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Abstract

Knowledgerepresentationand reasoningsystems
run into dangerwhen they attemptto implement
traditionalbelief changetheoriesintendedfor ideal
reasoningagents. Resourcelimitations can cause
a systemthat guaranteesconsistency to fail. We
presentabeliefspacewhoseformalizationincorpo-
ratesthe fact that it is not guaranteedto bededuc-
tively closed(e.g. unknown implicit beliefsmight
indicatean undetectedinconsistency). Using this
formalization,we then definebelief maintenance
terminology that appliesto this deductively open
belief space.This new terminologyis usedto alter
sometraditional(idealagent)belief changeguide-
linesandpostulatessothatthey areimplementable.
We completeour discussionby comparingsome
currentKRR systemsandtheoriesin termsof these
new conceptsandguidelines.

Intr oduction

Implementedknowledgerepresentationandreasoning,KRR,
systemsrun into dangerwhenthey attemptto implementtra-
ditional belief changetheoriesintendedfor ideal reasoning
agents[Alchourrónetal., 1985;Nebel,1989;Hansson,1993;
1999]. Resourcelimitationscancausea systemthatguaran-
teesconsistency to fail. This is especiallytruewith common-
sensereasoningwhich requiresa largeknowledgebaseanda
complex reasoningsystem.Due to this sizeandcomplexity,
implementedcommonsensesystemscannotguaranteededuc-
tive closure,completeness,or decidability in our resource-
limited world. This preventsthemfrom beingableto imple-
mentmostof the belief changetheoriesthat have beende-
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velopedassumingthereasoningagentis ideal(capableof in-
stantaneousdeductiveclosure).

We presenta knowledgestateformalizationthat incorpo-
ratesthefactsthat

1. itsbeliefspaceis notguaranteedto bedeductivelyclosed

2. it doesnot guaranteethat it candetermineif a belief is
derivable

3. it cannotguaranteeto know all waysthatabelief canbe
derived.

This knowledge staterepresentsa deductively open belief
space(DOBS) that, at any given time, consistsof its ex-
plicit beliefs. Theseexplicit beliefsarecomprisedof theset
of baseassertionsandonly thosederivationsthat have been
performedup to that point. The belief spacegrows asmore
beliefsarederived.

Usingthis formalism,we redefinebelief changeterminol-
ogy to apply to a DOBS.This terminologycanthenbeused
to alter existing theoriesthus making them implementable.
Thesealteredtheoriescanbe usedfor evaluatingandcom-
paringimplementedsystems.

The next sectiondescribesthe motivationsand assump-
tions,notationanda brief descriptionof why our DOBSfor-
malismshouldnot beconfusedwith a belief base[Hansson,
1999;Nebel,1989]. Sections2 and3 givebackgroundinfor-
mationaboutbelief revision andsometraditionalbelief revi-
sionguidelinesandpostulates.Sections4 and5 discussour
DOBSformalismandterminologyandtheDOBSpostulates
andbelief revision guidelines.Section6 discussesandcom-
paresseveralKRR systemsandhow to apply the formalism
whenconsideringresourcelimitations. Thelastsectioncon-
tainsconclusionsandfuturework.

1 Preliminaries
1.1 Moti vations and Assumptions
Most implementedKRR systemsrun into dangerwhenthey
promiseto implementbelief changetheoriesthatassumean
idealreasoningagent.Oneguidelinethatis difficult to imple-
mentwith certaintyis Hansson’s successpostulatefor con-
traction[Hansson,1999]: Unlessa formula is a theorem,it
shouldbecontractedfrom abelief spacein sucha way thatit
is no longerderivable. This assumesthat all waysto derive
thatbelief canbeknown andeliminated.



Many KRR systemsthatimplementtheseidealagenttheo-
riesuse� smalldomainsand/orlimited logics(suchaspropo-
sitional logic). Thesesystemscanstill run into trouble,how-
ever, if the usercannotwait for someNP-hardalgorithmto
completeits run or if theimplementationdetailsfall shortof
the systemdesign. Systemsthat uselarge domainsor more
powerful logics(suchasfirst-orderpredicatelogic with func-
tions, FOPL) have resource-boundedlimitations, but each
systemdealswith theselimitationsin a differentway. These
differencesarehardto comparewithoutacommonformalism
for describingthem.

We assumethatKRR systemsarebeingappliedto knowl-
edgebasesthat are growing larger and merging with other
knowledgebases. We also assumethat the reasoningthat
needsto bedonewith theseknowledgebasesrequiresapow-
erful logic like FOPL. Sincethis logic (and othersthat are
similarly powerful) is undecidable,we claim that it is unrea-
sonableto expectan implementedsystemto know all ways
a given belief might be derived nor to determinein a fixed
amountof time whethera setof beliefsis inconsistent.Our
DOBS formalismandterminologytakesthesetypesof lim-
itations into accountand adaptsthe current belief change
guidelinesto apply to belief changeoperationsin resource-
boundedsystems.This new formalismalsooffersa common
groundfor comparingimplementedsystemsthatusedifferent
techniquesfor dealingwith their resource-boundedness.

Asafinalnote,weconsideranysystemthatis implemented
to beresource-limited(or restrictedin someway). Evensys-
temsusingpropositionallogic musthave somesizerestric-
tion, or their reasoningwill exceedavailablememoryor the
user’s time limitations. Sizeandtime constraintsarealways
a factorto beconsidered.

1.2 Notation and Terminology
Unlessotherwisenoted,we will simplify this paperby dis-
cussinga knowledgebasethat usesclassical,propositional
logic. We usea propositionallanguage,� , which is closed
underthetruth functionaloperators�	��
	��	���� and � . For-
mulasof thelanguage� , includingpropositionalsymbolsof
� , aredenotedby lowercaseletters ��������������������� . Setsof for-
mulasaredenotedby uppercaseletters � �!�#"$��%&�������'� .

If � canbederivedfrom someset � , thenwe will saythat
� derives � , andwill denoteit as �)(*� . Theclassicalcon-
sequenceoperator, Cn, is definedby %&+,�-�.�0/21#�43��5(6��7 .
Theset � is deductively closedif �8/9%&+,� �&� .

Our formalismandexamplescanbeappliedto morepow-
erful logics, suchasfirst-orderpredicatelogic (FOPL) and,
possibly, othersaswell. At this point, we abandontheclas-
sical consequenceoperator, Cn, for a more generalconse-
quenceoperator, C, to emphasizethepotentialdeparturefrom
classicallogic.

A belief space : is consistentif and only if for every
�<;<%&+,� :=�>���?�A@;B%&+,� :C� . For thepurposeof thispaper, we
will refer to an inconsistency asthe existenceof both some
proposition� and its negation, �?� , asopposedto their con-
junction, �D�<�?� , or any otherformulaor setof propositions
from which this pair could be derived. This also supports
the way that resolution/refutationfinds that a set of beliefs
is inconsistent— by finding some� and �?� that reduceto

theemptyset. We make this choiceto reducethediscussion
to the basecaseof a contradiction,thoughimplementations
couldexpandtheirdetectionof contradictionsto includemore
complex formulasor groupsof formulas.

Whenwe refer to a propositionasa “belief”, we will be
specifically referring to a propositionthat is currently be-
lievedby thesystem.A propositionis “believed” if thesys-
temacceptsit (assertsthat it is true; considersit anasserted
belief). It canbecomeunassertedif it is retracted;this is not
the sameasbelieving its negation. In this paper, we arenot
consideringtheterm“belief” to referto aweakenedassertion
or a non-fact. Also, pleasenotethat the term “proposition”
can refer to any formula in the systemthat canbe asserted
(��� �!�E�F��� �G�H��� etc.).

