
This is a slightly revised version of a paper that will appear in theproceedings of AI In Engineering, Toulouse, France, June 29 - July 1, 1993.Behavior Based AI, Cognitive Processes,and Emergent Behaviors in AutonomousAgentsHenry Hexmoor, Johan Lammens, Guido Caicedo, and Stuart C. ShapiroDepartment of Computer Science226 Bell HallState University of New York at Bu�aloBu�alo, NY 14260ABSTRACTBehavior based AI [Brooks, 1990, Maes, 1990] has questioned the need formodeling intelligent agency using generalized cognitive modules for perceptionand behavior generation. Behavior based AI has demonstrated successful in-teractions in unpredictable environments in the mobile robot domain [Brooks,1985, Brooks, 1990]. This has created a gulf between \traditional" approachesto modeling intelligent agency and behavior based approaches. We present anarchitecture for intelligent autonomous agents which we call GLAIR (GroundedLayered Architecture with Integrated Reasoning) [Hexmoor et al., 1992, Hex-moor et al., 1993b, Hexmoor et al., 1993a]. GLAIR is a general multi-levelarchitecture for autonomous cognitive agents with integrated sensory and motorcapabilities. GLAIR o�ers an \unconscious" layer for modeling tasks that ex-hibit a close a�nity between sensing and acting, i.e., behavior based AI modules,and a \conscious" layer for modeling tasks that exhibit delays between sensingand acting. GLAIR provides learning mechanisms that allow for autonomousagents to learn emergent behaviors and add it to their repertoire of behaviors.In this paper we will describe the principles of GLAIR and systems we havedeveloped that demonstrate how GLAIR based agents acquire and exhibit arepertoire of behaviors at di�erent cognitive levels.1 Overview of GLAIRWhat goes into an architecture for an autonomous agent has traditionally de-pended to a large extent on whether we are building a physical system, under-standing/modeling behaviors of an anthropomorphic agent, or integrating a se-lect number of intelligent behaviors. The organization of an architecture is alsoin
uenced by adopting various philosophical positions like Fodor's modularityassumption [Fodor, 1983], or a connectionist point of view, e.g. [McClelland



et al., 1986], or an anti-modularity assumption as in Brooks's subsumption ar-chitecture [Brooks, 1985]. The modularity assumption supports (among otherthings) a division of the mind into a central system, i.e. cognitive processessuch as learning, planning, and reasoning, and a peripheral system, i.e. sen-sory and motor processing [Chapman, 1990]. Our architecture is characterizedby a three-level organization into a Knowledge Level (KL), a Perceptuo-MotorLevel (PML), and a Sensori-Actuator Level (SAL). This organization is neithermodular, anti-modular, hierarchical, anti-hierarchical, nor connectionist in theconventional sense. It integrates a traditional symbol system with a physicallygrounded system, i.e. a behavior-based architecture. The most important dif-ference from a purely behavior-based architecture like Brooks's subsumptionarchitecture is the presence of three distinct levels with di�erent representationsand implementation mechanisms for each, particularly the presence of an explicitKL. Representation, reasoning (including planning), perception, and generationof behavior are distributed through all three levels. Our architecture is bestdescribed using a resolution pyramid metaphor as used in computer vision work[Ballard and Brown, 1982], rather than a central vs. peripheral metaphor.Architectures for building physical systems, e.g. robotic architectures [Al-bus et al., 1981], tend to address the relationship between a physical entitylike a robot and sensors, e�ectors, and tasks to be accomplished. Since thesephysical systems are performance centered, they often lack general knowledgerepresentation and reasoning techniques. These architectures tend to be primar-ily concerned with the body, that is, how to get the physical system to exhibitintelligent behavior through its physical activity. These architectures addresswhat John Pollock calls Quick and In
exible (Q&I) processes [Pollock, 1989].We de�ne consciousness for a robotic agent operationally as being aware ofone's environment, as evidenced by (1) having some internal states or represen-tations that are causally connected to the environment through perception, (2)being able to reason explicitly about the environment, and (3) being able tocommunicate with an external agent about the environment.Architectures for understanding/modeling behaviors of an anthropomorphicagent, e.g., cognitive architectures [Anderson, 1983, Pollock, 1989, Langley et al.,1991], tend to address the relationships that exist among the structure of mem-ory, reasoning abilities, intelligent behavior, and mental states and experiences.These architectures often do not take the body into account. Instead they primar-ily focus on the mind and consciousness. Our architecture