
Ontology Visualization Tools to Assist in Creating and Maintaining
Textual Term Definitions

Daniel R. Schlegel ∗, and Peter L. Elkin
Department of Biomedical Informatics, University at Buffalo, SUNY, Buffalo, NY, USA

ABSTRACT
Textual definitions are often missing or incomplete in ontologies.

Visualizing the ontology structure can assist ontology developers in
creating or modifying definitions, but existing tools are not sufficient.
Tools such as Protégé don’t show enough context to be helpful, and
the “show context and distort” technique used in existing visualiza-
tions systems is insufficient. We propose the use of the CSNePS
GUI with its relation-based graph exploration tools to visualize ontolo-
gies for the purpose of definition maintenance and creation. We also
propose an algorithm to order the undefined ontology terms to allow
ontology developers to be most efficient in their definitional duties.

1 INTRODUCTION
Textual definitions in ontologies have often been shown to be incor-
rect, inconsistent, insufficient, or missing. This is unfortunate since
definitions1 play an important role both to the designers and users of
ontologies. For designers, definitions of higher level concepts assist
in the creation and definition of lower level concepts. Users of onto-
logies often rely on textual definitions to understand the meaning of
a term.

It may seem to many ontology designers that the logical definiti-
ons, specified by the properties of a term and its place in the term
hierarchy, are enough of a definition in some cases. It has been
shown that there is an important correspondence between textual
and logical definitions, and each can provide an accuracy check on
the other (Seppälä et al., 2014). It’s important therefore that both be
present, and that they be consistent with each other.

We are particularly interested in two use cases. In the first, a tex-
tual definition is missing, while a logical definition exists. In this
case the ontology designer should try to construct a textual defini-
tion from an understanding of a term and its surrounding context
in the ontology. This seems to (for better or worse) align with the
current workflow for creating ontologies. In the second use case,
an ontology designer reviews existing textual definitions, compa-
ring them with the logical definitions through, again, exploring the
surrounding context in the ontology.

The creation of definitions is labor intensive, and requires naviga-
ting the ontology in tools not designed to assist in definition-making.
Protégé (Stanford Center for Biomedical Informatics Research,
2015) is the most commonly used ontology development tool.
Unfortunately, it is not particularly well suited to definition crea-
tion or maintenance. Protégé makes it easy to see the properties of a
single term, and to see that term’s place within the class hierarchy. In
creating definitions, this is not enough: the definition writer needs to
see the properties of siblings and parents to understand what makes

∗To whom correspondence should be addressed: drschleg@buffalo.edu
1 When we say “definition” in this paper, we’ll be referring to textual
definitions. If we are referring to logical definitions, we’ll make that explicit.

the term unique. The need to see all of this data at once indicates
that a graph representation may be the ideal method to visualize
ontology segments.

The only tool that the authors are aware of which has been desi-
gned to assist users in definition creation is TermGenie (Dietze et al.,
2014). TermGenie is a tool (currently used only for the Gene Onto-
logy) which is meant to make it easy to add new terms to an ontology
when needed. The extent of its assistance for definition creation is
the use of “textual definition building blocks.”

There have been many visualization methods developed to view
and interact with ontologies (see (Katifori et al., 2007) and (Katifori
et al., 2014) for discussions on the subject). The main issue in visua-
lizing ontologies is that ontologies may be very large, and depending
on the task, the user needs different (and different amounts of) con-
text surrounding their current focus. Silva et al. (2012) have made
clear that one visualization strategy does not fit every use case.

We propose the use of features present in the graphical user inter-
face (GUI) for the CSNePS knowledge representation and reasoning
system (Schlegel and Shapiro, 2012) which have been designed to
assist ontology developers in the task of writing textual definitions.
In the following sections we will first discuss what makes a good
term definition, followed by a brief introduction to CSNePS and its
GUI. The yardstick by which a system for assisting with definitions
will be measured is given in Section 4. In Section 5 we will explore
the usefulness of viewing context around a term of interest. We will
then introduce two features of the CSNePS GUI designed to make
term definition easier: the ability to easily explore ontological terms
and their properties within a graph visualization, and to easily pick
out undefined terms in an ontology in an order optimal for writing
definitions. We close with a discussion of these features and what
we imagine their impact to be within the ontology community.