1.3 A Deductively OpenBelief Space(DOBS)
A DOBS is a belief spacethat is by definition not guar-
anteedto be deductively closed. It containssomecore set
of beliefs (a belief base)and the beliefs that havebeende-
rived from them so far. For example, a DOBS might in-
clude the beliefs � and �<�I� without the derivablepropo-
sition � . There is a marked differencebetweenthe con-
cept of a DOBS and that of a belief base[Nebel, 1989;
Hansson,1999]. A belief baseis a finite setof beliefs that
representsthe belief spacethat is its deductiveclosure. The
DOBS is its beliefspaceof explicit beliefsonly andcangrow
throughadditionaldeductionswithoutexpandingits basebe-
liefs.

However, the DOBS for somebelief baseB doesform a
finite set of beliefs whosedeductive closureis the sameas
thatof B — thus,technically, both theDOBS andB arebe-
lief basesfor the samedeductively closedbelief space.Our
conceptfor a belief base,however, refersto somecore set
of beliefswhich areassertedwith independentstanding(as
opposedto any finite setof beliefswhoseclosureis a pre-
determinedbelief space). See[Hansson,1999] for a more
completediscussionof basebeliefs.

2 Background
2.1 Ideal vs. Resource-BoundedAgents
Belief maintenanceresearchhasproducedmany theorieson
how to perform belief changeoperations,but they always
have to considertheagent.Whenworking with puretheory,
researcherscanassumean ideal agent—onethat canreason
instantlyandhasinfinite spacefor retainingbeliefs.Thistype
of agentcanconsiderthedeductiveclosureof asetof beliefs
whenever it hasto determinethe consistency of that set or
removebeliefsto maintainconsistency.

In a real-world implementationresourcesare limited—
agentstake time to reason,andtheir memoryspaceis finite.
Thetheoreticaldeductive closureof a setcanbeinfinite, de-
pendingon the logic, so a resource-boundedagent[Wasser-
mann,1999] cannotconsiderthedeductiveclosure.Reason-
ing in an implementedsystemalsotakestime, so thesystem
is likely to have implicit beliefsit is not yetawareof.

For this paper, we arenot consideringanagent’s limits of
logical ability [Wassermann,1999]. However, regardingim-
plementedKRR systems,we do recognizethat the logic as



describedby asystemdesignerandthelogicalabilitiesof the
systemJ asthey have beenimplementedmight differ — with
the latter falling short of the ideal design. This is a prime
exampleof why even the most simple KRR systemcannot
guaranteecorrectinformationat all times.

2.2 Foundationsand CoherenceApproaches
Systemsimplemented(andespeciallythoseimplementedfor
commonsensereasoning)typically follow a foundationsap-
proach[Doyle, 1979;Hansson,1993] wherethebelief space
is madeupof abasesetof beliefs,whichareself-supporting,
andbeliefsderivedfrom thosebasebeliefs.Belief changeop-
erationsalter the basesetof beliefs,andderivedbeliefsthat
losetheir supportareno longerbelieved. We areassuming
thatALL thesystemswewill bediscussingareusinga foun-
dationsapproach.

By contrast, a coherenceapproach[Alchourrón et al.,
1985] would allow previously derived beliefs to remainas
long asthey arenot responsiblefor an inconsistency. . .even
if their supportwaslost. Althoughour DOBSformalismfol-
lows thefoundationsapproach,we offer a coherenceversion
of the DOBSin Section4.2 which would allow a coherence
approachto DOBS reasonmaintenance.The differencebe-
tweenthesetwo approaches,however, is notof primaryinter-
est.

2.3 The Needfor a DOBSFormalization
Of maininterestis thatmostbeliefchangeapproachesusethe
conceptof retaining(or returning)consistency to definetheir
belief revision operations.Even a belief baseis considered
inconsistentif aninconsistency existsin its deductiveclosure.
Whetherthe inconsistency is found by deductive closureor
someprocedure,suchasresolutionrefutation,it still requires
lookingpastwhatis known explicitly into theimplicit beliefs
to find an inconsistency. This requirestime andspace.Even
a systemusingclassicalpropositionallogic could fail if the
processrequiresmorememory/timethanthesystem/userhas
available.

How doyouimplementidealtechniquesin anon-idealsys-
tem?We addresstheneedto formalizetheoriesthattake into
accountthe fact thatdeductive closurecannotbeguaranteed
in a real-world, need-based,resource-bounded,implemented
system. Thesetheoriesneedto definea belief maintenance
systemthat:

1. is not dependenton deductiveclosure(thus,a DOBS)

2. takestimeandcomputationallimitationsinto account
K recognizingthattheselimitationsmightresultin re-

vision choicesthatarepoorin hindsight

3. catchesandcorrectsthesepoorchoicesasefficiently as
possible.

3 Traditional Constraints and Postulates
We discussbelow somebelief changeguidelinesandpostu-
lates. Thebelief changeoperationsdiscussedin this section
areexpansion,contractionandrevision. Expansionis simply
the additionof a new belief to the belief spaceregardlessof

any inconsistenciesthat it might cause.Conceptually, con-
traction is the removal of a belief from a belief space,and
revision is addinga belief to the belief spacewhile remov-
ing any otherbeliefsthatwould contradictit (i.e., consistent
additionof abelief).

3.1 Belief ChangeGuidelines
Gärdenforsand Rott [Gärdenforsand Rott, 1995] list four
guidelines(paraphrasedbelow) for knowledgebasesandbe-
lief changeoperations. Belief revision literature refers to
theseas “integrity constraints”,but we will use the term
guidelinesto avoid confusionwith databaseintegrity con-
straints.Theseguidelinesare:

BCG1 A knowledgebaseshouldbe kept consistentwhen-
everpossible.

BCG2 If a propositioncan be derived from the beliefs in
the knowledgebase,then it shouldbe includedin that
knowledgebase.

BCG3 Thereshouldbeaminimal lossof informationduring
belief revision.

BCG4 If somebeliefsareconsideredmoreimportantor en-
trenchedthanothers,thenbelief revision shouldretract
theleastimportantones.

Constraint1 is implementabledependingonyour interpre-
tation of the phrase“whenever possible.” We will alter it to
clarify what it meansin a DOBS system. Constraint2 as
statedprecludesthe very notion of a DOBS, requiring the
creationof someDOBStermsthatcanbeusedto rewrite con-
straint2 for a DOBS.Constraint3 will beslightly alteredto
conformto aDOBS,andconstraint4 will remainunchanged.

3.2 AGM Postulates
Contractionandrevisionarenotdirectlydefined,but, instead,
areconstrainedby rationality postulates[Alchourrón et al.,
1985], shown below.