ranges from generalknowledge representation and reasoning to body-dependent physical behavior,and the other way around.We are interested in autonomous agents that are embedded in a dynamicenvironment. Such an agent needs to continually interact with and react toits environment and exhibit intelligent behavior through its physical activity.To be successful, the agent needs to reason about events and actions in theabstract as well as in concrete terms. This means combining situated activitywith acts based on reasoning about goal-accomplishment, i.e., deliberative actingor planning. In the latter part of this paper, we will present a family of agentsbased on our architecture. These agents are designed with a robot in mind, buttheir structure is also akin to anthropomorphic agents. Figure 1 schematicallypresents our architecture. 2
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behaviors in the hierarchy of course. We haven't quite decided yet whetherinhibition should work the other way around as well.� There is a correspondence between terms in the Knowledge Representationand Reasoning (KRR) system on one hand, and perceived objects, prop-erties, events, and states of a�airs in the world, and motor capabilities onthe other hand. We call this correspondence alignment.� The level at which any given behavior is generated and/or controlled isnot �xed, but can vary in the course of learning, or depending on theparticular goals and capabilities of the agent in question.A major objective for GLAIR is learning emergent behaviors. Like Agre's im-provised actions [Agre and Chapman, 1987] and Brooks's subsumption [Brooks,1985] we believe complex behaviors emerge from interaction of the agent with itsenvironment without planning. However, previous work in this area hard-codedprimitive actions and did not attempt to learn the improvised behavior.2 ConsciousnessWe identify the Knowledge level with consciously accessible data and process-ing; the Perceptuo-Motor level with \hard-wired", not consciously accessibleprocessing and data involved with motor control and perceptual processing; andthe Sensori-Actuator level with the lowest-level muscular and sensor control,also not consciously accessible. The distinction of conscious (Knowledge) levelsvs. unconscious (Perceptuo-Motor and Sensori-Actuator) levels is convenientas an anthropomorphic metaphor, as it allows us to separate explicitly repre-sented and reasoned about knowledge from implicitly represented and processedknowledge. This corresponds grosso modo to consciously accessible and not con-sciously accessible knowledge for people. Although we are aware of the pitfallsof introspection, this provides us with a rule of thumb for assigning knowledge(and skills, behaviors, etc.) to the various levels of the architecture. We believethat our organization is to some extent psychologically relevant, although wehave not yet undertaken any experimental investigations in this respect. Thereal test for our architecture is its usefulness in applications to physical (robotic)autonomous agents.There are also clear computational advantages to our architectural organi-zation. A Knowledge Representation and Reasoning system as used for theconscious Knowledge level is by its very nature slow and requires lots of compu-tational resources. The implementation mechanisms we use for the unconsciouslevels, such as PMA, are much faster and require much fewer resources. Sincethe three levels of our architecture are semi-independent, they can be imple-mented in a (coarse-grained) parallel distributed fashion; at least each level maybe implemented on distinct hardware, and even separate mechanisms within thelevels (such as individual re
ex behaviors) may be. Our Robot Waiter agent,for instance (section 6.2), uses distinct hardware for the three levels.4



2.1 Perceptuo-Motor AutomataAt the perceptuo-motor level, the behaviors resulting in physical actions are gen-erated by an automaton, which we will call a PM-automaton (PMA) [Hexmoorand Nute, 1992]. In other words, PMA are representation mechanisms for gen-erating behaviors at an \unconscious" level. PMA is a family of �nite state ma-chines represented by <Rewards, Goal-Transitions, Goals, Action-Transitions,Actions, Sensations>. Goals, Rewards, and Goal-Transitions in a PMA can beempty. The simplest class of PMA is when all three of these elements are empty.Below is the list of combinations of tuples, each de�ning a class of PMA.