2 CRITERIA FOR GOOD TERM DEFINITIONS
An internet search quickly yields hundreds of articles on how one
should write a good definition in English. The easiest and most
successful formulation is likely the Aristotelian definition. An Ari-
stotelian definition is made up of two parts: the genus, and the
differentia. The genus is the class of thing being defined. The dif-
ferentia are what differentiates the item under definition from other
members of the genus. For example, a “tabby” is defined as “a cat
whose fur is mottled or streaked with dark stripes.” In this definition
“cat” is the genus (tabbies are cats), and “fur is mottled or strea-
ked with dark stripes” is the differentia, distinguishing tabbies from
other types of cats.

A recent book on building ontologies with the Basic Formal Onto-
logy (Arp et al., 2015) expands on the criteria for good definitions
through a series of best practices, framed specifically in terms of
ontology. The principles they outline are as follows:

1. Provide all nonroot terms with definitions

1



Schlegel et al

2. Use Aristotelian definitions

3. Use essential features in defining terms

4. Start with the most general terms in your domain

5. Avoid circularity in defining terms

6. To ensure intelligibility of definitions, use simpler terms than
the term you are defining

7. Do not create terms for universals through logical combination

8. Definitions should be unpackable
These principles distill down into three categories. First, what

terms to define. All terms which are not a root node should have
a definition.2 Item 7 is also related to this, but we will ignore it for
the purposes of this paper since we aren’t concerned with ontology
creation in general. Next, what makes a good definition. As we’ve
discussed, Aristotelian definitions are preferred. These definitions
lend themselves nicely to the concept of unpacking. For example, if
“A” is defined as “a B that Cs”, and if “A” appears in some text, then
that text should be equally understandable if “A” is replaced with “a
B that Cs.” A definition for a term should discuss the most central
(essential) features the term – those that make the term what it is.
Superfluous detail should be avoided in favor of conciseness. Defi-
nitions should never be circular. That is, the definition should not
contain the term being defined, or any near synonym of the term.
Along a similar vein, the language used in a definition should be
simpler than the term you’re defining. The last category is how to
go about doing the defining. You should start with the most general
terms and work down, as more specific terms rely on the general
ones.3

The tools discussed within this paper are meant to assist ontology
developers with items from each of these three categories.

3 CSNEPS AND ITS GUI
The CSNePS user interface has been designed for interacting with
the CSNePS knowledge representation and reasoning system (Sch-
legel, 2015). While the features discussed in this paper do not
directly rely on the CSNePS system, some details would seem
idiosyncratic without some brief background material.

One of the core knowledge representation ideas which CSNePS
espouses is that a knowledge base may be seen as simultaneously
a set of logical assertions, a set of frames, and a propositional
graph. In the tradition of the SNePS family (Shapiro and Rapa-
port, 1992), a propositional graph is a directed graph in which nodes
represent, among other things, propositions and logical formulas,
while edges serve to indicate the roles played by components of the
propositions and formulas. Every node is labeled with an identi-
fier. Nodes representing individual constants, proposition symbols,
function symbols, or relation symbols are labeled with the symbol
itself. Nodes which stand for relations are given a label of the form
wfti!, where “wft” stands for “well-formed term”4 and the appen-
ded “!” indicates that a proposition is asserted in the knowledge

2 The authors recognize that some terms may be indefinable, but textual
definitions should be given to the greatest extent possible.
3 For a much more detailed discussion of definitions, see Arp et al. (2015)
pages 68–76.
4 The word “term” in CSNePS refers to the fact that CSNePS uses a term
logic, this is different from the sense of “term” used in ontological parlance.

base. Edges are drawn from wft nodes to each of their arguments,
and are labeled with the role the target of the edge plays in the rela-
tion. For binary relations, the wft node may be “collapsed”, and an
edge can be drawn from the node for the first argument of the rela-
tion to one for the second. This edge can be labeled with the relation
name itself.

The GUI for CSNePS is built around the tri-view of knowledge
bases used by CSNePS. In this paper we will only concern ourselves
with the graph view. While currently the features of the GUI rely on
CSNePS, in the future we intend to make many features of the GUI
agnostic to the underlying representation system.

4 METHODS
In order to achieve the goal of writing good definitions, it is impor-
tant for the definition writer to understand the term being defined.
Some part of this can be achieved by examining the existing ter-
minological structure of the ontology,5 and various properties on
the term under definition and terms around it. To reduce the cogni-
tive load on the writer, the more relevant context which is visible at
once, the better. As was mentioned in the introduction, this is where
Protégé falls short, making only a small amount of context visible
at once.

While not enough context makes definition writing difficult, too
much is perhaps even worse. Ontologies are large, and much of the
contents may be irrelevant for any specific term’s definition. Making
too much of the context available to the user simply crowds out the
relevant context.