Expansion
Thebelief space: expandedby theproposition� is written
as :ML.�N/PORQTSU%&+,�-:WVX1#�Y7�� .
Contraction
For contractionof abeliefspace: , by theproposition� ( : –
�Z/[:=\ ), thesix basicAGM postulatesare:

(K–1) :=\ is a belief space Closure

(K–2) :=\^]M: Inclusion

(K–3) If �_@;<: , then :=\`/�: Vacuity

(K–4) If not (U� , then�_@;E:=\ Success

(K–5) :a]b:X\cLB� Recovery

(K–6) If (U�Z�d� , then : –�N/�: –� Extensionality

Revision
The six basicAGM postulatesfor revision of a belief space
: , by theproposition� ( : � �N/8:X\ ) are:

(K � 1) :=\ is a belief space Closure

(K � 2) �*;<:X\ Success



(K � 3) :=\^]M:bL.� Expansion1

(K � 4) If �?�_@;*: , then :bL.�Z]b:X\ Expansion2

(K � 5) :=\e/�:$f 1 only if (E�?� . Consistencypreservation

(K � 6) If (U�Z�d� , then : � �N/[: � � Extensionality

3.3 Hansson’sBelief BasePostulates
Hansson[Hansson,1993;1999] proposesAGM-stylepostu-
latesthatcanapplyto baserevision: whereabeliefspace"hg
is revisedby performinga belief changeoperationon some
finite belief basei , where %&+,� i=�j/�"hg .

Hansson’s postulateswerewritten for contractionandre-
vision of a belief baseby a set of propositions. Below are
rewritten versions,alteredfor contraction(andrevision) of a
beliefbase,i , by aproposition� (asdonein [Gärdenforsand
Rott, 1995]), where k is a setof propositionsin � and � is a
propositionin � . Conceptually, contractionof i by � ( i –� )
meansremoving elementsof i to form iX\ suchthat thebe-
lief spacefor i \ , ( %&+,�-i \ � ), no longercontains� . Revision
of i by � ( i � � ) meansadding� to i (to form iB\ ) while
maintainingconsistency.

Expansion
Expansionfor abeliefbaseis similar to thatfor abeliefspace
(above)without thedeductiveclosure.Thebelief basei ex-
pandedby theproposition� would bewritten as iML&�*/PORQTS
ilVX1#�Y7 = iB\ . Thebeliefspaceis %&+,� iB\m� .
Contraction
The basicpostulatesfor contractionof a belief basei by a
proposition� ( i –�D/8iB\ ) are:

(H–1) iB\Y]Ai Inclusion

(H–2) If not (U� , then�_@;*%&+,�-iB\n� Success

(H–3) If �6;BiAopiB\ , thenthereis someiX\ \ suchthat iX\Y]
iB\ \q]bi and�_@;<%&+,� iX\ \n� , but �<;<%&+,� iB\ \cVX1r�s7r�

Relevance

(H–4) If it holdsfor all subsetsiB\ \ of i that ��@;C%&+,�-iB\ \n�
if andonly if �*@;*%&+,�-iB\ \n� , then i –� = i –� Uniformity

(H–5) If not (H� and eachelementof k implies � , then
i \ /5�-itV<k.� –� Redundancy

Revision
The basicpostulatesfor revision of a belief basei by the
proposition� ( i � �N/8iB\ whosebeliefspaceis %&+,�-iB\u� ) are:

(H � 0) If not (Z�?� , then i \ is consistent. Consistency

(H � 1) iB\Y]AilVX1#�Y7 Inclusion

(H � 2) If �D;viMoeiB\ , thenthereis someH” suchthat iB\w]
iB\ \Z]IiaV�1#��7 , iB\ \ is consistent,and iB\ \YV�1x�s7 is
inconsistent Relevance

(H � 3) �*;B%&+,� iB\m� Success

(H � 4) If for all iB\ \q]Mi , iB\ \yL$� is inconsistentif andonly
if iB\ \zLM� is inconsistent,then i|{Bi � �X/5i}{<i � �

Uniformity

(H � 5) If not (*�?� andeachformulain k is logically incon-
sistentwith � , then iB\`/~� iWV*k�� � � Redundancy

1 �U� is theinconsistentset.

4 Formalizing a DOBS
Becausea DOBScannotguaranteedeductiveclosure,it can-
notguaranteethatit is consistent.ThispreventsaDOBSfrom
being able to satisfy the guidelinesdescribedin Section3,
which centeron theconceptof guaranteeingconsistency.

We have defined and developed a formalization for a
DOBS, which also allows us to redefinethe terminology
surroundingthe basic constraintsand postulatesfor belief
change.Oncealteredto conformto DOBSterminology, most
of theconstraintsandpostulatesabove canbeadheredto by
a DOBS.

4.1 Defining a DOBS
A deductivelyopenbeliefspaceis formedby asetof assump-
tions ( iB�U�Ug ) and the beliefs that are derived from them
( �N�U��g ). Thesebeliefsarederivedgraduallyover time, so
�N�U��g canincreasemonotonicallyevenas iX�!�Ug remains
unchanged.Thesederivationsaregeneratedasa resultof a
queryprocess:eithera query from a useraboutthe system
(e.g. DoesTweetyfly?) or a querygeneratedduring infer-
ence(e.g.Is Tweetya bird?...if so,thenTweetyflies.).

If the systemstoresderivations(preferableif computing
costsaremoreexpensivethanmemory, sothis is theassump-
tion we aremaking),it only storesderivationsthat it hasac-
tually performed- not all possiblederivations.For example:
given iB�!�Ug|/I1#���-�<�����#�����h���s7 and �N�!�PgW/�1r�s7
(derivedfrom � and �P�}� ), thesystemis currentlyunaware
that � and ���H� alsoimply � .

4.2 The KnowledgeStateThat Determinesa
DOBS

Theentirebelief stateof a DOBSis representedby a knowl-
edgestate,:=g . TheDOBS is thebelief spaceof theknowl-
edgebase,"�g0�-:=g,� . Given the language� asdescribedin
Section1.2,a belief stateis definedas:

:=gv/PORQTSD� iX�!�UgF���N�U��gF�#"$�#i<�T����� ,
where iB�U�Ugl])�.�#�N�!�Pgl]l%6�-iB�!�Ugj�R�#"�]WiB�U�UgF�
and i<�T��� containsa recordof every derivationthathasbeen
performedto derive thepropositionsin �N�!�Pg .

Unlessotherwisenoted,assumethat all future examples
anddefinitionsof beliefchangeoperationsareusing :CgC/��
iB�U�Ug��#�N�U��gF��"N��i<�T����� astheir startingbelief state.

iB�U�Ug consistsof all the hypotheses(also called as-
sumptions)ever introducedinto KS asself-supportingbeliefs
[Hansson,1999]. iX�!�Ug containsboth currently believed
hypotheses(the belief baseof the DOBS) as well as those
thathavebeenretractedfrom thebelief space.

�N�U��g consistsof every proposition� ever derived from
someset ��]biB�U�Ug?o1��Y7 usingoneor moreinferencesteps.
Whenever a propositionis derived, it becomesa memberof
�N�U��g anda recordof its derivation is storedin i<�T��� (e.g.� �'�����.�G;<i<�T��� meansthat � wasderivedfrom theset � ). A
propositioncanexist in both iB�U�Ug and �N�U��g .