� < NIL, NIL, NIL, Action-Transitions, Actions, Sensations>� <NIL, Goal-Transitions, Goals, Action-Transitions, Actions, Sensations>� <Rewards, NIL, NIL, Action-Transitions, Actions, Sensations>� <Rewards, Goal-Transitions, Goals, Action-Transitions, Actions, Sensations>Actions are a set of primitive actions. Sensations are a set of atomic (i.e.,nondecomposable) percept types in a PMA. For example, a percept type fora mobile robot that walks in building hallways can be its distance to the wall.In Air Battle Simulation (ABS), relative distances from the enemy in X, Y ,and Z axes are percepts. We assume that all possible situations for a PMA canbe speci�ed by one or many Sensations, i.e., percept types. We call a patternof Sensation types that are used for input to a PMA a Situation. In ABS,<distanceX, distanceY, distanceZ, orientation> is a Situation. Henceforth, wewill refer to values of a situation input to a PMA as Situation instances. In ABS,<close-front, close-right, close-above, parallel> is a situation instance. Goalsare descriptions of desirable conditions for a PMA. Goals are used to partitiona PMA. Rewards are static goodness values associated with situations. Theseare determined apriori to PMA execution and remain unchanged throughout.Action-Transitions (AT) are transformations that generate behaviors for ex-ecution, (see Figure 2). The simplest ATs are mappings of Sensations 7! Action.Below is a list of AT types. ATs can be disabled by inhibiting them. This is use-ful when the agent wants to override unconscious behaviors generated by PMAwith conscious behaviors generated by the knowledge layer.
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g3gt1Figure 2: An action transition is shown on the left and a goal tran-sition is shown in the right.� Sensations 7! Action 5



� Previous action � Sensations 7! Action� Goal � Sensations 7! Action� Tendency � Sensations 7! Action� Previous action � Goal � Sensations 7! Action� Previous action � Goal � Tendency � Sensations 7! Action� Tendency � Goal � Sensations 7! ActionATs may consider goals as antecedents. ATs may consider previous actions indeciding what to do next. We may take into account an estimated accumulatedreward for actions. We call the latter, tendencies. Tendencies are computedusing reinforcement based learning techniques [Sutton, 1988].Goal-Transitions (GT) are transformations that update goals when the cur-rent goal is satis�ed. GT is Goal1 � Sensations 7! Goal2 where Goal1 and Goal2are goals.The PMA maintains the current goal. When the latest sensations along withthe current goal match an action transition, that action transition activates anaction which is then executed.The primary mode of acquiring a PMA is intended to be by converting plansin the knowledge level into a PMA by a process described in [Hexmoor andNute, 1992]. In the following section, we describe a stepwise learning scheme foracquiring PMA transitions.3 Knowledge Migration from \conscious" to \un-conscious" LevelKnowledge in GLAIR can migrate from conscious to unconscious levels. Inour application Air Battle Simulation (ABS) described later in this paper (see[Hexmoor et al., 1993a] for detals of this system) we show how a video-gameplaying agent learns how to dynamically \compile" a game playing strategythat is initially formulated as explicit reasoning rules at the Knowledge levelinto an implicit form of knowledge at the Perceptuo-Motor level, a PMA.When the knowledge level determines an action for execution, it reachesthe PM-level. At the PM-level, this knowledge is learned in the form of PMAtransitions. The idea is that the next time circumstances make this action ap-plicable, it can be selected for execution without having to resort to \conscious"processes.4 Learning TendenciesReinforcement based learning [Watkins, 1989] is a successful technique that isused for learning action consequences, also known as action models. In learningaction models, we assume a Markovian environment. That is, the agent believesthe world changes only due to its own actions. In contrast to learning action6



models, we are interested in modeling behavior generation by agents that func-tion in dynamic environments. The impact of the agent's action for the agentdepends on the situations in which actions are applied and on other agents' ac-tions. Other agents' actions are nondeterministic. Furthermore, we assume thatthe agent is computationally and cognitively resource bound. We assume thatthe agent needs time to think about the best action and in general there is notenough time. In such an environment, we want the agent to observe interactionswith the world in order to learn what actions tend to be successful in light of itsgoals and prevailing situations. This is useful when the agent has to arbitrateamong multiple applicable actions.Given a PMA action transition with multiple actions, each action is given agoodness value. After an action is executed, the reward for the agent is a functionof the agent's own action plus whatever other agents have done to result in thenew situation. Using reinforcement based learning, the goodness values areupdated to re
