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Abstract We present a model for error recovery
and interrupt handling by a reasoning, acting, and
linguistically-competent cognitive agent. Faced with
an emergency situation, the agent reasons about
what it needs to do and what it is currently doing
to decide what to do next. Its reasoning is based on
general context-sensitive domain knowledge about
the priority of acts. Such knowledge may be pro-
vided to the agent in natural language while it is
acting, rather than being hardwired into the agent’s
knowledge base as is the case with most existing
systems.
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1 Introduction

In the real world, any of the actions of a cog-
nitive agent may fail to achieve its goals. A
theory of acting agents should therefore be
constructed with failure deeply in mind. The
agent should be aware at each step of the out-
come of its previous actions and should behave
appropriately to recover from errors. In ad-
dition, such behavior should be the result of
the agent’s reasoning, not of hardwired reactive
mechanisms. In particular, the agent should be
able to reason and discuss its actions and fail-
ures.

Our theory is based on the GLAIR agent
architecture [1, 2]. This is a layered architec-
ture, the top layer of which is responsible for
high level cognitive tasks such as reasoning and

natural language understanding. This level is
implemented using the SNePS knowledge rep-
resentation and reasoning system [3, 4, 5]. We
use “Cassie” as the name of our agent. Pre-
vious versions of Cassie have been discussed
elsewhere [6, 7]. Those are actually embod-
ied versions of the disembodied linguistically-
competent cognitive agent of the SNePS sys-
tem discussed in previous work [8, 9].

Cassie should be capable of using natural
language to interact with other agents (possi-
bly human operators). This means that SNePS
representations of the contents of Cassie’s
memory ought to be linguistically-motivated.
By that we mean two things. First, on the
technical side, the representations should be
designed so that they may be produced by a
natural language understanding system, and
may be given as input to a natural language
generator. Second, at a deeper level, the syn-
tax of the representations and the underlying
ontology should reflect their natural language
(in our case, English) counterparts. In partic-
ular, we admit into the SNePS ontology any-
thing that we can think or talk about [3, 4].
For a general review of linguistically-motivated
knowledge representation, see [10]. Among the
things that Cassie should be capable of talking
about are her own actions, her intentions, and
the relative priorities of her different acts.

The paper is organized as follows. In Sec-
tion 2 we review related work. In Section 3
we provide an in-depth analysis of the concept



of interruption. Section 4 describes cascades—
our model for pessimistic conscious sequential
acting. A formal characterization of priori-
tized acting is presented in Section 5. Interrupt
handling and our model for perception are de-
scribed in Section 6. Finally, in Section 7, we
present our conclusions.

2 Related Work

The action literature within symbolic artifi-
cial intelligence contains various, though essen-
tially similar, proposals to deal with the prob-
lem of interrupt handling. The basic recurring
theme is that interrupt handling involves the
definition of priorities among acts (or goals).
Reactive planners [11, 12, for instance] typi-
cally interleave planning and action execution;
once the planner generates a primitive act, it
starts to execute while planning is still going
on. Interrupts in this setting may be handled
by simply generating the appropriate reaction.
This is feasible since the system never commits
to a particular sequence of actions, only one act
at a time.

Other systems, where plans are specified (or
generated off-line) in some action specification
language, need to provide appropriate means
for handling interrupts. [13] presents pre-
cise semantics for an action language equipped
with control structures for handling inter-
rupts. For example, the expression “inter-
rupt_for(7'1,72)” corresponds to the execution
of task T2, interrupting it when necessary for
T1. Essentially, this means that 71 has higher
priority over T2. Given the formal semantics
[13, p. 42], it is not clear how the system can
represent priorities that may change over time.
Such an issue, we believe, is crucial and, as it
turns out, is overlooked by many of the existing
systems.

Within the GOLOG family [14], interrupts
are handled in CONGOLOG using special con-
trol structures for priorities and reactions [15].
In a CONGOLOG program, the expression
“(o1))o2) denotes the concurrent execution of
the actions o; and o9 with o7 having higher

priority than o” [15, p. 1224]. Note that
this is essentially Davis’ “interrupt_for” con-
trol structure. Further, “(o1))09)” is an act, a
step in a CONGOLOG program that the agent
should execute in a certain manner as indicated
by the semantics. Thus, once the agent starts
performing “(o1))o3), it is not obvious how it
may decide to “change its mind” regarding the
priorities of o1 and o9, and, for example, inter-
rupt oy to perform os.

