
Java and the Future of SNePS 
SneRG Technical Note 31 

 
Anthony Petre 

Department of Computer Science and Engineering 
State University of New York at Buffalo 

226 Bell Hall 
Buffalo, NY 14260-2000  

November 16, 2001 
 

 
 
 
 
1 Introduction 
 
 This paper explains the initial design of the Java version of SNePS 3.  It also 
covers the ideas that came out of the design project, and makes many references to 
potential areas of future works with the system. 
 This paper assumes the reader has an understanding of previous versions of 
SNePS and a familiarity with the Java programming language. 
 
 
2 Goals 
 

Java SNePS 3 was designed with a number of goals in mind: 
 
• The system should provide a useful research tool utilizing past and current theories of 

the SNePS research group. 
• The system should be built using Java and standard Java programming techniques to 

make the software more accessible to the modern research body. 
• The code should be written simply and clearly as possible, since many future users 

will need to understand how the code works.  This includes writing well-documented 
code. 

• As the initial project was not expected to complete the entire system, there should be 
a strong framework for future projects to build on. 

• The code should be highly adaptable, providing not only for current projects but also 
trying to anticipate future ones. 

 
This paper will try to include the reasoning behind many of the design decisions. 

If some aren’t covered, one of the above considerations is likely behind it. 
 

1 



 
3 Package Organization 
 
 The code for Java SNePS 3 has been divided between several packages, divided 
logically by its role in the system.  The initial packages are: 
 
sneps3.classes 
 Contains the public interfaces for common SNePS objects (e.g. Nodes).  These 
are meant to be very simple, mainly just what would be needed for display of network 
information.  Modification of the objects is generally disallowed, with the main 
exceptions being anything that is only display-related (like the color scheme for semantic 
classes) and the Network class (which is meant to give the same abilities as SNePSUL). 
 This package is about 95% complete, missing mainly the code for paths. 
 
sneps3.corecode 
 This package contains more complete interfaces for the common SNePS objects 
of the sneps3.classes package (extending them even).  This package also contains a 
default implementation of each of these interfaces (the class names being prefaced with 
“S3_”). 
 The particular implementation used at any one time is set in the SnepsFactory 
class, which essentially provides the correct constructors for the network to use. 
 This may seem overly complicated, but it makes alternate implementations easy.  
If a new implementation of a particular class is created (maybe with efficiency 
improvements) then only the SnepsFactory class need be changed to use the new 
implementation (provided the new version implements the correct interface). 
 This package is about 95% complete, missing mainly the code for paths. 
 
sneps3.data 
 This package is currently unused, it’s kept more as a storage dump for any data 
the system might want to store (lexicons, statistics, etc). 
 
sneps3.event 
 This package has the code for the event model.  It was hoped to make all network 
changes cause events that could be caught by other parts of the system and acted on, but 
it was never fully implemented.  It is intended as an extension of the existing Java event 
model. 
 This package is about 75% complete.  It needs a little more planning and work. 
 
sneps3.exception 
 This package has the code for the exception model.  It is intended as an extension 
of the existing Java exception model. 
 This package is about 75% complete.  It needs a little more planning and work. 
 
sneps3.mind (Manager of Inference and Network Domains) 

2 



 This package holds code for the construction of SNePS “minds”.  A mind brings 
all the elements of the system together.  See the system diagram in appendix A and the 
description in section 5 for a better idea how it relates to the system. 
 
sneps3.snebr (SNePS Belief Revision) 
 This package is for code to manage belief revision.  Maintenance of removed 
beliefs, algorithms for dealing with inconsistencies, source information managers, and 
any other such related parts would go in this package. 
 This package is not yet implemented. 
 
spens3.snere 
 This package relates to the SNePS 2 SNeRE component, but is outdated in the 
new hierarchy and should be removed. 
 
sneps3.snip (SNePS Inference Package) 
 This package is for code to perform reasoning and inference.  Node-based, path-
based, abductive, and all other types of reasoning stem from this package. 
 This package has not yet been implemented. 
 
sneps3.spine ( SNePS Perceptor Interface and Neural Effectors) 
 This package is for connection and translation code to formalize incoming data 
into nodes that the network can use, and to reformat node information for use by outside 
sources. 
 The code in this package might simply take incoming natural language and 
represent it with a node structure.  It might similarly translate data from an image sensor 
into a node structure. 
 This package would also handle communication in the other direction.  A 
command from the network to carry out a plan represented by a node structure would 
then be translated into a series of instructions in the hardware’s language. 
 This package handles what was previously part of SNeRE, plus additions. 
 
sneps3.world 
 This package is for code that isn’t directly a part of the SNePS system.  GUIs and 
simulations would fit in this category. 
 Most systems added here should be in their own sub-package.  For example, the 
default GUI is being built in sneps3.world.gui. 
 
4 Coding Style 
 The existing code has been documented in the javadoc standard.  It is suggested 
that future programmers learn and use this system.

3 



5 MIND 
 

The sneps3.mind package provides code for combining different sections of the 
SNePS system into an agent.  When building a mind the programmer needs to decide 
what elements will be needed, it determines the kind of agent created. 

One or more networks will be a part of any mind.  There may also be inference 
components (from sneps3.snip) or belief management components (from sneps3.snebr).  
These three sections are normally built by the same programmer or group, intended to 
work closely together. 

Components reaching outside the mind (from sneps3.spine) are managed by the 
mind code.  The mind coordinates communication between these exterior parts and the 
internal systems.  For example, natural language input might come into the mind.  The 
mind may then query the inference package with the incoming data to determine source 
information and later pass that information to the belief revision system. 