ect rewards received and predictions about goodness of resultingactions. However, unlike action models, convergence to optimal action selectionis not guaranteed. Instead, applicability of actions can only be said to followtendencies to act, i.e., what has worked in the past. We are experimenting withtwo variations of learning tendencies. The �rst is to assess rewards for each newsituation reached after executing actions. This is somewhat unrealistic in thatoften the problem space is large and not completely understood (here we treatsituations as problem states). Providing rewards in each situation is equivalentto providing a large body of knowledge about the environment. In the secondvariation, only a select number of situations are known to be signi�cant so thereis a reward for reaching that situation. Most other states are insigni�cant. Inthis variation, goodness values of actions are updated only when a signi�cantsituation is reached.5 Learning Emergent RoutinesWe endow the agent with a minimal number of primitive actions and sensations.Our basis for this minimality and choice of primitive actions is physiological. Inother words, in our modeling a computer agent, we will choose actions that arephysically basic for the robot as primitive actions for the computer agent. Wethen instruct the agent to perform tasks and in the midst of accomplishing them,we expect the agent to notice basic behaviors (i.e., routines) emerge. An exampleof an emergent behavior we explore is when a mobile robot learns moving towardan object. Emergent behaviors are learned and consequently used in the agent'srepertoire of actions.We assume that the agent does not know about long term consequences of itsactions. Over a �nite number of actions, when the agent observes a substantiallyimproved situation, chances are he has found a successful Routine. We recordsuch detected Routines and as they recur, we increase our con�dence in them.When our con�dence in a Routine reaches a certain level, a concept is created atthe Knowledge level of GLAIR for the routine and from then on, this routine canbe treated as a single action at that level, [Hexmoor, 1992]. Learning routinesis closely related to the second variation of learning tendencies as we discussed7



in the previous section. Instead of learning action goodnesses, to learn a routinewe record the sequence of actions between a signi�cantly bad situations and asigni�cantly good situation.6 Applications of GLAIR6.1 A simulation study: Air BattleWe have written a program, Air Battle Simulation (ABS) [Hexmoor et al.,1993a], that simulates World War I style airplane dog-�ghts. ABS is an in-teractive video-game in which a human player plays against a computer-drivenagent. The game starts up by displaying a game window and a control panelwindow (Figure 3). The human player's plane is always displayed in the centerof the screen. The aerial two-dimensional position of the enemy plane is dis-played on the screen with the direction of 
ight relative to the human player'splane. The human player looks at the game screen to determine his airplane'sposition and orientation with respect to the enemy's plane. (S)he then usesthe control panel to choose a move. A move is a combination of changing al-titude, speed, and direction. When the human player presses the go button,the computer agent also selects a move. The game simulator then considers thehuman player's move and the computer agent's move to determine the outcomeof moves, and updates the screen and the accumulated damage to planes. ABSsimulates simultaneous moves this way. If a player's plane is close in altitudeand position to the enemy plane, and the enemy is in frontal sight, the latter is�red on automatically (i.e., �ring is not a separate action). The levels of damageare recorded in a side panel, and the game ends when one or both of the twoplayer's planes are destroyed.
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started ABS with an empty PMA and as the game was played, transitions ofthe PMA were learned. Also as the transitions were learned, when similar situa-tions occurred and there was an appropriate PMA response, the PMA executedthat action. As the game was played, we observed that the agent became morereactive since the PMA was increasingly used to generate behaviors instead ofthe Knowledge level.We are exeprimenting with reinforcement based learning, emergent routines,and other learning techniques such as experimentation as a form of learning[Shen, 1989]. We are also interested in developing experiments that will help inpsychological validation of GLAIR and the learning strategies used in ABS. Asof this writing ABS is fully operational.6.2 A physical implementation: the Robot WaiterWe are developing an experimental setup in which a robot arm will set a din-ner table in various con�gurations, guided by input from a color camera andcontrolled by a host computer.The physical setup includes a dinner table, a supplies table containing kitchen-ware, a Puma 260 robot arm, a CCD camera, a PC-based color frame grabber,and a Sun 4/260 workstation host computer. In a later phase of this project,we hope to replace the Puma 260 robot arm with a larger Puma 560 model.Figure 4 represents the setup.