" consistsof all propositionsthat are currently asserted
asbeingself-supportingbeliefs(i.e. thecurrentbasebeliefs).
Therefore,iB�!�Ugzo�" containspropositionsthatarenolonger
believed to be self-supporting,althoughsomeof thesemay
be in the currentbelief spaceasderivedbeliefs if they have



derivationhistoriesin i<�T��� showing thatthey canbederived
from�8" .

i<�T��� consistsof thederivationhistoriesfor all elementsof
�N�U��g . Therearemultiple waysin which this couldbe im-
plemented(e.g. ATMS, JTMS,derivation tree),but we will
formalize it as

� �'���#�.��;hi<�T��� is the implementationinde-
pendentrecordof a derivation of � from the set � . Every
propositionin �$�U��g musthave at leastonederivationhis-
tory storedin i<�T��� . A propositioncanhave morethanone
derivationhistory. We do not store

� �'���>1��Y7r� .
DOBS – CoherenceVersion
We distinguish the propositionsin iB�!�Ug from those in
�N�U��g to allow a foundationsapproachfor belief mainte-
nance. A coherenceapproachcan be implemented,how-
ever, by insertingeachderivedbelief into iB���Ug asa self-
supportingbelief. " shouldalsoincludeall beliefsknown to
be derivablefrom " (determinedby the derivation histories
in i<�T��� ). In this sense," is the belief space(the DOBS).
The derivation historiesof any derived beliefsmuststill be
retainedin i<�T��� to aid in belief changeoperations,because
they arethe only recordof how to retracta derivablebelief
from a DOBS.

Thekey partsof theKS of a DOBSareillustratedin Fig-
ure 1 and describedbelow. %6� "�� is included for clarity,
but it is not an actualpart of a KS, and the KS hasno in-
formationregardingwhich elementsarein %6�-"�� outsideof
"�g4/8"�VE� .

L all well-formedformulas(WFFS)in thelanguage
HYPS assertedpropositionswith independentstanding

—bothbelievedanddisbelieved
B thecurrentlybelievedhypotheses
C(B) thedeductiveclosureof B (belief spaceof a DCBS)

—potentiallyinfinite (dependingon thelogic used)
—includedherefor clarity (not partof :Cg )

DERS propositionsknown to bederivedfrom HYPS
D beliefsknown to bederivedfrom B
B V D Currentbelief space,BS (darklyshaded)

—finite subsetof C(B)
B V D = BS = the DOBS

An Exampleof a :=g
Figure1 andits explanationsandexamplesshouldhelpclar-
ify themany partsof a �Z�P"�g andits knowledgestate,:Cg .
Many sectionsof the :Cg aredescribedbelow with examples
of the type of propositionsthat might be in them. For the
sake of simplifying this example,assumeall propositionsin-
sidethecircle iX�U�Ug wereat onetime asserted(alsoin " )
afterwhichtheformulasin �N�U��g werederived(usingthese
basebeliefs)asrecordedin i<�T��� .

Thederivationsin i<�T��� arestoredaspairscontainingthe
belief andthe basebeliefsunderlyingits derivation. For ex-
ample,the pair �-���>1r�`���P���r7�� expressesthat � wasderived
from thebasebeliefs � and �0�l� . This is anATMS styleof
recordingjustificationfor a derivedbelief.

After thesederivationstookplace,somepropositionswere
retractedfrom thebeliefbase" . Theseretractedpropositions
arenow in �*�E�! No	¡ , andconsistof �������£¢?�#���¥¤e���F�� �#¦s��¢?�#§?��¨e��¨w�H©U� and ¨F��§ .

Figure 1: The figure at the top is exampleof a knowledge
state, :=g . The box at the bottomis an enlargementof the
dashedbox in the :=g diagram.The shadedarearepresents
theDOBS /8"�g4/8"EVª� . Rememberthat %6�-"�� is included
for comparisonpurposes.Information regardingits bound-
ariesandcontents(with theexceptionof "�g ) arenot a part
of theknowledgestate:=g . For this :=g , i<�T��� containsthe
following derivations: �-���>1r�?�#���H�r7�� , � ¤`�>1x�y�#�e�H¤e7r� ,
� ¦s��1x�?�#���H¦c7r� , �«¢?�>1x�?���F�~¢�7r� , �n¬^�>1x�?���F��¬`7�� ,
� � �>1r���#�e� � 7�� , � ©U�>1r¨e��¨w�H©�7r� , �§^�>1r¨e��¨w�H§`7�� .



Any propositionsrequiringoneof thesefor supportmust
be remoJ ved from � to ®E¯.°* No	® (foundationstheory).
Thesepropositionsthatareno longerknown to bederivable
from " are ¢?� � �#§?� and © (plus ¤ which is assertedin " , but
not known to bederivablefrom "Eo^1x¤e7 ).

Beliefs in the base¡ areassertedasself-supportingand
areshown in theenlargedboxat thebottomof Figure1. Two
of thesepropositions,� and ¤ , arealso in �N�U��g , because
of the two derivationsstoredin iB����� : � ����1x�?�#�*�±�r7�� and
� ¤`�>1r���#���W¤z7�� , respectively. Thefirst is a currentlybelieved
derivation,but thesecondis disbelieveddueto theretraction
of theproposition�q�)¤ . This is shown by � beingin ¡9{Z®
whereas¤ is only in ¡9{Z®E¯&°E  .

Thethreebeliefsin ® — ���#¦s� and� — arein threedifferent
sectionsAll areknown to be derived from " , but � is also
assertedasahypothesisand ¦ is disbelievedasa hypothesis.

Thetwo propositionsnot mentioned,yet, are ©M�<�w© and
���	�y� �

. They arelocatedin theareas�&o^�-iB�U�Ug0V	�N�U��g0V
%6� "h��� and %6�-"���o�� iB�U�Ug<VE�N�!�Pgj� , respectively. These
propositionsare,actually, not known by KS, but they arein-
cludedin thediagramasexamplesof thetypeof propositions
thatwould bein theseareasconceptually.

4.3 DOBSTerminology
KS-derivability
Sincea DOBS canhave propositionsthat arederivablebut
not,yet,derived,weusetheconceptof aproposition,� , being
knownto bederivablefrom a setof propositions,� . This is
denotedas�9(^²ª³&� , readas“ � KS-derives� ”, andis defined
by therulesbelow:

1. 1��Y7.(^²ª³P� .

2. If thereexistssome
� �����#�&�G;*i<�T��� , then �8(q²ª³P� .

3. �8(^²ª³N" meansthat ´s�wµ �*;*"=�H�9(q²ª³P�z¶ .
4. A supersetof a set that KS-derivesa propositionalso

KS-derivesthatproposition:
�-�9( ²ª³ �?���=�-��·M"h�¸�H")( ²ª³ � .

5. �-�9( ²ª³ "����=�-"2( ²ª³ �^�¸�H�9( ²ª³ � . Transitivity

KS-closure
Becauseweareremoving theomniscienceof aDCBSandits
consequenceoperation,wewanttheDOBSto “remember”as
muchaspossible,including propositionsthat areno longer
believed. Oncea basesetof hypotheses," , is chosen,the
implementableclosureof " is limited by :=g (i.e. by its
derivationhistoriesin i<�T��� ). We call this KS-closure, andits
consequenceoperatoris %�²ª³ . Its definitionis:
% ²ª³ �-"��j/ ORQ�S 1#�F3 "5( ²ª³ ��7 .

The belief spaceof a DOBS is definedby its belief state,
:=g , astheKS-closureof its basebeliefs( " ):
"�gª� :=gj�,/PORQTS�%	²ª³��-"�� = theDOBS.

�B� :Cg,� is thesetof derivedpropositionsthatarecurrently
believed: �B� :Cg,�,/ ORQTS 1#�F3 "*o?1��Y70( ²ª³ �Y7 .