Interrupt handling obviously involves the
notion of priorities. The problem with ap-
proaches such as the above (where priorities
are represented as actions in plans) is that they
do not provide enough flexibility for the agent
to reason about what to do next. We present
a system where priority information is rep-
resented as context-dependent domain knowl-
edge that may be communicated on-line in nat-
ural language. Interrupt handling is not repre-
sented by means of explicit control structures,
but is built into the acting executive. When-
ever the agent is about to act, it reasons about
what it is about to do, and what it is currently
doing, to decide what to do next.

3 The Concept of Interrup-
tion

To develop a theory of recovering from errors,
one needs to be precise about what sort of
thing an error is. An error, as far as this work
is concerned, is a special kind of an interrupt;
an event that causes the agent to stop what it
is doing and handle an unexpected situation.
An error is special in that the unexpected sit-
uation is the failure of one of the agent’s acts.
A general theory for interrupt handling would
subsume one for error recovery. We, therefore,
shall discuss general interrupt handling in this
document, error recovery being a by-product
of our theory.

An interrupt is an event that causes the
agent to change its intentions and/or actions.
It involves three main components: an event 7,
a reaction p(n), and a non-empty set II of on-
going processes. For there to be an interrupt,



the three components have to be present. For
example, a robot may be carrying out a num-
ber of concurrent processes (II) when its bat-
tery goes low (1) requiring it to move to the
recharging station (p(n)). A number of points
to note:

1. The reaction is a function of the event 7.
Thus, there can be no situation in which a
reaction is present without a correspond-
ing event.

2. The event n may be an instruction by an-
other superior agent (possibly a human
operator) to perform some action, which,
in that case, would be p(n).

3. The set II is not empty. If the agent is not
doing anything, then whatever happens is
not an interrupt, just an event that may
require some appropriate reaction.’

4. A valid reaction is the act of stopping one
of the processes in II.

For the sake of simplicity, let us assume for
the moment that II is a singleton containing
only one act, A. A could be either primitive or
composite. Primitive acts are ones that are per-
formed by the agent “subconsciously”; it can
perform them, but cannot reason about how
it does. In particular, the agent cannot ez-
plain (in English, for instance) how it performs
its primitive acts. Different control structures
(sequential, conditional, iterative, etc.) form
composite acts out of primitive acts. The agent
is aware of the structure of its composite acts,
and may discuss how it performs them (down
to the primitive acts level). When 7 occurs
(and is noticed by the agent), the agent could
be performing either a primitive or a compos-
ite act. Corresponding to these two situations,
there are two types of interrupts: one that hap-
pens while performing a composite act and an-
other that happeuns in the midst of executing a
primitive act. To make things more concrete,
we can identify these two categories of inter-
rupts as follows:

Note that this subsumes errors. Nothing can qual-
ify as an error if the agent is not doing anything.

1. The agent is executing a composite act A
which reduces to the execution of some
sequence of acts (aj...a,). The agent
has just finished performing «;, and is
about to perform «;;;, when 5 occurs.
For example, the agent may be perform-
ing the sequence of acts (PickUp-Block,
Goto-Table, Put-Down-Block) and have
just picked up the block when it senses
that its battery is low.

2. The agent is in the midst of executing a
primitive act (which could be part of a
composite act) when n occurs. For exam-
ple, while performing the (PickUp-Block,
Goto-Table, Put-Down-Block) sequence,
the battery goes low while the agent is
moving toward the table.

In the first case, the agent needs to merely
change (or, more precisely, revise) its inten-
tions regarding what to do next (go to the
table or recharge the battery). In the second
case, the agent may need to stop what it is do-
ing to handle the interrupt. In any situation,
there are two main requirement on any inter-
rupt handling mechanism:

1. The agent should first perform the act
with higher priority. If continuing to per-
form A is more important than performing
p(n), then this is what the agent should
do. Note that priorities are context-
sensitive, they change according to the
current situation. For instance, if the
agent is at the table, then putting the
block down may have higher priority than
recharging the battery. If, on the other
hand, the agent is at the recharging sta-
tion, then recharging the battery should
have higher priority.