Given the interconnectedness of ontologies and the many relati-
ons that are present, the most obvious method for visualizing them
is to use a graph. OWL ontologies, which we focus on here, have
many different syntaxes, and some are more amenable to graphing
than others. Given the tri-view representation of CSNePS discussed
in the previous section, we prefer to use the OWL Functional-style
syntax (Bock et al., 2009). This syntax makes available a set of logi-
cal relations for ontological data, along with names of the roles each
argument of the relation play in the relation itself. This is then easily
graphed.

Part of writing good definitions is writing them in an ordered
way. It is non-trivial in current tools to list the terms which are not
yet defined, and no tools sort this list into something which can be
mapped to the principle given in Section 2: work from most gene-
ral to least general terms. A graph representation with well-defined
relations, such as SubClassOf in OWL, can make this possible.

5 VISUALIZING CONTEXT
It is a basic tenant of all graph visualization systems that there must
be some method for visualizing the context of a node (or nodes)
of interest. In ontology visualization tools this entails visualizing
some number of relations outward from the term or terms of interest.
Unfortunately, if this is not done in an intelligent way, the result is
nearly as bad as if such a capability did not exist at all.

In designing tools to assist with definition creation we first took a
naı̈ve approach to visualizing context, allowing users to select some
degree of relations outward from a term which they were interested
in. The software simply shows nodes for all relations which the term
is in, and continues doing this for each newly-shown term up to the

5 See (Elkin, 2012) for an overview of terminologies.

2



Visualization to Assist Definition

depth given by the user. We quickly found that context alone was
not appropriate.

Fig. 1. The user interface for showing degrees of context of a term.

Consider an example from the commonly used pedagogical pizza
ontology (Horridge et al., 2009).6 In Figure 1 we indicate that the
node we are interested in is the pizza:AnchoviesTopping
term, and we would like to see one degree of context. The resulting
graph is shown in Figure 2.

The one-degree graph is fairly accessible and easy to understand.
The ontology developer can see that pizza:AnchoviesTopping
is a subclass of pizza:FishTopping and that it’s dis-
joint from the classes pizza:MixedSeafoodTopping and
pizza:PrawnsTopping. This would all be accessible using
Protégé and selecting a single term in the class hierarchy. The power
of context doesn’t reveal itself until at least two levels.

Unfortunately, in large ontologies, even two levels of context is
too much to view nicely. In Figure 3 you can see that the result
is a hairball of unintelligible relations. Graph visualization systems
generally, in addition to context, include some method for distorting
the graph so that the user can easily access the parts of context they
are interested in. The CSNePS GUI does contain methods for distor-
ting the graph with a “lens”, but we’ve found it less than useful. We
argue that if it were possible to show only the desired context, there
would be no need to hide portions of it through distortion.

6 ONTOLOGY GRAPH EXPLORATION
As discussed, visualizing context without constraint has limited use-
fulness in our application. In fact, for definitions, what we really
want to visualize are any of the logical properties on terms which
may help us pick out essential features. We believe combining con-
text visualization with relation-based graph exploration may be the
ideal method for viewing these essential features.

Consider again the pizza:AnchoviesTopping example
from the previous section. Even at a single level of context as seen in
Figure 2 there were portions of the graph which weren’t helpful for
definition building. Instead, we believe it is more appropriate to first
consider the pizza:AnchoviesTopping node with no context,

6 We have chosen to use this ontology since the topic widely accessible, and
the ontology doesn’t make heavy use of IUIs which can make some portions
of the ontology more confusing.

then expand the relations we believe contain essential features, one
or more at a time, and repeating this process until the desired context
is visible.

We have designed a mechanism in the CSNePS GUI to make this
easy. The user can easily choose to show a selected set of relations
attached to a term, as shown in Figure 4. This is done simply by
right-clicking on a node and selecting to show edges connected to
the node. Each time the user does this, a single level of that relation
is expanded. The user may do this as many times as they like. The
set of relations given are simply the OWL relations which the term
is in (but which aren’t visible yet). In this figure, the user begins
with the term they wish to view details about, expands some relati-
ons of interest, and repeats the process once more. This allows the
user to iteratively expand the graph without an huge surprises. An
expansion can easily be undone if the user does not like the result.

The final graph in Figure 4 displays several essential features of
the pizza:AnchoviesTopping term, as well as some informa-
tion about its place in the class hierarchy. The ontology developer
would be well on her way to writing a definition using these graph
contents. Using our interface, this result can be arrived at in seconds.
We believe this is a much better experience than sifting through the
result of heavy-handed context expansion methods.