In otherwords,KS representsall thepropositionsthatex-
ist in the systemalongwith a recordof how they werede-
rived, and BS(KS) representsonly thosepropositionsthat
arecurrentlybelieved— therefore,it is the DOBS.The KS

mustkeeptrack of the disbelieved propositionsandderiva-
tions to avoid having to repeatearlier derivationsif disbe-
lievedpropositionsarereturnedto thebeliefspace(assuming
thatmemoryspaceis a moreplentiful resourcethancomput-
ing speed/time).

For shorthandpurposes,"�gª� :=gj� and �B� :Cg,� can be
written as "�g and � respectively when their :Cg is clear
from thecontext. Theinformationthat�<;*iB�!�UgGV��N�U��g ,
canbewritten in a shorthandversionas �X;B:Cg . This is not
to be confusedwith �5;H"�g , thoughthe latter implies the
former.

Observation: "hgC/8"8VZ�
Proof: By thedefinitionsabove, "~( ²ª³ �Z�5�H]A"hg .
a) Prove "HV<�¹]H"�g . ´s�wµ �4;º"[�}"¥( ²ª³ � . Therefore,
"d]2"hg . ´���µ �M;M�~�»"=o�1��Y7$(^²ª³E� . ´s��µ "=o�1��Y7Z])"�¶ .
Therefore,́s�wµ �*;*�A�H"~(^²ª³&� , thus �¥]M"hg .
b) Prove "�g¼]H"¼VB� . ´s�wµ �4;4"hg$�½�-"¥( ²ª³ �?�w�4�����_;
"���
=���A@;<"��#�¾¶ . If �A@;<" , then ")( ²ª³ �$¿�"Eo?1��Y7.( ²ª³ � .
Therefore,́s�wµ �X;B"�g��}���X;B"���
C�'�X;B�Z�¾¶ . Thus, ´���µ �B;
"�gU�[�<;<"�VZ�D¶ .
KS-consistency
Any setis inconsistentif a contradictionhasbeenderivedor
can be derived from its beliefs. Thus, checkingfor an in-
consistency requiresexaminingimplicit beliefs. This is time
consumingfor a DOBS, which cannever guaranteea com-
pleteexplorationof its implicit beliefs.

A DOBSis KS-inconsistentif andonly if À���µ �ª;ª% ²ª³ �-"���
�?�!;h% ²ª³ � "h�¾¶ . If a DOBSis not KS-inconsistent,thenit is
calledKS-consistent— i.e. thereareno explicit inconsisten-
ciesin %	²ª³��-"�� , soit is not knownto beinconsistent.

This meansa DOBS can be both inconsistentand KS-
consistentat the sametime: For example, "�/¹1x��� ��� �E�
�F�s7 , but �F� hasnot, yet, beenderived. Note that you can
alsoreferany set, � , asKS-consistentor KS-inconsistentas
longasthereis a :=g associatedwith thatsetfrom whichyou
candeterminetheKS-closureof theset, % ²ª³ � �.� .
KS-consolidation
Whenever an inconsistency must be resolved, somebeliefs
mustbe removed. Which beliefsareremovedis oftendeter-
minedby examiningthe entirebelief spaceandusingsome
guidelines(suchasBCG3 andBCG4 from Section3.1). A
DOBS,however, is incomplete,becauseof thelackof deduc-
tive closure. It is possiblethat newly derived beliefswould
addinformationthatmightalterthebeliefcontractionchoices
madeearlier.

A belief changeoperationwehavenotyetdiscussedcould
enablea DOBSto reconsiderpastrevisions. It is consolida-
tion [Hansson,1999]. Consolidationinvolvestakinga belief
baseandmakingit consistentby retractingbeliefs.

The DOBS version of this operation is called KS-
consolidation, and it is constrainedby the following postu-
lates (for a belief base, " that is consolidatedto produce
"NÁ�Â )2:

KS-C1 "$Á Â is KS-consistent KS-consistency

2Theseguidelinesareanalteredversionof guidelinesin [Wasser-
mann,1999] who generalizedfrom Hansson’s 1991Ph.D.thesis.



KS-C2 "$Á Â�]b" inclusion

KS-C3 If �<;*"hoy"NÁ�Â , thenthereis someÃ suchthat "$Á Â�]
Ãa]M" , %	²ª³�� Ã=� is KS-consistent,and %�²ª³��Ã2L$�^� is
KS-inconsistent relevance

A DOBS system should periodically perform KS-
consolidationon iB�U�Ug (or somesubsetof iB���Ug ) to re-
considerpastbelief changeoperationswhich might be af-
fectedby morerecentlyaddedhypothesesor derivations.

5 DOBS Constraints and Postulates
The key to understandingDOBS belief changeconstraints
andpostulatesis to rememberthatthey areappliedin termsof
theDOBSterminology. Whenremoving knowninconsisten-
cies,they dealonly with knownderivations(storedin i<�T��� )
of known to be derivablepropositions(storedin �N�U��g ).
Deductive closureis not an option. For the purposesof this
paperwe assumethatKS-closureis possible,though,for an
extremelylargesystem,timeor spacemight restrictthis.

When referring to expanding, contractingor revising a
DOBS by someproposition� , the operationis actuallyper-
formedon the baseof the DOBS, " . The operationcanbe
written usingeither“DOBS”, “ "hg ” or “ " ”, sincetheappli-
cationis clear(i.e. DOBS� �B/�" � � ). This is not a problem
for thecoherenceapproach,since �¹]5" for thecoherence
versionof a DOBS, thus its " = "hg = the DOBS. For the
purposeof comparingto the AGM andHanssonpostulates,
we will referto theDOBSas : and i respectively.

5.1 Belief ChangeGuidelinesfor a DOBS
Now thatwehaveformalizedaDOBS,wecanassessthekey
changesnecessaryto adjustthe list of belief changeguide-
linesfrom Section3.1 sothat they canbeusedasguidelines
for a DOBS.Alterationsarein boldface. Additionsor clari-
ficationsarein italics. Therevisedconstraintsare:

1. a knowledgebaseshouldbekeptKS-consistentwhen-
everpossible;

2. if a propositionis known to be derivable from thebe-
liefs in the knowledgebaseusing the derivationscur-
rently known, thenit shouldbe includedin that knowl-
edgebase(KS-closure);

3. thereshouldbeaminimal lossof theknowninformation
duringbelief revision;

4. if somebeliefs are consideredmore important or en-
trenchedthanothers,thenbelief revision shouldretract
theleastimportantones.

5.2 DOBSversionof the AGM Postulates
To make a DOBSversionof theAGM postulates,we substi-
tuteDOBSterminologyin placeof ideal agentterminology.
OncealteredusingtheDOBSterminology, many of thepos-
tulatesfor contractionand revision can be adheredto by a
DOBS.ConsidertheDOBSto bethe : of thepostulates(i.e.
:Ä/�"�g0�-:=g,� ). Rememberthat any contractionsto pre-
vent inconsistenciesarelimited by thederivationknowledge
in i<�T��� .

Expansion

Expansion::|L<�Z/ ORQ�S % ²ª³ �-:WVB1��Y7�� .
Contraction

(K–1), (K–2), and(K–3) areadheredto unchanged.
(K–4) becomes:If not ( ²ª³ � , then�º@; K–� (i.e. K–� does

not KS-derive� . . .but � mightstill bederivable).
(K–5) cannothold, becauseit requiresthat for every two

beliefs,� and � , in " , thesystemalsohave thebeliefs �.�t�
and �Y�[� . A DOBScannotguaranteethatall theseadditional
beliefswill bepresentwhena belief is removed.

