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Abstract

Most Al systems are effective either for inference or for acting/planning but not for both. The SNePS BDI

architecture uses propositional semantic network representations of beliefs, goals, acts, plans, and a representational
concept called transformers. Transformers help capture a unified approach to acting and inference. They can be
used to represent reasoning rules, reactive desires, desires for acquiring knowledge, preconditions and effects of
actions as well as plan decompositions. A rational engine module operates on these representations and is
responsibie for the agent’s reasoning and acting behavior. SNeRE, the SNePS rational engine, employs a quasi-con-
current message passing scheme, implements the underlying logic as well as the action theory, has forward, backward
and bidirectional inference and acting. It also incorporates the notions of truth maintenance and spreading

activation.

Keywords: Knowledge representation and reasoning; Acting; Planning; Semantic networks; BDI architectures; Logic

modeling

1. Introduction

A survey of Al systems would reveal that it is
somewhat awkward to do acting in reasoning (or
logic-based) systems but it is convenient to talk
about representational and reasoning issues using
them; and it is awkward to study reasoning and
representational issues in systems designed for
acting/planning. Thus, most ‘“good”
planning /acting systems are “bad” knowledge
representation and reasoning systems and vice
versa. For example, in a recent symposium on
“Implemented Knowledge Representation and
Reasoning Systems” [18] out of a total of 22

* Corresponding author. Email: dkumar@cc.brynmawr.edu

knowledge representation and reasoning systems
presented only 4 systems had capabilities for rep-
resentation and reasoning about actions/plans
(RHET [1]), CYC [13}, CAKE [17] and SNePS
[25]). The work presented in this paper presents
an approach that bridges this
“representational /behavioral gap”. We extend
the ontology of a knowledge representation and
reasoning system to be able to represent and
reason about acts and plans. A computational
cognitive agent modeled using the extended on-
tology has representations for beliefs, acts and
plans, and is able to reason about them. The
modeled agent is able to represent beliefs and
desires (the “B” and the “D” of “BDI”). We also
describe a unified model of acting and inference
that is based on our investigations of the relation-
ships between beliefs, acts, plans, reasoning and
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acting. The computational model, called a Ratio-
nal Engine, is based upon spreading of activation
and uses message passing to accomplish acting
and inference. These ideas are implemented us-
ing SNePS (for Semantic Network Processing
System) [24,22]: an intensional, propositional, se-
mantic network system used for modeling cogni-
tive agents. SNePS-based cognitive agents have
network representations for individuals, proposi-
tions, deduction rules, actiomns, acts, and plans.
Acting and reasoning about beliefs, actions, and
plans, is performed by a single component,
SNeRE: the SNePS Rational Engine, whose
computational model is described here.

2. Motivations

In the past, most efforts of researchers of the
SNePS research group have centered around rep-
resentation and reasoning about beliefs derived
from natural language interaction with the user.
Our work extends the SNePS approach to model-
ing cognitive agents by integrating the notions of
acting and planning (the “I” of “BDI”). The
basic motivations underlying our approach can be
summed by the following quote from Georgeff

[3):

“Another promising approach to providing the

kind of high-level goal-directed reasoning capa-
bilities, together with the reactivity required for
survival in the real world, is to consider planning
systems as rational agents that are endowed with
the psychological attitudes of belief, desire, and
intention. The problem that then arises is specify-
ing the properties we expect of these attitudes,
the way they interrelate, and the ways they deter-
mine rational behavior in a situated agent.”
Architectures that enable the modeling of an
agent’s beliefs, desires, and intentions have come

to be called BDI architectures. The SNePS BDI-

architecture presented here attempts to satisfy
the above concerns using a unified approach to
inference and acting. This involves eémploying a
uniform representational formalism as well as a
closer relationship between the processes of act-
ing and inference. These are discussed next.

2.1. Uniform representations

Research in planning and acting has pro-
gressed independently of research in knowledge
representation and reasoning. Traditional plan-
ners typically use three different levels of repre-
sentations (each using a different representation
language):

- a representation for world model (typically a
FOPL);

- a representation for operators /actions (like the
operator schema of STRIPS [2], or the opera-
tor description language: ODL of SIPE [28]);
and )

- a representation for plans (like NOAH’s [19]
and SIPE’s procedural networks).

