
Conscious Error Recovery and Interrupt HandlingHaythem O. Ismail and Stuart C. ShapiroDepartment of Computer Science and Engineeringand Center for Cognitive ScienceState University of New York at Bu�alo226 Bell HallBu�alo, NY 14260-2000fhismailjshapirog@cse:bu�alo:eduAbstract We present a model for error recoveryand interrupt handling by a reasoning, acting, andlinguistically-competent cognitive agent. Faced withan emergency situation, the agent reasons aboutwhat it needs to do and what it is currently doingto decide what to do next. Its reasoning is based ongeneral context-sensitive domain knowledge aboutthe priority of acts. Such knowledge may be pro-vided to the agent in natural language while it isacting, rather than being hardwired into the agent'sknowledge base as is the case with most existingsystems.Keywords: Acting, interrupt handling, reasoningabout action, cognitive robotics.1 IntroductionIn the real world, any of the actions of a cog-nitive agent may fail to achieve its goals. Atheory of acting agents should therefore beconstructed with failure deeply in mind. Theagent should be aware at each step of the out-come of its previous actions and should behaveappropriately to recover from errors. In ad-dition, such behavior should be the result ofthe agent's reasoning, not of hardwired reactivemechanisms. In particular, the agent should beable to reason and discuss its actions and fail-ures.Our theory is based on the GLAIR agentarchitecture [1, 2]. This is a layered architec-ture, the top layer of which is responsible forhigh level cognitive tasks such as reasoning and

natural language understanding. This level isimplemented using the SNePS knowledge rep-resentation and reasoning system [3, 4, 5]. Weuse \Cassie" as the name of our agent. Pre-vious versions of Cassie have been discussedelsewhere [6, 7]. Those are actually embod-ied versions of the disembodied linguistically-competent cognitive agent of the SNePS sys-tem discussed in previous work [8, 9].Cassie should be capable of using naturallanguage to interact with other agents (possi-bly human operators). This means that SNePSrepresentations of the contents of Cassie'smemory ought to be linguistically-motivated.By that we mean two things. First, on thetechnical side, the representations should bedesigned so that they may be produced by anatural language understanding system, andmay be given as input to a natural languagegenerator. Second, at a deeper level, the syn-tax of the representations and the underlyingontology should re
ect their natural language(in our case, English) counterparts. In partic-ular, we admit into the SNePS ontology any-thing that we can think or talk about [3, 4].For a general review of linguistically-motivatedknowledge representation, see [10]. Among thethings that Cassie should be capable of talkingabout are her own actions, her intentions, andthe relative priorities of her di�erent acts.The paper is organized as follows. In Sec-tion 2 we review related work. In Section 3we provide an in-depth analysis of the concept



of interruption. Section 4 describes cascades|our model for pessimistic conscious sequentialacting. A formal characterization of priori-tized acting is presented in Section 5. Interrupthandling and our model for perception are de-scribed in Section 6. Finally, in Section 7, wepresent our conclusions.2 Related WorkThe action literature within symbolic arti�-cial intelligence contains various, though essen-tially similar, proposals to deal with the prob-lem of interrupt handling. The basic recurringtheme is that interrupt handling involves thede�nition of priorities among acts (or goals).Reactive planners [11, 12, for instance] typi-cally interleave planning and action execution;once the planner generates a primitive act, itstarts to execute while planning is still goingon. Interrupts in this setting may be handledby simply generating the appropriate reaction.This is feasible since the system never commitsto a particular sequence of actions, only one actat a time.Other systems, where plans are speci�ed (orgenerated o�-line) in some action speci�cationlanguage, need to provide appropriate meansfor handling interrupts. [13] presents pre-cise semantics for an action language equippedwith control structures for handling inter-rupts. For example, the expression \inter-rupt for(T1; T2)" corresponds to the executionof task T2, interrupting it when necessary forT1. Essentially, this means that T1 has higherpriority over T2. Given the formal semantics[13, p. 42], it is not clear how the system canrepresent priorities that may change over time.Such an issue, we believe, is crucial and, as itturns out, is overlooked by many of the existingsystems.Within the GOLOG family [14], interruptsare handled in CONGOLOG using special con-trol structures for priorities and reactions [15].In a CONGOLOG program, the expression\(�1ii�2) denotes the concurrent execution ofthe actions �1 and �2 with �1 having higher

