger, object is
smaller, object is in the left field of view, object is in the right field of view,
object is in the center of the field of view, object is too close, contact is made};
R = {object is bigger 41, object is smaller -1, object is in the left field of view
-1, object is in the right field of view -1, object is in the center of field of view
+1, object is too close +1, contact is made 41} (numbers ranging from +1 to
-1 are rewards with +1 denoting desirable and -1 denoting undesirable).

Below we give a list of emergent behaviors that the robot learns completely
on its own.

e Touch behavior: approach an object until contact is made.

e Proximity percepts: proximity to an object, derived from camera data.
e Approach behavior: approach an object until it is in proximity.

¢ Block percept: recognizing something in the field of view as a block.

e Push a block

¢ Find a block

¢ Unwedge a block

e Explore/map the room

At the Knowledge level, all of the percepts and behaviors of the Perceptuo-
Motor level are represented, but in a more symbolic fashion. For instance, colors
and shapes have names. The representations at the two levels are connected via
the alignment mechanism discussed above. Also at this level is a symbolic map
of the room and the objects in it, and the current position of the agent. In
general, planning and some learning activities can originate at this level, and
reasoning about the environment and the agent’s actions, perceptions, goals,
desires, states, etc. is confined to this level only. Concepts of space and time
would also be represented at this level, perhaps as emergent concepts from the
behavior of the agent in its environment.

13

7 Summary and Conclusion

We have proposed an architecture that models “conscious” and “unconscious”
processes for behavior generation and learning by an intelligent agent. We distin-
guish three levels in our architecture: Knowledge Level, Perceptuo-Motor Level,
and Sensori-Actuator Level. Generation and control of behaviors is distributed
over all levels, and each level has independent access to sensors (via perceptual
reduction) and (to some extent) actuators. As we move down the levels, com-
putational and representational power is traded off for better response time and
simplicity of control. GLAIR agents learn from their interactions with the en-
vironment. A video-game agent, a mobile robot simulator, and a robotic agent
are developed that demonstrate the principles used in GLAIR. These agents
demonstrate emergent behaviors and integration of perception and action in the
architecture.

References

[Agre and Chapman, 1987] Agre, P. E. and Chapman, D. (1987). Pengi: An
implementation of a theory of activity. In Proceedings of AAAI-87, Seattle,
Wa., pages 268-272.

[Albus et al., 1981] Albus, J., Barbera, A., and Nagel, R. (1981). Theory and
practice of hierarchical control. In 23rd International IEEF Computer Society
Conference, pages 18-38.

[Anderson, 1983] Anderson, J. R. (1983). The Architecture of Cognition. Cam-
bridge: Harvard University Press.

[Ballard and Brown, 1982] Ballard, D. H. and Brown, C. M. (1982). Computer
Vision. Prentice-Hall, Englewood Cliffs, NJ.

[Bandera and Scott, 1989] Bandera, C. and Scott, P. (1989). Foveal machine
vision systems. In IEFFE International Conference on Systems, Man, and
Cybernetics, pages 596-599.

[Berlin and Kay, 1969] Berlin, B. and Kay, P. (1991 (orig. 1969)). Basic Color
Terms: Thewr Universality and Evolution. University of California Press,
Berkeley CA, first paperback edition.

[Brooks, 1985] Brooks, R. (1985). A robust layered control system for a mobile
robot. Technical Report 864, MIT Al Labs, MIT.

[Brooks, 1990] Brooks, R. A. (1990). Elephants dont play chess. In Maes, P.,
editor, Designing Autonomous Agents, pages 3—15. MIT Press.

[Chapman, 1990] Chapman, D. (1990). Vision, instruction, and action. Techni-
cal Report 1204, MIT Artificial Intelligence Laboratory, MIT.

[Fodor, 1983] Fodor, J. (1983). The Modularity of Mind. MIT Press.

14

[Hexmoor, 1992] Hexmoor, H. (1992). Representing and learning successful rou-
tine activities. Technical Report Unpublished PhD Proposal, Dept. of Com-
puter Science, SUNY at Buffalo, New York.

[Hexmoor et al., 1993a] Hexmoor, H., Caicedo, G., Bidwell, F., and Shapiro,
S. (1993a). Air battle simulation: An agent with conscious and unconscious

layers. In University of Buffalo Graduate Conference in Computer Science-93.
Dept. of Computer Science, SUNY at Buffalo, New York.

[Hexmoor et al., 1992] Hexmoor, H., Lammens, J., and Shapiro, S. (1992). An
autonomous agent architecture for integrating perception and acting with

grounded, embodied symbolic reasoning. Technical Report CS-92-21, Dept.
of Computer Science, SUNY at Buffalo, New York.

[Hexmoor et al., 1993b] Hexmoor, H., Lammens, J., and Shapiro, S. C. (1993b).
Embodiment in GLAIR: A Grounded Layered Architecture with Integrated
Reasoning. In Florida Al Research Symposium.

[Hexmoor and Nute, 1992] Hexmoor, H. and Nute, D. (1992). Methods for de-
ciding what to do next and learning. Technical Report AI-1992-01, AI Pro-
grams, The University of Georgia, Athens, Georgia. Also available from SUNY
at Buffalo, CS Department TR-92-23.

[Lammens, | Lammens, J. M. A computational model of color perception and
color naming: a case study of symbol grounding for natural language seman-
tics. Dissertation proposal, SUNY/Buffalo CS department, June 1992.

[Langley et al., 1991] Langley, P., McKusick, K., and Allen, J. (1991). A design
for the icarus architecture. In ACM SIGART Bulletin, pages 104-109. ACM
publications.

[Maes, 1990] Maes, P. (1990). Situated agents can have goals. In Maes, P.,
editor, Designing Autonomous Agents, chapter 4, pages 49-70. MIT Press.

[McClelland et al., 1986] McClelland, J. L., Rumelhart, D. E., and Hinton,
G. E. (1986). The appeal of parallel distributed processing. In Rumelhart, D.,
McClelland, J., and the PDP Research Group, editors, Parallel Distributed
Processing, chapter 1, pages 3—44. MIT Press, Cambridge MA.

[Pollock, 1989] Pollock, J. (1989). How to Build a Person. MIT Press.

[Shen, 1989] Shen, W.-M. (1989). Learning from the Environment Based on
Actions and Percepts. PhD thesis, Carnegie Mellon University.

[Sutton, 1988] Sutton, R. (1988). Learning to predict by the methods of tem-
poral differences. In Machine Learning 3, pages 3—44.

[Watkins, 1989] Watkins, C. (1989). Learning from Delayed Rewards. PhD
thesis, King’s College, Cambridge, UK.

15