As a consequence, the system has to perform
reasomng at three different levels:

- reasoning within the world model,;

- reasoning about actions (used in the planning
component); and

- reasoning about plans (as done by procedural
critics of NOAH and SIPE).

Facts stored in the world model correspond to
the agent’s beliefs. Reasoning done on these be-
liefs is limited to basic retrieval. Sometimes, using
simple inference rules (which may or may not be
expressed in the same language, e.g., Wilkin’s
deductive operators [28]) simple consequences of
current beliefs can be derived. The state of the
art in knowledge representation and reasoning is
much more advanced than that. Current knowl-
edge representation and reasoning systems are
capable of dealing with issues in natural language
understanding, representing beliefs of the agent
as well as others, belief revision using truth main-
tenance procedures, and other subtle issues. Some
of these representations also deal with beliefs
about agents performing actions and events tak-
ing place.

In the approach followed here beliefs, goals,
acts, plans, and rules, are represented in the
same language: intensional, propositional seman-
tic networks (SNePS). All representations are de-
signed keeping in mind that at all times we are
involved in modeling rational cognitive agents
that are capable of natural language interaction,
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representing and reasoning about their own be-
liefs as well as those of others, as well as act in
the world in which they are situated.

2.2. The relationship between acting and inference

In most current Al architectures reasoning is

performed by an inference engine and acting is _

done under the control of some acting executive
(or a plan /act interpreter). Our approach is based
on the viewpoint that logical reasoning rules im-
plicitly specify the act of believing. Thus, the
inference engine can be viewed as a “mental
actor”. This enables us to establish a closer rela-
tionship between rules of inference and rules of
acting (or planning). Believing is a state of knowl-
edge; acting is the process of changing one state
into another. A reasoning rule can be viewed as a
rule specifying an act —that of believing some
previously non-believed proposition —but the be-
lieve action is already included in the semantics
of the propositional connective. John McCarthy
[15] has also suggested that inference can be
treated as a mental action. This suggests that we
can integrate our models of inference and acting
by eliminating the acting executive (typically the
module responsible for act/plan execution).
These ideas are used in developing a computa-
tional model! called a Rational Engine, that is a
unified model of acting and inference and can be
used for modeling rational cognitive agents and
their behavior. Acting and reasoning about be-
liefs, actions, and plans in SNePS is performed by
a single component, SNeRE, the SNePS Rational
Engine, whose computational model is described
here.- The computational model is based on a
focused spreading activation and uses message
passing to accomplish acting and inference. -

3. Intensional representations

The modeled agent’s beliefs, acts, plans, ard
rules are represented in the SNePS semantic
network formalism. In the quote above, Georgeff
mentions the importance of modeling rational
agents by giving an intensional account of the
notions of belief, desire, and intention. SNePS is

an intensional propositional semantic network
system [24]. Structurally, the semantic network is
comprised of nodes and arcs. Nodes in the se-
mantic network represent conceptual entities. A
conceptual entity is anything a cognitive agent
can think about. We explicitly identify the follow-
ing types of conceptual entities:

Individuals. These are the named entities in
the domain of discourse. For example, a node
labelled John could be used to represent an indi-
vidual named “John”. Individuals form basic
terms in the underlying logic.

Structured Individuals. These are nodes that
have arcs coming out of them. Arcs represent
structural links between the nodes (thus identify-
ing a node with a set of arcs coming out of it as a
specific structured individual). The labels on arcs
determine the semantic interpretation of the en-
tity being represented. Structured individuals also
form terms in the underlying logic. As we will see
below, structured individuals can be used to rep-
resent beliefs, acts, plans, as well as rules.

Variables. Variable nodes denote arbitrary
conceptual entities. They can be used to repre-
sent generic individuals (e.g., a “thing”), general
propositions (e.g., “a thing that is a block”);
generic propositions (e.g., “something that John
believes”); and generic acts (e.g., “picking up a
thing”). Syntactically, variables. can be bound (by
a quantifier) or they can be free (i.e., unbound).
We will see examples in later sections.