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controllable, environment in which an agent is placed so as to facilitate empiricalstudies of its behavior. The places, number, kind, and color of objects is not�xed, and unannounced human intervention in the domain is allowed while therobot is carrying out its task.We call the agent for this project the Robot Waiter (RW). RW is being de-veloped in accordance with the principles of the GLAIR architecture. Figure 5schematically presents its structure. The categorizer uses domain constraints todetermine what objects are in the visual �eld. It can also be told to look for acertain object, e.g., a red cup. The sensory memory acts as an attentional regis-ter, keeping track of the object that is being manipulated or is to be inspected.
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point out examples of named colors in its environment, and (3) learn new namesfor colors. This model provides the perceptual grounding for a set of basiccolor terms [Berlin and Kay, 1969] represented at the Knowledge level. Thecolor domain was chosen as a case study for embodied perception because ofthe relative abundance of psychological, psychophysical and neurophysiologicaldata in the literature [Lammens, ]. It is a complex enough domain to allowthe usefulness of embodiment for computational models of perception to bedemonstrated, yet feasible enough to be implemented in actual autonomousagents. As of this writing, the Robot Waiter project is partially implemented.6.3 A simulation study: the Mobile Robot LabThe Mobile Robot Lab (MRL) is a simulation environment. The simulation isrelatively simple, but nevertheless provides a rich and realistic enough environ-ment to function as a testbed for the development of physical GLAIR-agents.A complete setup using MRL consists of a GLAIR-agent, a simulator with anincorporated description of a physical environment, and a graphical interface(Figure 6). The room in which the robot moves has a polygonal 
oor plan andvertical walls, and contains a number of solid objects with convex polygonalbases and vertical faces, each with an associated user-de�ned spectral powerdistribution (SPD).Any number of robots may inhabit the room. They have two independentlydriven wheels on either side, and two small support wheels underneath in thefront and the back. Furthermore a bumper bar front and back, with contact andforce sensors built in, and a color camera on top, parallel to the direction of thedriven wheels. The camera is �xed and mounted horizontally. The robot alsohas a non-directional light with a user-de�ned SPD on top, which it can switchon and o� or 
ash.The simulator interfaces with the agent and with the graphical interface. Ittakes care of any I/O with the agent that would otherwise come from the sensorsand go to the actuators of a real mobile robot. It also takes care of any I/Owith the graphical interface, needed to keep the graphical display of the robotand its physical environment updated.The simulator incorporates a simpli�ed model of the physics of motion andsensing for the mobile robot. It continually updates the position of the robotdepending on the rotation speed and direction of its wheels, and provides theagent with appropriate sensory data about wheel rotation and contact withobjects. The simulator provides simulated camera input to the agent. Camerainput is simpli�ed in that it consists of a 9x7 pixel array (square pixels), with eachpixel represented as an RGB triplet. This simpli�ed camera view is computedand passed to the simulator by the graphical interface, on the basis of the 3Dperspective views (see below).The graphical interface provides a real-time view of the robot and the robot'senvironment, using data obtained from the simulator. It consists of a 2D displayshowing a bird's eye view of the room, the objects, and the robot in it, a sensorsand actuators monitor display, and a 3D perspective display that shows theenvironment from the robot's point of view.The agent's primitive actions are limited to independently controlling the11