(K–6) can only be adheredto in the following form: If
( ²ª³ �G�H� , thenK–� = K– � .

Revision

(K � 1), (K � 2), and(K � 3) areadheredto unchanged.
(K � 4) cannotbe adheredto, becauseof the lack of de-

ductive closure. It would be possiblein a DOBS to have
:Å/�1��<�Æ����F�s7 without �?� being in : , becauseit had
not,yet,beenderived.Yet therecouldbeaderivationhistory� � ���>1����-�.�W�s7�� in i<�T��� thatwould requiretheretractionof
either �F� or �	�5� upontherevisionof : by � .

(K � 5) is rewrittenas:
: � � is KS-inconsistentonly if ( ²ª³ �?� .

(K � 6) requiresthesamealterationsas(K–6):
If ( ²ª³ �	�H� , then : � �N/�: � � .

5.3 DOBSversionof Hansson’sBelief Base
Postulates

In this case,we revert to the baseversionof a DOBS (not
the coherenceversion). We alsouse i to refer to " in the
postulates.RememberthattherevisedDOBS= % ²ª³ � iB\m�j/
"�gª� iB\m� , where iX\ is thebelief baseafterthebelief change
operation.

Expansion

Expansionremainsthesame:i � �$/[iWVB1#�Y7 .

Contraction

Sincemostof thepostulatesrequireterminologyalterationto
be adheredto, we will merely list them. The postulatesfor
DOBScontractionof abelief basei by a proposition� ( i –
�Z/[iX\ ) are:

(H–1) i \ ]Ai Inclusion

(H–2) If not (^²ª³P� , then�_@;<%	²ª³w� iB\m� Success

(H–3) If �6;BiAopiB\ , thenthereis someiX\ \ suchthat iX\Y]
iB\ \q]bi and�_@;<% ²ª³ � iB\ \m� , but �<;<% ²ª³ � iB\ \cVB1x�s7��

Relevance

(H–4)If it holdsfor all subsetsi \ \ of i that �_@;<% ²ª³ �-i \ \ �
if andonly if �E@;B% ²ª³ �-iB\ \u� , then i –� = i –�

Uniformity

(H–5) If not ( ²ª³ � andeachelementof k KS-derives � ,
then iB\`/~� ilV<k.� –� Redundancy



Revision
Thepostulatesfor DOBSrevision of a belief basei by the
proposition� ( i � �N/8i \ ) are:

(H � 0) If not ( ²ª³ �?� , theniB\ is KS-consistent.Consistency

(H � 1) iB\Y]AilVX1#�Y7 Inclusion

(H � 2) If �6;BiAopiB\ , thenthereis someiX\ \ suchthat iX\Y]
iB\ \F]�i|V=1��Y7 , iB\ \ is KS-consistent,and iB\ \�V=1x�s7 is
KS-inconsistent Relevance

(H � 3) �*;B% ²ª³ �-i \ � Success

(H � 4) If for all iB\ \�]9i , iX\ \�LX� is KS-inconsistentif and
only if iX\ \qL9� is KS-inconsistent,then i½{vi � �8/
il{Ei � � Uniformity

(H � 5) If not ( ²ª³ �?� and each formula in k is KS-
inconsistentwith � , then iB\`/~� ilVEk.� � � Redundancy

5.4 Discussion
DOBS Belief ChangeGuidelines
Constraint1 suggeststhatasystemshouldactivatebeliefrevi-
sionassoonasaninconsistency is detected.Constraint2 rec-
ommendsthata propositionshouldnot needto bere-derived
from a setof propositionsfrom which it hadpreviouslybeen
derived.

Constraint3 remindsus that only explicit beliefs can be
consideredduringabeliefchangeoperation(e.g.implicit be-
liefs cannotbeconsidered).Constraint4 remainsunchanged.
How to minimizeinformationlostandcombinethatwith con-
straint4 is anongoingdebate.

DOBS Postulates
Once adjustmentsfor DOBS limitations were madeusing
DOBS terminology, all but a few postulates((K–5) and
(K � 4)) wereableto beadheredto. Althoughnoimplemented
systemcanguaranteeto adhereto theoriginalpostulates,the
adjustedpostulatesprovide achievableguidelinesfor imple-
mentedbelief changeoperations.

6 SomeKRR Systemsand Implementation
Considerations

6.1 SomeKRR Systems
In this section,we briefly describesomeKRR systems.Our
descriptionsarenot intendedto be complete,but will focus
of the aspectsof interestto this paper. We apologizeto all
implementersandresearchersfor the negative slantgivento
thesesystems.They werechosenbecausethey areexcellent
examplesof goodsystemsthat areproducinginterestingre-
sults.However, they alsoillustratethat,nomatterhow gooda
systemis, it is animplementationin a resource-limitedworld
andopento failureregardingadherenceto idealstandards.

BReLS
BReLS[Liberatore,1999] is asystemthatcombinesrevision,
updateandmerging techniquesfor belief change. It usesa
propositionallogic whereoptionaladditionalinformationcan
be includedor addedregardingthe proposition: its credibil-
ity, the time at which it is consideredtrue, and the penalty

for changingthetruthvalueof thepropositionfrom onetime
stampto another.

Interestingly, BReLSconsidersany knowledgebaseto be
consistent,becauseit makesmodelsof eachknowledgebase,
andthemodelsareconsistent.Eachmodelis apossibleworld
consistentwith as much of the of the input information as
possible.For example,theinputof �j�.�?� wouldproducetwo
models— onewhere� is true,onewhere� is false.Queries
canbemadeon differentpropositions.If a propositionholds
in all models,thenthepropositionis consideredvalid, elseit
is not valid. In theexamplejust mentioned,� and �?� would
bothbe not valid. This systemcanbe run over the Internet.
TheURL is:

http://www.dis.uniroma1.it/liberato/brels/brels.html.

SATEN
SATEN, developed by Mary-Anne Williams, is an
“object-oriented, web-basedextraction and belief revi-
sion engine.” [Williams and Sims, 2000] It usesthe AGM
approachfor belief revision[Alchourrón et al., 1985] and
usesuserspecifiedrankingsfor the beliefs. The extraction
processrecoversa consistenttheorybasefrom an inconsis-
tent ranking. SATEN can reasonin either propositionalor
first-orderlogic. To querywhethera belief is in the belief
spaceof the base,you ask what its ranking would be. A
degree of 0 meansit is not in the belief space,else the
appropriaterankingfor thebelief is given.No replymeansit
doesnot know theranking. This systemcanberun over the
Internet.TheURL is:

http://ecommerce.newcastle.edu.au/saten/.

Cyc
Doug Lenat and Cycorp have developed Cyc[Cycorp,
2001a]— alargeknowledgebaseandinferencingsystemthat
is built upona coreof overa million hand-enteredassertions
or rulesaboutthe world andhow it works. This systemat-
temptsto performcommonsensereasoningwith the help of
this large corpusof beliefs (mostly default with somethat
are monotonic). It divides its knowledgebaseinto smaller
contexts called microtheorieswhich containspecializedin-
formationregardingspecificareas(suchastroopmovement,
physics,movies, etc.). Belief revision is performedwithin
microtheoriesor within a small groupof microtheoriesthat
areworking together, andthesystemis only concernedwith
maintainingconsistency within thatsmallgroup(asopposed
to acrosstheentirebelief space).For example: in anevery-
daycontext, a tableis solid,but within aphysicscontext, it is
mostlyspace(betweenatoms).