A basic principle of SNePS is the Uniqueness
Principle: that there be a one-to-one mapping
between nodes of the semantic network and con-
cepts (mental objects) about which information
may be stored in the network. These concepts are
not limited to objects in the real world, but may
be various ways of thinking about a single real
world object, such as The Morning Star versus
The Evening Star versus Venus. They may be
abstract objects like properties, propositions,
Truth, Beauty, fictional objects, and impossible
objects.

3.1. Beliefs

The modeled agent’s beliefs are represented
as propositional nodes in the semantic network.




6 D. Kumar / Decision Support Systems 16 (1996) 3-19

For example, a representation of the sentences,
“A is a block” and “A is clear” is shown in Fig. 1.
Informally, the nodes labelled M21 and M20 rep-
resent individuals which the agent will express as
BLOCK and A, respectively. The nodes at the
head of lex arcs are the agent’s link to the exter-
nal, extensional world. L.e., our (the user’s) inter-
pretation of the node at the tail. M22 is the
structured individual node that represents the
proposition that the individual represented by the
node at the end of the member arc is a member
of the class of objects represented by the node at
the end of the class arc (thus, A is a member of
the class of blocks). Similarly, M23 represents the
proposition that A is clear. Rather than drawing
networks, in later sections, we will write these in
linear notation as predicates. We will express the
propositions M23 and M22 as

M23!:Clear(A),
M22!:Isa(A,BLOCK),

respectively. We will express predicates by writing
their name beginning with an uppercase letter
followed by a combination of lower and upper-
case letters. The proposition, if believed by the
agent, is considered asserted in the agent’s belief
space and is indicated by writing the exclamation
(1) following the node name (i.e., M22!). One of
the important characteristics of such a represen-

tation is that the node M22!, which represents

the proposition, is itself a term in the logic under-

Fig. 1. SNePS representation of “A is a block” and “A is
clear”.

Fig. 2. SNePS representation of the act of picking up an
object.

lying SNePS. Any concept represented in the
network may be the object of propositions repre-
sented in the network giving properties of, or
beliefs about it. This allows for representations of
nested beliefs.

3.2. Acts and plans

In Refs. [7,10,21,23] we describe the SNePS
propositional representations for plans and acts.
An act, in SNePS, is represented as a structured
individual node (i.e., it is also an intensional
object). In Fig. 2, node M7 represents the action
which the agent will express as PICKUP. The
node M8 represents the act of picking up the
object represented by the node at the end of the
object arc (which is A). An action is that compo-
nent of an act that is what is done to the object(s).
By the Uniqueness Principle, a single act must be
represented by a single SNePS node, even if
there are several different structures representing
propositions that several different actors per-
formed that act at different times. Thus, M8
represents the act of picking up A. Any beliefs
about the act of picking up A will have arcs
coming into the node MS8. See Refs. [7,23] for a
more detailed discussion on the intensional as-
pects of these representations. In later sections

" we will denote acts using a linear notation. Thus,

M8 will be expressed as
PICKUP(A).

We are following the convention that acts will
be written mostly in all uppercase letters. Qur
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present model of acting is based upon a state-
change model which is defined in Refs. [9,10]. We
1dent1fy three types of states:

- External (or Physical) states.
* Mental states, also called belief spaces, are the

beliefs held by the agent in that state.
- Intentional states (the agent’s current inten-

tions).

Accordingly, we identify three classes of ac-
tions:

Physical Actions: Actions that bring about
changes in the physical world.

Mental "Actions: Actions that bring about
changes in the agent’s belief space.

Control Actions: Actions that bring about
changes in the agent’s intentional states.

Thus, PICKUP is a physical action. We have
BELIEVE and DISBELIEVE as mental actions
whose objects are propositions. Control actions

are described below. Additionally, acts can also
be primitive or complex. A primitive act has an
effectory procedural component which is exe-
cuted when the act is performed. Complex acts
are performed by deriving and executing appro-
priate plans.

A plan is a structure of acts. The structuring
syntax for plans is described in terms of control
actions. Our repertoire of control actions in-
cludes sequencing, conditional, iterative, disjunc-
tive, conjunctive, and qualifier acts. These are
summarized in Table 1. New acts of any kind can
be defined by users depending upon the specifics
of the modeling situation at hand.