2. If it chooses to stop A and perform p(n),
the agent should resume A when p(n) is
complete. On the other hand, if it chooses
to continue performing A, it should some-
how remember to perform p(n) when it is
done.



4 Cascades

Consider an agent performing a sequence of
acts (ajp...ay). In order to be able to cor-
rectly interrupt such a composite act and then
resume it, the agent needs to be aware of the
progression of the act and to have some way
of knowing what remains to be done. In other
words, if the agent is performing step «;, it
should somehow remember that it still needs
to perform the sequence (;y1 ...ay,). In addi-
tion, an agent that anticipates failure, should
start performing step a; 1 when and only when
step a; has been successfully completed. Our
system readily provides these features through
the sequencing control act cascade [16]. What
cascade essentially does is initiate the first act
in the sequence, wait for its goal to be achieved,
and then cascade the rest of the sequence.
This requires some method for transforming
the belief that the goal has been achieved into
an appropriate act. The when-do construct
allows just that [17, 18, 19, 5]. Informally,
if forward inference causes the propositions
when-do(p, ) and p to be asserted, then the
act « is performed and when-do(p, «) is disbe-
lieved. That is, a when-do(p,«) proposition,
represents the agent’s belief that it should per-
form a certain act, «, as a reaction to its com-
ing to believe some proposition p. Thus, if p
is the proposition of event 7 having occurred,
then « is p(n).

Informally, to perform a cascade,
cascade(ay...qp), the agent first be-
lieves the  proposition  when-do(I'(a),
cascade(as...qa,)) and then  performs
a1, where T'(a) denotes the goal of the act a.?
When the goal of ¢ is achieved, this will be as-
serted with forward inference, thereby causing
the pending cascade, cascade(wy...ay), to
resume. By using cascade, we are essentially
building a pessimistic agent that anticipates
the failure of any of its acts. It executes a step
in a sequence when and only when it comes to
know (mainly based on perception and bodily

2This is a very simplified presentation of cascades.
For space limitations, we do not give a full discussion.
This has been done elsewhere [16].

feedback) that the goal of the previous step
has been achieved. In addition, the believed
when-do provides the bookkeeping required
for the agent to remember what is yet to be
done (the rest of the cascade). Thus, should
an interrupt occur, the agent would have a
way to resume what it was doing exactly at
the point where it left off.

5 Prioritized Acting

As pointed out in Section 3, appropriately han-
dling interrupts requires the agent to reason
about the priorities of its acts. Priorities de-
fine a partial order over the set of acts. Two
acts that are not prioritized relative to each
other are assumed to have the same priority.
Specification of priorities among acts may be
explicitly represented in the knowledge base.

e Holds(p-higher(ay, asg), t)

Where p-higher(cy, «y) denotes a state in
which the act a; has higher priority than the
act ag. As a whole, the above form means that,
at time ¢, oy has priority over as. The impor-
tant point here is that priorities are dependent
on the over-all situation (see the discussion in
Section 2). Priorities among general acts, in-
cluding arbitrary cascades (that may be gener-
ated on the fly while carrying out some plan),
are inductively defined as follows.

Definition 5.1 Let oy and oy be two distinct
acts. a1 >p o (read, a1 has higher priority
over ag) iff:

1. a1 = cascade(wy,...,qipn) and a; >,
g,

2. ap = cascade(qj,...,0j1y) and a1 >p
aj, or

3. Holds(p-higher (a1, az), *NOW) is de-
ducible.

3Note that two acts that make use of the same re-
sources (cameras, wheels, etc.) should be appropriately
prioritized.

“NOW is a meta-logical variable whose value, at
any point, is the SNePS term denoting the current time.
*NOW is a shorthand for the the value of NOW. See
[20] for more details.



Accordingly, the relation >, holds between two
cascades if it holds between their first elements.
The base case of the induction is the explicit
assertion of priorities (in terms of p-higher)
among acts. The above does not say that oy
should be completed before starting to per-
form v, it only defines the >, relation. What
should be done when this relation holds be-
tween two acts is a different issue that we now
turn to.