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its behavior selections and subsequent learning. In order for the robot to guideits behavior, we need to associate rewards with actions that result in desirablesensations. For instance, if the robot wants (at the Knowledge level) to touch anobject and is taking actions to move towards the object, and the object is in theleft �eld of view and the robot moves left (increases its right wheel motor speed)it will bring the object to the center of the �eld of view. The action of turning leftin this situation will be positively rewarded. The result of learning (sequencesof) actions will be recorded in PMA transitions. For instance, touching an objectevolves into a set of PMA transitions.At the knowledge level, for each behavior, a triple of <A, S, R> will bede�ned. A is the set of primitive actions, S is a set of sensations, and R is a setof rewards. For example, for the behavior of touching, A = fleft wheel forwardincrease speed, left wheel forward decrease speed, right wheel forward increasespeed, right wheel forward decrease speedg; S = fobject is bigger, object issmaller, object is in the left �eld of view, object is in the right �eld of view,object is in the center of the �eld of view, object is too close, contact is madeg;R = fobject is bigger +1, object is smaller -1, object is in the left �eld of view-1, object is in the right �eld of view -1, object is in the center of �eld of view+1, object is too close +1, contact is made +1g (numbers ranging from +1 to-1 are rewards with +1 denoting desirable and -1 denoting undesirable).Below we give a list of emergent behaviors that the robot learns completelyon its own.� Touch behavior: approach an object until contact is made.� Proximity percepts: proximity to an object, derived from camera data.� Approach behavior: approach an object until it is in proximity.� Block percept: recognizing something in the �eld of view as a block.� Push a block� Find a block� Unwedge a block� Explore/map the roomAt the Knowledge level, all of the percepts and behaviors of the Perceptuo-Motor level are represented, but in a more symbolic fashion. For instance, colorsand shapes have names. The representations at the two levels are connected viathe alignment mechanism discussed above. Also at this level is a symbolic mapof the room and the objects in it, and the current position of the agent. Ingeneral, planning and some learning activities can originate at this level, andreasoning about the environment and the agent's actions, perceptions, goals,desires, states, etc. is con�ned to this level only. Concepts of space and timewould also be represented at this level, perhaps as emergent concepts from thebehavior of the agent in its environment.13



7 Summary and ConclusionWe have proposed an architecture that models \conscious" and \unconscious"processes for behavior generation and learning by an intelligent agent. We distin-guish three levels in our architecture: Knowledge Level, Perceptuo-Motor Level,and Sensori-Actuator Level. Generation and control of behaviors is distributedover all levels, and each level has independent access to sensors (via perceptualreduction) and (to some extent) actuators. As we move down the levels, com-putational and representational power is traded o� for better response time andsimplicity of control. GLAIR agents learn from their interactions with the en-vironment. A video-game agent, a mobile robot simulator, and a robotic agentare developed that demonstrate the principles used in GLAIR. These agentsdemonstrate emergent behaviors and integration of perception and action in thearchitecture.References[Agre and Chapman, 1987] Agre, P. E. and Chapman, D. (1987). Pengi: Animplementation of a theory of activity. In Proceedings of AAAI-87, Seattle,Wa., pages 268{272.[Albus et al., 1981] Albus, J., Barbera, A., and Nagel, R. (1981). Theory andpractice of hierarchical control. In 23rd International IEEE Computer SocietyConference, pages 18{38.[Anderson, 1983] Anderson, J. R. (1983). The Architecture of Cognition. Cam-bridge: Harvard University Press.[Ballard and Brown, 1982] Ballard, D. H. and Brown, C. M. (1982). ComputerVision. Prentice-Hall, Englewood Cli�s, NJ.[Bandera and Scott, 1989] Bandera, C. and Scott, P. (1989). Foveal machinevision systems. In IEEE International Conference on Systems, Man, andCybernetics, pages 596{599.[Berlin and Kay, 1969] Berlin, B. and Kay, P. (1991 (orig. 1969)). Basic ColorTerms: Their Universality and Evolution. University of California Press,Berkeley CA, �rst paperback edition.[Brooks, 1985] Brooks, R. (1985). A robust layered control system for a mobilerobot. Technical Report 864, MIT AI Labs, MIT.[Brooks, 1990] Brooks, R. A. (1990). Elephants dont play chess. In Maes, P.,editor, Designing Autonomous Agents, pages 3{15. MIT Press.[Chapman, 1990] Chapman, D. (1990). Vision, instruction, and action. Techni-cal Report 1204, MIT Arti�cial Intelligence Laboratory, MIT.[Fodor, 1983] Fodor, J. (1983). The Modularity of Mind. MIT Press.14
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