3.3. Transformers

In Refs. [6,7,9] we introduced the generalized
notion of a transformer as a propositional repre-

Table 1
Summary of control actions

Control Action

Description

SNSEQUENCE(a,, a,)
DoONE(a,,...,a,)
DoALlL(ay,...a,)
SNIF((p1,81),-+(Dpy2,))

SNITERATE((p;,21),...,(Py,2,))

ACHIEVE(p)

WITHSOME(x,...)[p(xy,.. )Jalx,...)

WITHALL(x .. Ip(x,,...)a(x;...)

Sequencing Act: The acts a; and a, are performed in sequence.
Example: SNSEQUENCE(PICKUPXA), PUT(A, TABLE)) is the act of
first picking up A and then putting it on the table.
Disjunctive Act: One of the acts a,,.. .a, is performed.
Example:DoONE(PICKUP(A),PICKUP(B))

is the act of picking up A or picking up B.
Conjunctive Act: All acts a,, ...,a, are performed in some order.
Example: DoALL(PICKUP(A), PICKUP(B))

is the act of picking up A and picking up B.

Conditional Act: Some act a; whose p; is believed is performed.
Example: SNIF (Clear(A), Pickup(A)),(Clear(B), PICKUP(B))) is the

act of picking up A (if A is clear) or picking up B (if B is clear).

Iterative Act: Some act in a; whose corresponding p; is believed

is performed and the act is repeated.

Example: SNITERATE((Clear(A), PICKUP(A)),(Clear(B),PICKUP(B)))
is the act of picking up A (if A is clear) and picking up B (if B is clear).
The act of achieving the proposition p.

Example: ACHIEVE (Clear(A))

is the act of achieving that A is clear.

a

- Qualifier Act: A single-object qualifier act. Find some Xy,...etc.,

that satisfy p(x;,...) and perform the act a on it.

Example: WITHSOME(x)[Clear(x)]PICKUP(x)

is the act, “pickup a clear block”

Qualifier Act: A multiple-object qualifier act. Find all X1,... €tC.,
that satisfy p(x,...) and perform the act a on them.

Example: WITHALL(x)[Clear(x)JPICKUP(x)

is the act, “pick up all clear blocks”
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Fig. 3. SNePS representation of “A is a block”, “All blocks are supports”, and “A is a support”. M1 is a belief-belief transformer.
The antecedent belief is indicated by the ant arc emanating from M1 and the consequent belief is indicated by the cq arc. The
forall arc is a quantifier arc binding the variable V1. P1 is the pattern that V1 is a member of the class represented by M21 (blocks).
Similarly, P2 represents that V1 is a member of the class represented by M19 (supports). M3 is the derived proposition (See Section

4.

sentation that accounts for various notions of
inference and acting. In general, a transformer is
a pair of entities ({a), (b)), where both {a) and
(b) can specify beliefs or acts. Thus, when both
parts of a transformer specify beliefs, it repre-

sents a reasoning rule. When one of its parts

specifies beliefs and the other acts, it can repre-
sent either an act’s preconditions, or its effects,
or a reaction to some beliefs, and so on. What a
transformer represents is made specific by speci-
fying its parts. When believed (remember, a
transformer itself is a proposition!), transformers
can be used during the acting/inference process,

which is where they derive their name: they trans- -

form acts or beliefs into other beliefs or acts and
vice versa. :

Transformations can be applied in forward
and/or backward chaining fashion. Using a trans-
former in forward chaining is equivalent to the
interpretation “after the agent believes or intends
to perform (a), it believes or intends to perform
(b)”. The backward chaining interpretation of a
transformer is “if the agent wants to believe (or
know if it believes) or perform (b), it must first

believe (or see if it believes) or perform {a)”.
Since both {a) and {b) can be sets of beliefs or
an act, we have four types of transformers: be-
lief-belief, belief—act, act-belief, and dct-act.