priority than �2" [15, p. 1224]. Note thatthis is essentially Davis' \interrupt for" con-trol structure. Further, \(�1ii�2)" is an act, astep in a CONGOLOG program that the agentshould execute in a certain manner as indicatedby the semantics. Thus, once the agent startsperforming \(�1ii�2), it is not obvious how itmay decide to \change its mind" regarding thepriorities of �1 and �2, and, for example, inter-rupt �1 to perform �2.Interrupt handling obviously involves thenotion of priorities. The problem with ap-proaches such as the above (where prioritiesare represented as actions in plans) is that theydo not provide enough 
exibility for the agentto reason about what to do next. We presenta system where priority information is rep-resented as context-dependent domain knowl-edge that may be communicated on-line in nat-ural language. Interrupt handling is not repre-sented by means of explicit control structures,but is built into the acting executive. When-ever the agent is about to act, it reasons aboutwhat it is about to do, and what it is currentlydoing, to decide what to do next.3 The Concept of Interrup-tionTo develop a theory of recovering from errors,one needs to be precise about what sort ofthing an error is. An error, as far as this workis concerned, is a special kind of an interrupt;an event that causes the agent to stop what itis doing and handle an unexpected situation.An error is special in that the unexpected sit-uation is the failure of one of the agent's acts.A general theory for interrupt handling wouldsubsume one for error recovery. We, therefore,shall discuss general interrupt handling in thisdocument, error recovery being a by-productof our theory.An interrupt is an event that causes theagent to change its intentions and/or actions.It involves three main components: an event �,a reaction �(�), and a non-empty set � of on-going processes. For there to be an interrupt,



the three components have to be present. Forexample, a robot may be carrying out a num-ber of concurrent processes (�) when its bat-tery goes low (�) requiring it to move to therecharging station (�(�)). A number of pointsto note:1. The reaction is a function of the event �.Thus, there can be no situation in which areaction is present without a correspond-ing event.2. The event � may be an instruction by an-other superior agent (possibly a humanoperator) to perform some action, which,in that case, would be �(�).3. The set � is not empty. If the agent is notdoing anything, then whatever happens isnot an interrupt, just an event that mayrequire some appropriate reaction.14. A valid reaction is the act of stopping oneof the processes in �.For the sake of simplicity, let us assume forthe moment that � is a singleton containingonly one act, A. A could be either primitive orcomposite. Primitive acts are ones that are per-formed by the agent \subconsciously"; it canperform them, but cannot reason about howit does. In particular, the agent cannot ex-plain (in English, for instance) how it performsits primitive acts. Di�erent control structures(sequential, conditional, iterative, etc.) formcomposite acts out of primitive acts. The agentis aware of the structure of its composite acts,and may discuss how it performs them (downto the primitive acts level). When � occurs(and is noticed by the agent), the agent couldbe performing either a primitive or a compos-ite act. Corresponding to these two situations,there are two types of interrupts: one that hap-pens while performing a composite act and an-other that happens in the midst of executing aprimitive act. To make things more concrete,we can identify these two categories of inter-rupts as follows:1Note that this subsumes errors. Nothing can qual-ify as an error if the agent is not doing anything.

1. The agent is executing a composite act Awhich reduces to the execution of somesequence of acts h�1 : : : �ni. The agenthas just �nished performing �i, and isabout to perform �i+1, when � occurs.For example, the agent may be perform-ing the sequence of acts hPickUp-Block,Goto-Table, Put-Down-Blocki and havejust picked up the block when it sensesthat its battery is low.2. The agent is in the midst of executing aprimitive act (which could be part of acomposite act) when � occurs. For exam-ple, while performing the hPickUp-Block,Goto-Table, Put-Down-Blocki sequence,the battery goes low while the agent ismoving toward the table.In the �rst case, the agent needs to merelychange (or, more precisely, revise) its inten-tions regarding what to do next (go to thetable or recharge the battery). In the secondcase, the agent may need to stop what it is do-ing to handle the interrupt. In any situation,there are two main requirement on any inter-rupt handling mechanism:1. The agent should �rst perform the actwith higher priority. If continuing to per-form A is more important than performing�(�), then this is what the agent shoulddo. Note that priorities are context-sensitive, they change according to thecurrent situation. For instance, if theagent is at the table, then putting theblock down may have higher priority thanrecharging the battery. If, on the otherhand, the agent is at the recharging sta-tion, then recharging the battery shouldhave higher priority.2. If it chooses to stop A and perform �(�),the agent should resume A when �(�) iscomplete. On the other hand, if it choosesto continue performing A, it should some-how remember to perform �(�) when it isdone.