7 ORDERING DEFINITION CREATION
As we have discussed, all non-root terms in an ontology should be
defined. In addition, when approaching an ontology in which some
or all of the non-root terms are undefined, there is an appropriate
order that the terms should be defined so that the task is as easy
as possible. In Aristotelian definitions, a definition relies on having
an appropriate genus (generally, the class just above the term being
defined). Having a definition for that genus can help building its
child term definitions easier. So, it seems that a top-down approach
is warranted: start with the most general terms in the domain, and
work downward.

We have still found this guideline to be rather unconstrained:
simply approaching an ontology and choosing any undefined term
from the first level which contains undefined terms is not optimal.
We propose two additional conditions which may ease definition
creation.

1. If an ontology already has some defined terms, define terms
with the most siblings already defined first. An Aristotelian
definition requires differentia, so each term must be differen-
tiated from its siblings. If a term has some siblings already
defined, this may make defining the term easier.

2. Define a term’s siblings before moving on to non-sibling terms.
The relationship between an term’s definition and its siblings
definitions indicates that it could ease the definition process if
a term’s siblings are defined before continuing to non-siblings.

We have developed a formal algorithm which takes these consi-
derations into account (see Algorithm 1), and implemented it within
CSNePS. Executing the algorithm provides the ontology developer
with an ordered list of terms. The developer then may begin at the
top of the list in writing definitions, and work their way down. This
may be accessed in CSNePS by typing

(onto-tools/definition-order)

3



Schlegel et al

!

! !

!

Fig. 2. The node pizza:AnchoviesTopping with one degree of context.

Fig. 3. The node pizza:AnchoviesTopping with two degrees of context.

at the console or GUI REPL. By default it looks for a property
named definition or with the label definition on each term
to determine if that term is defined. The user may also execute

(onto-tools/define-next-term)

to clear the graph area and show the term node for the next term to
be defined.

8 DISCUSSION
In the methods section we defined some criteria for tools to help
write definitions: enough, but not too much, context must be visi-
ble, and a method to order definition writing would be helpful. The
method for graph expansion allows the user to see as much or as

little context as they deem fit. The disadvantage here is that the
user must make more actions to get to a populated visualization than
context-only methods. But, we have found that the expansion can be
done very quickly, and that using just context results in more time
wasted sifting through the excess data in the graph. Judging by the
number of irrelevant nodes the user is confronted with, the method
developed here is a clear winner. The algorithm we have developed
for ordering definition writing also match up with the criteria given
at the beginning of the paper.

We believe these tools can have a significant impact on the onto-
logy community. Reviewing existing ontologies using these tools
can easily show the number of undefined terms, and push deve-
lopers toward improving the quality of their ontology. In addition
these tools can help developers create high quality definitions, by

4



Visualization to Assist Definition

! !

! !

!

Repeat Process for pizza:FishTopping

!

! !

!

!
!

Fig. 4. An example exploration of the graph around the term pizza:AnchoviesTopping.

Algorithm 1 Algorithm for ordering terms to be defined.
function DEFINITIONORDER(termSet, rootSet)

nonRootTerms← DIFFERENCE(termSet, rootSet)
termDistanceMap← new Map
for all term t in nonRootTerms do

if t not defined then
termDistanceMap[t] = DISTTOROOT(t, rootSet)

end if
end for
defnOrder = new List
for i from 1 to MAXDISTANCE(termDistanceMap) do

termsD ← TERMSWITHDIST(i, termDistanceMap)
Sort termsD by number of defined siblings, decreasing,
while grouping siblings together.
defnOrder ← defnOrder + termsD

end for
return defnOrder

end function

encoding some of the best practice guidelines (such as working
top-down) and facilitating others (such as finding essential features).

In the future we intend to modify these tools so that they may be
used with whatever back-end representation the user wishes, whe-
ther it be CSNePS, a SPARQL-based triplestore, or a full-fledged
graph database such as Neo4j (Neo Technology, Inc., 2015). In the
meantime, we have created an OWL to CSNePS converter using the
OWL API (Horridge and Bechhofer, 2011) and an adaptation of the
OWL Functional-style syntax.7 Further enhancement of these tools
could include integration with natural language processing techni-
ques to check existing definitions for errors.8 It could be rather
simple to detect circularity in definitions. Using ontology-based
understanding techniques (as is done in clinical notes using, for
example, the iNLP system (Elkin et al., 2010)) it may also be pos-
sible to detect issues such as using different kinds of differentia in
sister terms.