Belief-belief transformers

These are standard reasoning rules (where {(a)
is a set of antecedent belief(s) and (b) is a set of
consequent belief(s)). Fig. 3 shows a SNePS rep-
resentation of “All blocks are supports”. Such
rules in SNePS can be used in forward, backward,
as well as bidirectional inference to derive new
beliefs. SWM !, the underlying logic of SNePS
inference, has a built in specification for assump-
tion-based truth maintenance. The inference
mechanism employed is a natural deduction Sys-
tem. Hereafter, we will call these AntCq trans-
formers and use the linear notation {(a) — (b) to

- write them. For example M1 in Fig. 3 will be

written as
M11:¥v1[Isa(v1,BLOCK) — Isa(vl ,SUPPORT)],

1 SWM stands for Shapiro, Wand and Martins [14]
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where vl is a universally quantified variable (its'

network representation is shown in Fig. 3). In
addition to the connective above (which is also
called an or-entailment), the vocabulary of SNePS
connectives includes and-entailment, numerical-
entailment, and-or, thresh, and non-derivable.
Other quantifiers include the existential, and the
numerical quantifiers (see [22]).

Belief—act transformers

These are transformers where (a) is a set of
belief(s) and ¢(b) is a set of acts. They enable
representation of preconditions of actions as well
as rules for reactivity. Used during backward
chaining, these can be propositions specifying
preconditions of actions, i.e., {a) is a precondi-
tion of some act {(b). We will call them Precondi-
tionAct transformers and write them as predi-
cates PreconditionAct({a), {(b)). For example, the
sentence “Before picking up A it must be clear”
may be represented as

M26!:PreconditionAct(Clear(A) ,PICKUP(A)).

Using A{lth transformers the agent can also
represent general preconditions for actions. For
example, “Before picking up any block make sure
that it is clear” can be represented as

M15!:Vx[Isa(x,BLOCK)
— PreconditionAct(Clear(x) ,PICKUP(x)) ]

from which M26 above can be derived.

Used during forward chaining, these trans-
formers can be propositions specifying the agent’s
desires to react to certain situations, i.e., the
agent, upon coming to believe (a) will form an
intention to perform (b).

We will call these WhenDo transformers and
denote them as WhenDo({a), (b)) predicates.
For example, the sentence representing the de-
sire, “When A is clear pick it up” can be repre-
sented as ' .

M16!:WhenDo(Clear(A) ,PICKUP(A)), ‘

or general desires like, “whenever something is
broken, fix it” can be represented as

M17!:¥x[ WhenDo(Broken(x) ,FIX(x))],

where FIX may be some complex act.

Act~belief transformers

These are the propositions specifying effects of
actions as well as those specifying plans for
achieving goals. They will be denoted as ActEf-
fect and PlanGoal transformers, respectively. The
ActEffect transformer will be used in forward
chaining to accomplish believing the effects of act
{a). For example, the sentence, “After picking
up A it is no longer clear” is represented as

M30!:ActEffect{ PICKUP(A), - Clear(A)).

It can also be used in backward chaining dur-
ing the plan generation process (classical plan-
ning). The PlanGoal transformer is used during
backward chaining to decompose the achieving of
a goal ¢(b) into a plan (a). A goal is simply a
proposition that the agent wants to achieve. For
example, “A plan to achieve that A is held is to
pick it up” is represented as

MS56!:PlanGoal( PICKUP(A) Held(A)),

or the general plan, “a plan to achieve that a
block is held is to pick it up” can be represented
as

M57!:¥x[Isa(x,BLOCK)
— PlanGoal(PICKUP(x),Held(x))].

This transformer can also serve a useful pur-
pose during plan recognition: if the agent believes
that {a) is a plan for the goal (b) then if some
act a; is part of the plan a and the agent believes
that someone performed the act a; it might be
that they were engaged in carrying out the plan a
in order to achieve the goal b.

Another backward chaining interpretation that
can be derived from this transformer is “if the
agent wants to believe ¢b), it must perform (a)”,
which is represented as a DoWhen transformer.
For example, “look at A to find out its color” can
be represented as ’

M60!:DoWhen(LOOKAT(A),Color(A,%)),

or for the general form, “look at an object if you
want to know its color” we will have '

M59!:¥x[DoWhen(LOOKAT(x),Color(x,?y))],

where, in both the above cases, ?y is an unbound
variable.
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Act-act transformers

These are propositions specifying plan decom-
positions for complex actions (called PlanAct
transformers), where ¢(b) is a complex act and
(a) is a plan that decomposes it into simpler acts.
For example, in the sentence, “to pile A on B
first put B on the table and then put A on B”
(where piling involves creating a pile of two blocks
on a table), piling is a complex act and the plan
that decomposes it is expressed in the proposi-
tion.