Definition 5.2 Let A be a set of acts. Define
the set At as follows. An act o € At iff:

1. o € A, o is a cascade, and for every o/ €
A, if o/ # « then Holds(p-higher (o, o),
*NOW ) is deducible;

2. a € A, o is not a cascade, and there is no
o € A such that o/ >, a; or

3. ¢ = cascade(a,...,ap) € A and o € (AU

{a})T.

Intuitively, A+ is the set of acts in A, or em-
bedded within cascades in A, that should be
performed first, i.e, those with top priorities. A
complementary set contains whatever remains.

Definition 5.3 Let A be a set of acts. De-
fine A} = (A—Ar)U{cascade(ay,,...,an,;) |
cascade(ay,, g, ,...,an,) € A and oy, € At}

The above defines priorities among acts. To
perform actions according to their priorities,
we introduced the control act p-do-all. This
is based on the do-all control act which initi-
ates a set of acts in some arbitrary order.® Let
IT be the set of on-going processes.

e p-do-all(A), where A is a set of acts.
p-do-all reduces to

cascade(do—all({Stop(p) [p € INAL}),
do-all(AT —1I}),
p-do-all(A))).

®Note that it just initiates them in arbitrary order.
Once initiated, the acts may run in parallel.

That is, if any of the acts to be prioritized is al-
ready being performed, the agent first stops it
if it has a low priority (the Stop act). It then
performs acts with top priorities unless they
are already on-going. Finally, the agent per-
forms a p-do-all of the acts with low priori-
ties (including those that were stopped). Thus,
p-do-all provides a mechanism for perform-
ing acts according to their priorities while tak-
ing into account the set of on-going processes.

6 Prioritized Forward Infer-
ence

As pointed out in Section 4, perception is
modeled by assertion with forward inference.
When the body senses something (for exam-
ple, being empty-handed or the battery going
low), it communicates such information to the
mind (GLAIR’s knowledge level) in the ap-
propriate form. Forward inference may ac-
tivate believed when-do’s causing a reaction
to be scheduled for performance or a pend-
ing cascade to move on. However, to han-
dle interrupts, one needs more than such a
reactive behavior. For example, consider an
agent performing the sequence (PickUp-Block,
Goto-Table, Put-Down-Block). The agent has
just picked-up the block and it senses that it is
holding it. At the same time, it also sense that
the battery is low. In this case, two assertions
will be made with forward inference, one as-
serting that the agent is holding the block and
the other that the battery is low. This will
accordingly cause two acts to be scheduled for
execution: going to the recharging station and
the pending cascade. To react appropriately
to such a situation the agent needs to reason
about the priorities of these acts. To model
this kind of conscious reaction, we introduced
a new mode of forward inference, one that may
be called prioritized forward inference (PFI).
Normal forward inference results in conclusions
made by the agent and may also result in some
acts being scheduled on an act stack, >. These
acts are then initiated according to their arbi-
trary order in 3. With PFI, on the other hand,



all the scheduled acts are replaced by a single
p-do-all. More precisely, where II is the set
of on-going processes,

Y +— {p-do-all(X UII)}

Thus, not only will the agent reason about the
priorities of the scheduled acts, but will also
take all the on-going processes into account, in
case it needs to suspend any of them.

7 Conclusions

A cognitive agent should be capable of reason-
ing about the priorities of its actions in order
to appropriately recover from errors and han-
dle interrupts. The system we presented has
a number of advantages over other proposed
models in the symbolic Al literature.

1. It provides a general mechanism for priori-
tized acting using the p—do-all construct.
Interrupt handling comes out smoothly as
a special case of prioritized acting (when
IT is non-empty).

2. The cascade control act models the
agent’s expectation of failure and provides
the bookkeeping required for resumption
in case a cascade is interrupted.

3. Knowledge about priorities of acts may be
given to the agent in natural language dur-
ing an interaction with an operator. This
may happen on-line, while the agent is act-

ing.

4. Priorities are context-sensitive, changing
according to various conditions in the en-
vironment.

5. Given the definition of the >, relation and
p-do-all, the agent may interleave the
execution of two cascades according to the
priorities of acts in each.
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