A belief canhave only onetruth value,sono microtheory
cancontainboth � and �?� . For example, �?� could be ex-
pressedasthe proposition� with a truth valueof false. The
techniquefor maintainingconsistency is to checkfor contra-
dictory argumentswhenever a propositionis derived or as-
sertedinto a microtheory. When contradictionsare found,
their argumentsareanalyzed,anda decisionis maderegard-
ing thetruth valueof thepropositionsinvolved. Rankingsof
beliefs,however, is not a partof thesystem— it usesspeci-
ficity to determinethetruth valueof a default belief. For ex-
ample: Opusthe penguindoesnot fly, even thoughhe is a
bird, becausepenguinsdon’t fly. If therecanbeno decision



basedonspecificity, thetruthvalueof thedefaultbelief is un-
known.Ç A default belief losesout to a monotonicone. And,
lastly, accordingto Cyc trainersandothercontacts,contra-
dictionsthatarepurelymonotonicbring thesystemto a halt
until they arefixed. During Cyc training,Johnsonattempted
to prove this last statementand failed — revision was per-
formed.Theinstructorsweresurprised,but thoughtthetrain-
ing interfacemight bethecause.We planto explorethis fur-
ther, but it is anexampleof asystembehavingdifferentlythan
it is described.

SNePS
SNePS[Shapiro and The SNePS ImplementationGroup,
1999;ShapiroandRapaport,1992] is a KRR systemwhose
belief space representsthe belief space of a cognitive
agentcalledCassie.SNePSreasonsusinga paraconsistent,
relevance-basedlogic, andis ableto reasonin multiple con-
texts,similar to Cyc.

SNePSattemptsto derive propositionsas they are asked
for—eitherby theuseror by thesystemasit performsback-
wardor forwardinference.A contradictionis detectedwhen
a specific propositionand its negation are both explicitly
presentin the belief space. At this point, belief revision is
calledto resolve the inconsistency andthe systemconsiders
only the propositionsin the current belief space—asserted
hypothesesand the propositionscurrently known to be de-
rived from them—withoutconsideringany implicit beliefs.
Becausejustificationsfor thecontradictorybeliefsarestored
assetsof basebeliefsthatareknown to underliethecontra-
diction (ATMS-style),SNePSautomaticallyreducesthe set
of beliefsunderconsiderationto only thoseinvolvedwith the
derivationof thecontradiction.

TheSNePSsystemis availableonlinefor downloading:
http://www.cse.buffalo.edu/sneps/.

Wassermann’sResource-BoundedSystem
Wasserman’s formalism for “resource-boundedbelief revi-
sion” is describedtheoretically in [Wassermann,1999], but
bearsmentionhere,becauseit specificallydealswith the is-
sueof resource-boundedness.Wassermanndefinesthe con-
ceptof “embeddedlocal change”— the belief setbeingal-
teredduringsomebeliefchangeoperationusingsomepropo-
sition � shouldbesomesubsetof thefull baseof beliefsthat
is relevantto � (i.e. theelementsin thesethavesomerelation
to � ). This relationcouldbesyntactic,logical, whatever, but
unrelatedpropositionsshouldnot be consideredduring the
beliefchangeoperation.Shealsogivesananytimealgorithm
for determiningthis subsetof beliefs,andif the set is small
enough,thentraditionalbeliefchangeoperations(idealoper-
ations)canbeused.Thealgorithmcanbestoppedwhenever
the setreachessomepredeterminedmaximumlimit (to deal
with resourcelimitations regardingmemoryor computation
time).

6.2 Discussionof TheseSystems
Most of the systemsabove checkconsistency either at the
time a belief is enteredor whenconsistency is an issue(e.g.
duringcontraction,revision,extraction,etc.).Promisingcon-
sistency takes time and, dependingon the logic, might not
be decidable.The discussionbelow only mentionssomeof

the featuresthat limits theseKRR systems. They perform
many operationswell andareexcellentsystems,but their im-
plementationsor restrictionsindicatesthatidealpostulateim-
plementationis not possible.

BReLS
Even a systemusing the computationallymanageableclas-
sical propositionallogic hasproblems.Accordingto Liber-
atore, its developer[Liberatore,1999]: “[O]ne can produce
examplesthatcannotbecorrectlydealtby BReLS,...[andit]
candealonly with small problems[currently limited to less
thaneight literals].” Liberatorefeels that moreefficient al-
gorithmswill help improve performance.We feel therewill
alwaysbepitfalls for any implementedsystem.

SATEN
Our work often promptsthe responsethat SATEN imple-
mentsideal postulates,so we felt obliged to put it to the
test.We did find a casewheretheimplementationof SATEN
which is availableon the Internetwasunableto revise a set
of beliefs.This caseinvolvestheuseof a recursivestatement
which causedSATEN to get into a loop. Williams (through
personalconversation)explainedthatafterasetnumberof it-
erations,theloopingis terminated,but it seemsthattheentire
processthatwasrunningon SATEN getsterminatedaswell.
Therewereno results.Theexampleweusedis describedbe-
low.

Thestatementsusedin our exampleare:

S1 Par(bill,chel)
(Bill is Chel’sparent.)

S2 *P(*C(Par(P,C)->Anc(P,C)))

(Parentsareancestors.)

S3 -Anc(bill,chel)
(Bill is not Chel’sancestor.)

S4 *A(*P(*C(
(Par(P,A)&Anc(A,C))->Anc(P,C))))

(Parentsof ancestorsareancestors.)

SATEN performsasexpectedwhengiven only the first 3
statements.For example,revising the belief baseof S2 and
S3by thebelief S1resultsin theremoval of S3leaving only
S1andS2in thebelief base(i.e. 1 S2,S37 *S1 = 1 S1,S27 ).

Adding S4 causedSATEN to fail in its attemptto revise.
Whenthebelief baseconsistedof S2(at rank1), S4(at rank
2) andS3 (at rank 3), thenrevision by S1 failed. It caused
an intolerabledelay(hours,whenthe above run took only a
few seconds)andproducedno result. . .not even the lossof
S3from thebaseof beliefs.

In thisrecursiveexample,if thesystemcontinuedits search
afterpoppingoutof therecursiveloop,it couldreturnthebase
of S1,S2,andS4with awarningthatS4wasnot fully tested.
Alternatively, it couldplay it safeandremove S4alongwith
S3.In eithercase,it wouldproduceresultsthatwouldcomply
with theDOBSpostulates,with thelattercasebringingin the
issueof minimaldamage.

Note: If the baseconsistsof all four statementsranked in
order(e.g. S1hasrank 1, S2 hasrank2, etc.),SATEN will
correctlygive thedegreefor



Anc(bill,chel)

as2. It candeterminethatbeforehaving to considerS4,soit
nevergetsinto a recursive loop.