M?71!:PlanAct( SNSEQUENCE(PUT
(B,TABLE),PUT(A,B)),PILE(A,B)).

Some aspects relevant to the implementation
model will become clear later. The important
thing to remember is that there are propositional
representations for beliefs, rules, plans, and acts
and that forward or backward chaining through
them denotes various notions of reasoning, plan-
ning, acting, and reacting. Transformers help cap-
ture situations where beliefs may lead to actions
and vice versa. In what follows, we first give an
informal presentation of the message passing
model of inference in SNePS. The abstract model
will then be presented for inference as well as
acting. We have not presented a discussion of the

underlying rules of inference. This is to stress the -

idea that a commitment to a uniform ontology
does not necessarily commit one to a specific
logic. In other words, the architecture makes
certain semantic and ontological commitments,
not necessarily logical ones. Interested readers
can see Ref. [14] for a formal presentation of
SWM logic, the logic underlying SNePS.

4. An example: Inference

Informally, inference is accomplished by means
of message passing between nodes -in the net-
work.” Nodes “talk” to each other by sending
messages. To understand the process, indulge
with us and picture the following “conversation”
between nodes in the network of Fig. 3.

Sender Receiver Message

USER P2 What is a support?

P2 Mi HELP!

M1 P1 What is a block?

P1 M22 What is a block?

M22 P1 A is a block.

P1 M1 A is a block.

M1 P2 Since A is a block, and all
blocks are supports,
A is a support. (A node,
M3, is built respresenting
the derived proposition.)

P2 M3 A is a support!

M3 USER A is a support.

The above depicts a case where a user query
backchains through a belief-belief transformer to
produce an answer. The network, after the query
is answered, is shown in Fig. 3. The agent now
believes that “A is a support” (the proposition
M3!, shown in Fig. 3 with dotted lines) and along
with that proposition, the truth maintenance sys-
tem will associate the assumptions (M1! and
M22!) used in deriving it. In SWM, the logic
underlying the inference and belief revision sys-
tem, M1 and M22 are called supported wffs
(swffs). Associated with each swff is a support
containing an origin tag, which is'hyp for hy-
potheses, and der for derived swifs; an origin set,
which contains those (and only those) hypotheses
used in the derivation of the swiff; and a restric-
tion set, which records inconsistency information.
All beliefs of the agent reside in a belief space
which is a set of all the hypotheses and all the
swifs derived from them. Thus, the propositions
M1 and M22 shown in Fig. 3 are hypotheses, and
M3 is a derived proposition. Together, they form
the agent’s current belief space. The support sets
for M22, M1 and M3 will be ¢hyp, {M221}, {}),
¢hyp, {M11}, 1) and {der, {(M1!, M22!}, {}), re-
spectively.

The very same rule can be used, similarly, in
forward (as well as bi-directional) inferences. In
the remainder of the paper we present details of
the message passing model by defining types of
messages and types of nodes. We introduce the
idea of an agenda of a node which, together with
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the type of node and its incoming message, deter-
mines the role of the node in the spreading
activation process. The message passing model
accomplishes inference, acting, deductive plan re-
trieval, hierarchical plan decomposition, deter-
mining the preconditions and effects of an action,
as well as some notions of reactivity.

5. The rational engine

We now present a computational model of the
rational engine —the component that uses/in-
terprets the representations resulting in the
agent’s reasoning and acting behavior. SNeRE,
the SNePS Rational Engine: an embodiment of
this model will be described here. It should be
noted that the model presented here is not lim-
ited only to SNePS. In the presence of any uni-
fied representational formalism described on the
lines of Section 3 above a rational engine can be
developed (See Section 7 below). The rational
engine employs a quasi-concurrent [27] message
passing model that accounts for the various no-
tions of acting and inference. Message passing is
a parallel activity in a SNePS network thus repre-
senting a kind of spreading of activation. How-
ever, unlike traditional notions of spreading acti-
vation, the spreading of activation is governed by
the underlying logic and propositional nature of
the nodes in the network.