4 CascadesConsider an agent performing a sequence ofacts h�1 : : : �ni. In order to be able to cor-rectly interrupt such a composite act and thenresume it, the agent needs to be aware of theprogression of the act and to have some wayof knowing what remains to be done. In otherwords, if the agent is performing step �i, itshould somehow remember that it still needsto perform the sequence h�i+1 : : : �ni. In addi-tion, an agent that anticipates failure, shouldstart performing step �i+1 when and only whenstep �i has been successfully completed. Oursystem readily provides these features throughthe sequencing control act cascade [16]. Whatcascade essentially does is initiate the �rst actin the sequence, wait for its goal to be achieved,and then cascade the rest of the sequence.This requires some method for transformingthe belief that the goal has been achieved intoan appropriate act. The when-do constructallows just that [17, 18, 19, 5]. Informally,if forward inference causes the propositionswhen-do(p; �) and p to be asserted, then theact � is performed and when-do(p; �) is disbe-lieved. That is, a when-do(p; �) proposition,represents the agent's belief that it should per-form a certain act, �, as a reaction to its com-ing to believe some proposition p. Thus, if pis the proposition of event � having occurred,then � is �(�).Informally, to perform a cascade,cascade(�1 : : : �n), the agent �rst be-lieves the proposition when-do(�(�1),cascade(�2 : : : �n)) and then performs�1, where �(�) denotes the goal of the act �.2When the goal of �1 is achieved, this will be as-serted with forward inference, thereby causingthe pending cascade, cascade(�2 : : : �n), toresume. By using cascade, we are essentiallybuilding a pessimistic agent that anticipatesthe failure of any of its acts. It executes a stepin a sequence when and only when it comes toknow (mainly based on perception and bodily2This is a very simpli�ed presentation of cascades.For space limitations, we do not give a full discussion.This has been done elsewhere [16].

feedback) that the goal of the previous stephas been achieved. In addition, the believedwhen-do provides the bookkeeping requiredfor the agent to remember what is yet to bedone (the rest of the cascade). Thus, shouldan interrupt occur, the agent would have away to resume what it was doing exactly atthe point where it left o�.5 Prioritized ActingAs pointed out in Section 3, appropriately han-dling interrupts requires the agent to reasonabout the priorities of its acts. Priorities de-�ne a partial order over the set of acts. Twoacts that are not prioritized relative to eachother are assumed to have the same priority.3Speci�cation of priorities among acts may beexplicitly represented in the knowledge base.� Holds(p-higher(�1, �2), t)Where p-higher(�1, �2) denotes a state inwhich the act �1 has higher priority than theact �2. As a whole, the above form means that,at time t, �1 has priority over �2. The impor-tant point here is that priorities are dependenton the over-all situation (see the discussion inSection 2). Priorities among general acts, in-cluding arbitrary cascades (that may be gener-ated on the 
y while carrying out some plan),are inductively de�ned as follows.De�nition 5.1 Let �1 and �2 be two distinctacts. �1 >p �2 (read, �1 has higher priorityover �2) i�:1. �1 = cascade(�i; : : : ; �i+n) and �i >p�2,2. �2 = cascade(�j; : : : ; �j+m) and �1 >p�j, or3. Holds(p-higher(�1, �2), *NOW) is de-ducible.43Note that two acts that make use of the same re-sources (cameras, wheels, etc.) should be appropriatelyprioritized.4NOW is a meta-logical variable whose value, atany point, is the SNePS term denoting the current time.*NOW is a shorthand for the the value of NOW. See[20] for more details.