Cyc
As mentionedin Section6.1, Cyc did not perform as de-
scribed,and theremust be somequestionas to other pos-
sible differencesfrom designtheory. Most specificallyCyc
literature[Cycorp, 2001b] claims to keepthe microtheories
consistent, for lack of a better word. When asked, con-
tacts agreedthat, in spite of a cursory check, it was pos-
sible that unknown contradictionsmight exist that hadnot,
yet, beenderived. In this sense,Cyc canonly guaranteethat
its microtheoriesare not knownto be inconsistent(or KS-
consistent).Ideal terminology, suchasconsistentandderiv-
able, is oftennotappropriatefor usewith anlargeor complex
implementedsystem

SNePS
SNePScurrentlyrecognizesaninconsistency whenabelief �
andits compliment�?� areexplicitly believedby thesystem.
This meansthat a systemcanbe inconsistentwithout being
aware of it. This methodfor detectingand resolvingcon-
tradictionsseemsreasonablefor acognitiveagent,but not for
anexpertsystemwherecontradictionsshouldbedetectedand
resolvedassoonaspossible.

Unlike SATEN, SNePScan handlemost recursive rules
[McKay andShapiro,1981], but therearea few which will
still produceinfinite looping.

Wasserman
Wassermann’s systemdescriptiondiscusseslimiting thesize
of the belief baseunderconsiderationduring belief change
operationsto allow the systemto useideal theories. A key
issuewhenattemptingto implementthis techniqueis how to
determinethe sizelimit for a belief changeoperation. Cer-
tainly, this might be feasiblewith a systemthat usespropo-
sitional logic. But when using FOPL in SATEN, a four
statementbelief base(usingthestatementsdescribedabove)
could not be consolidated. If implemented,Wasserman’s
systemcould guaranteethat the entirebelief spacewasKS-
consistent.For thesmallersubsetthatis operatedon,wealso
feel thatKS-consistency is theonly realisticgoal.

6.3 Dealingwith Resource-Boundedness

Theexamplesabovearemerelyto illustratethatimplemented
systemsare imperfect. Likewise, even an ideal DOBS will
run into resourcelimitation problems. Eachsystemcanal-
ter the DOBS formalism to suit its techniquesfor handling
resourcelimitations. The following discussioninvolvesim-
plementationconcepts,but it addressesthematageneralthe-
oretical level without getting into the minute detailsof im-
plementation.Theseimplementationadjustmentsto a DOBS
mustbe understoodwhencomparingdifferent implemented
systems.

Thekey to comparingsystemsis to considerNOT thestate
at rest,but thestateof theDOBSwhendecisionsneedto be
made.

Two Extr emes
WhenimplementingaKRR system,oneof thekey questions
is how to balancestoragevs. re-derivation— i.e. whatgets
savedin memoryvs. what itemsshouldberederived. A sys-
temwith alargedomain,fasthardwareandefficientprocesses
might chooseto only save its basebeliefsandrederive other
beliefswhenever they areneeded.In this case,�$�U��g and
iB�U�Ug.op" would remainempty, and i<�T��� would only store
informationduringqueryor belief changeprocedures.After
theprocedureis completed,i<�T��� couldbeemptied.

Alternately, a systemthat has lots of memorywith fast
look-up strategiesbut hasa slow processoror inefficient in-
ferencealgorithmswould favor retainingall derivationsand
their historiesin �N�!�Pg and i<�T��� , respectively. This way,
evenbeliefsthatareretractedandthenreturnedto thebelief
spacewill haveany previouslyperformedrelevantderivations
immediatelyavailableto them.

Obviously, most systemsfall somewhere betweenthese
two extremes. Cyc follows closely to the first, andSNePS
favors thesecond.In bothcases,however, belief changede-
cisionsaremadeonly when iB����� is full andactive. During
thedecisionprocess,thesesystemsarevery similar. SNePS
will focus only on the relevant information in iB����� , while
Cyc fills i<�T��� with relevantinformation.

FreeingMemory
The systemthat storesinformation in memorymight find a
needto reduceinformationstoredto freememoryspace.The
informationmostessentialto maintainingtheintegrity of the
knowledgestatewould be " , which mustbe retainedat all
costs,thoughsubcontextsthatarerarelyusedcouldbestored
in somesecondarystoragelocation.

If KS-consolidationfor review of previouslydiscardedhy-
pothesesis rarelyused,iB�U�UgFo�" couldbeeliminated.Both
�N�U��g and � canberebuilt from " and i<�T��� , sothesecan
go aswell – �N�U��g�oe� first. Any removal from �N�U��g�oe�
couldalsoincludethe removal of the relevantderivation in-
formationfrom i<�T��� , sinceit is no longeressentialto deriv-
ing "hg .

Thechoiceto drop � beforei<�T��� mightbeswitchedif the
systemis rarely removing beliefsfrom its "�g . In this case,
storing " and � for quick accessmight be preferableand
i<�T��� couldbeemptied.This raisestwo concerns.

1. The DOBS terminology is defined by knowing the
derivation information in i<�T��� . If that information is
discarded,thenit shouldbe recognizedthat the system
is storinga sub-versionof theKS, andthat thepresence
of a belief, � , in � is evidencethat "~( ²ª³ � .3

2. When a belief � is to be retracted(or a contradiction
detected),then,derivationsrelevantto theretraction(or
contradiction)shouldbestoredin i<�T��� until theretrac-
tion processis completedandthenew " and � arees-
tablished.After this point, i<�T��� couldthenbeemptied.

3This useof ÈMÉZÊ comesinto questiondependinglargely on
the logic. If usinga relevancelogic, as in SNePS,the supportset
underlyinga belief determineshow thatbelief canbeusedin future
derivations,making Ë6Ì«Í�Î a necessity. For a non-monotoniclogic,
the assertionof a new belief into È�É*Ê requiresquestioningall
beliefsin Ê (or at leastthosemarkedasdefeasible).



Summary
TheseÏ issuesillustratetheneedto compareimplementedsys-
temsby more than their logic, size and theories. Systems
shouldbe analyzedaccordingto their shortcomingsaswell.
How dothey handletheseshortcomings– with ignorance,ag-
gressiveness,optimismor caution?Thesystemmustsuit the
needsof its user. Whenresourcelimitations do arise,how
doesthesystemhandlethem?

By using a commonformalism (like a DOBS), systems
canbecomparedmoreeasilyandbenchmarksfor analyzing
DOBS alterationswill allow a standardfor comparingand
measuringthe efficiency andaccuracy aswell as the short-
comingsandpotentialhazardsof implementedsystems.

Conclusionand Future Work
By redefiningbelief changeterminologyto suit the limita-
tionsof a DOBS,we have alteredsomeidealconstraintsand
postulatesfor applicationin a resource-boundedsystem.Im-
plementedsystemscanbecomparedby how well they adhere
to thesealteredpostulates.Alteredpostulatesthatcannotbe
adheredto can be droppedfrom DOBS guidelines,or per-
hapsalterationsto the DOBS formalizationor to a system’s
implementationmight resultin their adherence.

By recognizingthe pitfalls of implementinga DOBS, the
necessityfor KS-consolidationwasidentified.Onlybyknow-
ing theshortcomingsof animplementedsystemandincorpo-
rating theminto the theoriesfor that systemcanwe be sure
to dealwith thoseshortcomings.Obviously, achoicemustbe
madebetweensizeandpowerof asystemvs. thecorrectness
of adaptinganidealformalization.For thosesystemsthatare
willing to give up thelatter, new terminologyis thefirst step
towardformalizingtheir real-world applications.

Futurework will includeformalizingthequeryprocessfor
a DOBS as well as defining guidelinesfor evaluatingand
comparingimplementedsystems.Additionalwork shouldbe
doneto formalizehow resourcelimitations(e.g.space,time,
derivationrules)mightaffectDOBSbeliefchangeoperations
andhow to bestdealwith thoselimitations.
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