5.1. Channels

Communication (or message passing) between
nodes takes place along channels. A node can
send and receive messages only via channels. We
‘define two types of channels that may exist be-
tween any two nodes in the network:

Match channels. The molecular structure un-
der the two nodes unifies. For example, in Fig. 3
there is a match channel between the nodes M22
and P1 as the structure under them unifies (wi‘th
binding {M20/V1)). .

Transformer channels. The two nodes are con-
nected to each other by a transformer. For exam-
ple, a transformer channel exists between M1!
and P1 in Fig. 3 since P1 is in antecedent position
of a belief-belief transformer.

Only the proposition, act, and transformer
nodes are capable of processing messages. Chan-
nels may also exist between nodes in the network
and the user to enable interaction between the
user and the agent. These are set up at the time
the user issues a request or a query or when
something has to be reported to the user. Upon
receiving a message a node may perform some
book keeping and respond by sending out some
message. The nature of book keeping and outgo-
ing messages depends on the type of the node,
the type and content of the incoming message,
and the node’s agenda. These are detailed below.

5.2. Messages

There are three types of messages:

Believe(p)?, where p is a molecular node in the
SNePS network. Also called a request, it denotes
that the sender is asking (requesting) the receiv-
ing node about the assertional status of p.

Believe(p)!, where p is a propositional node
and the message indicates that the sender is
confirming the assertional status of p (i.e., the
agent, by being informed, or via inference, now
believes p). These messages are also called re-
ports. :

Intend(a), where a is an act node and the
message indicates that in the current state the act
a is being intended to be performed.

In addition to the description above, each mes-
sage may also contain additional information per-
taining to variable bindings, quantifier specifica-
tions, and some TMS related stuff. We will re-
strict our discussion of the message passing model
to the abstract descriptions above. Processing of a
message by a node is determined by the type of .
message (request, report, or intend), the type of
the node (proposition, act, or rule), and the node’s
current agenda. This results in various notions of
inference and acting (forward chaining, backward
chaining, deductive retrieval of preconditions, ef-
fects, plan decompositions, belief acquisition, and
reactivity).

5.3. Agendas

The agenda of a node determines the node’s
current role in the acting and inference process.
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Message processing by proposition nodes (p is the receiver, and s the sender)

Incoming Message Agenda Response

1 Believe(p)? ASSERTED- Send message Believe(p)! to s.

2 Believe(p) ? UNASSERTED Send message Believe(p)? to all match channels and all
belief-belief (Cq) channels (standard backward chaining)
and all act-belief transformer channels (i.e. DoWhen) if any.

3 Believe(m)! any If p =m then update its agenda to ASSERTED. Send

Believe(m)! to all requesters, all match channels, _

all belief-belief (Ant) transformer channels (standard forward
chaining) and all belief~act transformer channels

(i.e. WhenDo) if any.

Different types of nodes have different agendas.
Each node, after receiving a message, depending
on its current agenda, may perform some book
keeping actions and respond by sending out one
or more messages. Since only proposition, act,
and transformer nodes partake in message pass-
ing we will describe the agendas defined for each
type of node along with the node’s message han-.
dling behavior.

5.4. Message handling: Proposition nodes

Proposition nodes can have the following
agendas:

ASSERTED. The node is asserted in the cur-
rent belief space, i.e., the represented proposition
is believed by the agent. This is indicated by
writing an exclamation mark (!) after the name of
the node (as in M1D). ‘

UNASSERTED. The node is not asserted in
the current belief space.

Proposition nodes only send /receive belief re-
quests and reports. Table 2 defines the message
handling capabilities of proposition nodes.

5.5. Message handling: Belief-belief transformers

Belief-belief transformers, or rule nodes, are
also propositions and, hence, may or may not
have an assertional status. Only when a rule node
is asserted does it get involved in inference. As-
serted rule nodes have the following agendas:

NONE. The node is asserted but does not have
any agenda.

ACTIVE. The node is asserted and is currently
involved in some ongoing inference (fike trying to
determine if the antecedents are believed).