Accordingly, the relation >p holds between twocascades if it holds between their �rst elements.The base case of the induction is the explicitassertion of priorities (in terms of p-higher)among acts. The above does not say that �1should be completed before starting to per-form �2, it only de�nes the >p relation. Whatshould be done when this relation holds be-tween two acts is a di�erent issue that we nowturn to.De�nition 5.2 Let A be a set of acts. De�nethe set A> as follows. An act � 2 A> i�:1. � 2 A, � is a cascade, and for every �0 2A, if �0 6= � then Holds(p-higher(�, �0),*NOW) is deducible;2. � 2 A, � is not a cascade, and there is no�0 2 A such that �0 >p �; or3. c = cascade(�; : : : ; �n) 2 A and � 2 (A[f�g)>.Intuitively, A> is the set of acts in A, or em-bedded within cascades in A, that should beperformed �rst, i.e, those with top priorities. Acomplementary set contains whatever remains.De�nition 5.3 Let A be a set of acts. De-�ne A? = (A�A>)[fcascade(�2i ; : : : ; �ni) jcascade(�1i; �2i ; : : : ; �ni) 2 A and �1i 2 A>gThe above de�nes priorities among acts. Toperform actions according to their priorities,we introduced the control act p-do-all. Thisis based on the do-all control act which initi-ates a set of acts in some arbitrary order.5 Let� be the set of on-going processes.� p-do-all(A), where A is a set of acts.p-do-all reduces tocascade(do-all(fStop(p) jp 2 � \A?g),do-all(A> ��g),p-do-all(A?)).5Note that it just initiates them in arbitrary order.Once initiated, the acts may run in parallel.

That is, if any of the acts to be prioritized is al-ready being performed, the agent �rst stops itif it has a low priority (the Stop act). It thenperforms acts with top priorities unless theyare already on-going. Finally, the agent per-forms a p-do-all of the acts with low priori-ties (including those that were stopped). Thus,p-do-all provides a mechanism for perform-ing acts according to their priorities while tak-ing into account the set of on-going processes.6 Prioritized Forward Infer-enceAs pointed out in Section 4, perception ismodeled by assertion with forward inference.When the body senses something (for exam-ple, being empty-handed or the battery goinglow), it communicates such information to themind (GLAIR's knowledge level) in the ap-propriate form. Forward inference may ac-tivate believed when-do's causing a reactionto be scheduled for performance or a pend-ing cascade to move on. However, to han-dle interrupts, one needs more than such areactive behavior. For example, consider anagent performing the sequence hPickUp-Block,Goto-Table, Put-Down-Blocki. The agent hasjust picked-up the block and it senses that it isholding it. At the same time, it also sense thatthe battery is low. In this case, two assertionswill be made with forward inference, one as-serting that the agent is holding the block andthe other that the battery is low. This willaccordingly cause two acts to be scheduled forexecution: going to the recharging station andthe pending cascade. To react appropriatelyto such a situation the agent needs to reasonabout the priorities of these acts. To modelthis kind of conscious reaction, we introduceda new mode of forward inference, one that maybe called prioritized forward inference (PFI).Normal forward inference results in conclusionsmade by the agent and may also result in someacts being scheduled on an act stack, �. Theseacts are then initiated according to their arbi-trary order in �. With PFI, on the other hand,



all the scheduled acts are replaced by a singlep-do-all. More precisely, where � is the setof on-going processes,� � fp-do-all(� [�)gThus, not only will the agent reason about thepriorities of the scheduled acts, but will alsotake all the on-going processes into account, incase it needs to suspend any of them.7 ConclusionsA cognitive agent should be capable of reason-ing about the priorities of its actions in orderto appropriately recover from errors and han-dle interrupts. The system we presented hasa number of advantages over other proposedmodels in the symbolic AI literature.1. It provides a general mechanism for priori-tized acting using the p-do-all construct.Interrupt handling comes out smoothly asa special case of prioritized acting (when� is non-empty).2. The cascade control act models theagent's expectation of failure and providesthe bookkeeping required for resumptionin case a cascade is interrupted.3. Knowledge about priorities of acts may begiven to the agent in natural language dur-ing an interaction with an operator. Thismay happen on-line, while the agent is act-ing.4. Priorities are context-sensitive, changingaccording to various conditions in the en-vironment.5. Given the de�nition of the >p relation andp-do-all, the agent may interleave theexecution of two cascades according to thepriorities of acts in each.8 AcknowledgementsThe authors thank the members of the SNePSResearch Group of the University at Bu�alo for
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