As a manager, the mind would be a good area to place resource management code 
as well.  For example, it might make decisions on how much processing time or memory 
to devote to a given task.  It might well rely on the inference package to help make such 
decisions. 

Given it’s position as the last step before direct connection to the network, the 
mind is also an ideal location to handle any security protections for the inner components. 

There is a default mind implementation called OpenMind, which is meant to give 
transparent access to the interior components.  This is normally sufficient when security 
is not an issue and connections between system parts are simple (such as doing research 
work all on one machine). 

 
6 SPINE 

The spine code is meant to free the rest of the system of the hassle of connecting 
to exterior components.  KIF-to-SNePS, LKB, and other translators would go here. 

Code for turning device input into SNePS forms would also be placed in this 
package.  The network and inference package might design a micro-program of multiple 
steps that can be sent to a device, and later run with a single command.  Also, if a device 
is modified, upgraded, or replaced it may often be possible to simply alter the code in the 
spine package to handle all the changes. 

If the agent needs to communicate with other programs, even running on different 
computers, the spine package should have code for this as well. 

A default spine connection called TelePort (a telepathic port) is provided, which 
gives direct access to an OpenMind (which thereby gives direct access to the network 
therein).  The default GUI uses this connection, even though realistically it could simply 
connect to an OpenMind directly. 

 
 
 
 

4 



7 Style Standards: 
 
-  Use javadoc commenting style. 
- Use standard Java naming conventions (initial upper-case class names, lower-case 

field and method names, all caps for constants, etc. 
-  SNePS 3 objects should implement the Serializable and Cloneable interfaces. 
-  SNePS 3 object interfaces should declare the clone method to be public. 
- To maximize structure sharing, clone methods should all do shallow copying (and 

thus a shallow copy clone should be assumed when using it). 
-  Make parameters final (constant) whenever possible. 
- binary operators between two objects of the same class should have direction 

indication in their name and 2nd parameter called rhs (right-hand-side) to clarify 
direction of operation 

- in absence of more informational name, use abbreviations for parameter based on 
class: sc for semantic class, c for cable, n for node, ns for node set, etc. 

- All objects should have a toString method, and a version of toString that takes as a 
parameter a level of indentation. The default toString could simply call the parameter 
version with a value of 0, but a simpler output is better since many Java graphical 
renderers use the toString method to create simple labels for objects, and listing all 
the information creates too large a label. 

- Implementation files should list fields first, then methods not declared in interfaces, 
and finally methods declared in the interfaces (which do not require javadoc headers, 
but will inherit them from the interface). 

- Fields should be protected where possible (controls errant access but allows 
easy creation of new implementations by extending existing ones) 

-  SnepsExceptions should generally NOT be thrown in the lower corecode classes 
(SemanticClass, Relation, etc) since methods there may be needed in static initializers 
(which can’t use methods that throw exceptions, even if they get caught). 

- Network is the first layer of the system that should really be throwing exceptions. 
 
8 Getting and Running the Code 
 
 To get the current working version of the code, you need to create a new folder, 
change to it and type:: 

cp /projects/snwiz/Javasneps3/sneps3.jar . 
unzip sneps3.jar 
chmod –R u+x * 

This will unzip the files into a directory called sneps31.  Execute permissions don’t get 
saved it seems, so the last command gives you access to the sub directories.  This makes 
ALL the files executable though, so you may wish to go through afterwards and remove 
the unnecessary permissions. 
 

                                                           
1 This has been done.  The directory containing all the code is /projects/snwiz/Javasneps3/Sneps3. To run 
the Java version of SNePS 3, execute /projects/snwiz/Javasneps3/Sneps3/sneps3/jsneps3. 

[Stuart C. Shapiro, 6/7/02] 

5 



 In the sneps3 directory there is a README file which gives you information 
about the scripts provided for compiling, running, and managing the code. 
 
9 Accessing and Using the CVS Code Repository 
 
 Before you can access and use the repository, you need to get read and write 
access to the /projects/snwiz/Javasneps3/ directory.  The easiest way is to get added to the 
cse-jsne group, which already has these permissions. 
 Once you have these permissions, you need to set that directory to your 
CVSROOT environment variable each time you log on and wish to use the repository.  
The easiest way to do this is to add the following line to your .login file: 
 
 setenv CVSROOT /projects/snwiz/Javasneps3 
 
 To begin doing work with the repository without logging back in, you can just 
type: 
 
 source .login 
 
 Now create a directory to store your version of the code and cd into it.  You need 
to checkout the files and the CVS information so that the system can keep the files 
updated.  To do this type: 
 
 cvs checkout sneps3 
 

This will copy all the code to your local directory.  If you want to add a file or 
directory to the repository, first create the file or directory.  Then type the following: 

 
cvs add filename 
 
Without this command, the file will still exist in your directory, but won’t be a 

part of the repository, and thus won’t be managed by the CVS system.  If you want to 
remove a file or directory or file from the repository, type the following: 

 
cvs remove filename 
 
If you are removing a file, you will have to delete the file before it can be 

removed.  If there are other people working with the repository, they may make changes 
to the files and save them to the repository.  To get these changes type the following: 

 
cvs update 
 
This command will update all the files in the directory you are in and any sub 

directories.  For more information on the CVS system, see the man pages on cvs. 
 

6 



Appendix A – System Diagram 
 
 
 
 
 

 

Perceptors 
 

Effectors

 

World 

 

 

MIND 
 

SNeBR 
 

SNIP 

 
SPINE

 

Network

 
 
 
 
 
 
 

7 


	Department of Computer Science and Engineering