7 CSNePS is available at: http://github.com/SNePS/CSNePS, the
OWL to CSNePS converter is available at: http://github.com/
digitalneoplasm/owl-csneps-converter
8 As one reviewer kindly suggested.

5



Schlegel et al

9 CONCLUSION
Writing definitions for terms in an ontology is difficult and labor
intensive. Iterative graph expansion based on particular relationships
has been shown to result in less cluttered graphs than simple context
expansion. We believe this can help designers produce higher qua-
lity definitions more quickly. Computer algorithms to indicate to
designers which terms should be defined in which order can help
make defining terms more efficient. We hope that these tools will be
used and developed further by the community, as giving terms good
definitions is one step toward making ontologies more useful.

ACKNOWLEDGEMENTS
The authors appreciate Selja Seppälä’s help with background resea-
rch for this paper.

REFERENCES
Arp, R., Smith, B., and Spear, A. D. (2015). Building Ontologies with Basic Formal

Ontology. Cambridge, MA: MIT Press. Forthcoming.
Bock, C., Fokoue, A., Haase, P., Hoekstra, R., Horrocks, I., Ruttenberg, A., Sattler,

U., et al. (2009). OWL 2 web ontology language: Structural specification and
functional-style syntax. W3C Recommendation.

Dietze, H., Berardini, T. Z., Foulger, R. E., Hill, D. P., Lomax, J., Osumi-Sutherland,
D., Roncaglia, P., and Mungall, C. J. (2014). Termgenie–a web-application for
pattern-based ontology class generation. Journal of Biomedical Semantics, 5(1), 48.

Elkin, P. L. (2012). Terminology and terminological systems. Springer Science &
Business Media.

Elkin, P. L., Trusko, B. E., Koppel, R., Speroff, T., Mohrer, D., Sakji, S., Gurewitz, I.,
Tuttle, M., and Brown, S. H. (2010). Secondary use of clinical data. Stud Health
Technol Inform, 155, 14–29.

Horridge, M. and Bechhofer, S. (2011). The OWL API: A Java API for OWL
ontologies. Semantic Web, 2(1), 11–21.

Horridge, M., Jupp, S., Moulton, G., Rector, A., Stevens, R., and Wroe, C. (2009). A
Practical Guide To Building OWL Ontologies Using Protégé 4 and CO-ODE Tools
Edition 1.2. The University of Manchester.

Katifori, A., Halatsis, C., Lepouras, G., Vassilakis, C., and Giannopoulou, E. (2007).
Ontology visualization methodsa survey. ACM Computing Surveys (CSUR), 39(4),
10.

Katifori, A., Vassilakis, C., Lepouras, G., Torou, E., and Halatsis, C. (2014). Visuali-
zation method effectiveness in ontology-based information retrieval tasks involving
entity evolution. In Semantic and Social Media Adaptation and Personalization
(SMAP), 2014 9th International Workshop on, pages 14–19. IEEE.

Neo Technology, Inc. (2015). Neo4j, the world’s leading graph database. http:
//neo4j.com/.

Schlegel, D. R. (2015). Concurrent Inference Graphs. Ph.D. thesis, State University of
New York at Buffalo.

Schlegel, D. R. and Shapiro, S. C. (2012). Visually interacting with a knowledge
base using frames, logic, and propositional graphs. In M. Croitoru, S. Rudolph,
N. Wilson, J. Howse, and O. Corby, editors, Graph Structures for Knowledge
Representation and Reasoning, Lecture Notes in Artificial Intelligence 7205, pages
188–207. Springer-Verlag, Berlin.

Seppälä, S., Schreiber, Y., and Ruttenberg, A. (2014). Textual and logical definitions
in ontologies. In Proceedings of the Second Annual International Workshop on
Ontology Definitions (IWOOD 2014), pages 35–41.

Shapiro, S. C. and Rapaport, W. J. (1992). The SNePS family. Computers &
Mathematics with Applications, 23(2–5), 243–275.

Silva, I. d., Santucci, G., and Freitas, C. d. S. (2012). Ontology Visualization: One
Size Does Not Fit All. In K. Matkovic and G. Santucci, editors, EuroVA 2012:
International Workshop on Visual Analytics. The Eurographics Association.

Stanford Center for Biomedical Informatics Research (2015). The Protégé onto-
logy editor and knowledge acquisition system. http://protege.stanford.
edu/.

6