When a rule node receives a request from one
of its consequents (i.e., a Cq transformer channel)
a backward chaining inference is in process. When
a rule node receives a report from its antecedents
(Ant transformer channel) either an earlier back-

Table 3
Message processing by belief-belief transformers
Incoming Message Agenda Response

1 Believe(p)? any Sent by a node (p) in the consequent position (over a Cq transformer
channel). Change the agenda to ACTIVE. Send a request
Believe( Ai)? to all the antecedent nodes (Ais) over transformer
channels (standard backward chaining).

2 Believe(p) NONE’ Antecedents reporting some belief. Change the agenda to ACTIVE. .

: Send a Believe(Ai)? to all the remaining antecedents so as to

confirm believing its consequences (starting a forward inference).

3 Believe(m)} ACTIVE Antecedents answering requests. If firing criteria is satisfied send a

Believe(Ci)! message to all the consequent Cis and change
the agenda to NONE.
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ward inference may be completed (if its agenda is
ACTIVE), i.e., the rule may be fired, or a for-
ward chaining is in progress. Table 3 defines the
message processing capabilities of rule nodes.
Note that the same rule is being used for both
types of inference.

5.6. Message handling: Act nodes

Act nodes typically get involved in message
passing when they receive an Intend message.
This may be due to a direct request by a user to
perform some act or any of the various ways
beliefs may get transformed into intentions (be-
lief-act transformers). Several things need to be
accomplished in order to do an act. These form
the agenda of an act. Following agendas have
been defined for an act node:

START: signifies the beginning of an attempt
by the agent to perform the act,

FIND-PRECONDITIONS: the agent is in the
process of determining the act’s preconditions,

TEST-PRECONDITIONS: the agent is testing
to see if it believes the preconditions of the act,

FIND-EFFECTS: the agent is trying to deter-
mine the effects of the act,

- FIND-PLAN: the agent is trying to find a plan
to do the act,

EXECUTE: the agent is ready to execute the
action,
DONE: the action has been performed, wind
up. . :
The message handling capabilities of act nodes
are defined in Table 4. Notice that inferences are
performed to deduce the preconditions, and ef-
fects of the act, as well as to determine plans for
complex acts. If an inference started by an act
node is not successful the act node receives the
Intend message again. The agenda helps the act
node in determining what to do next. Notice that

Table 4
Message passing by act nodes
Incoming Message Agenda Response
1 Intend(a) START Change agenda to FIND-PRECONDITIONS.

2 Intend(a) FIND-PRECONDITIONS

3 Intend(a) TEST-PRECONDITIONS
4 . Intend(a) FIND-EFFECT

5 Intend(a) EXECUTE

6  Intend(a) FIND-PLANS

7 Believe(m)! FIND-PRECONDITIONS

8 Believe(m)! TEST—PRECONDITIONS
9 Believe(m)! FIND-EFFECTS

10 Believe(m)! EXECUTE

11 Believe(m» FIND-PLANS

Send request Believe(PrecondjtionAct( p,a))?
Change agenda to FIND-EFFECTS.

Send request Believe(ActEffect(a,p))?

Change agenda to START. :

Send message Intend(d) to the act (d) of achieving all the
preconditions of a

Change agenda to EXECUTE.

Send message Believe(Primitive(a))?

Change agenda to FIND-PLANS

Send request Believe (Plantct (a,p))?

No plan decompositions for a are known.

Perform classical planning (not implemented).

m is a PreconditionAct(a,p) proposition.

Change agenda to TEST-PRECONDITIONS.
Send message Believe( p)?

Some precondition (m) of a is satisfied.

If all preconditions are satisfied, change agenda to
FIND-EFFECTS. Send message Believe(ActEffect(a,p))?
m is an ActEffect(a,e) proposition.

Change agenda to EXECUTE.

Send message Believe(Primitive(a))?

The act (a) is primitive.

Execute its effector component.

- m is a PlanAct(a,p) proposition.

Change the agenda to DONE. Send message
Intend(d) to d the act of doing one of the plans ( p).
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in Table 4 entries 7 and 8 are the specification of
backward chaining transformation through the
PreconditionAct transformers, entry 10 is the for-
ward chaining specification through the ActEffect
transformer, and entry 11 is backward chaining
through the PlanAct transformers. The overall
process of acting is a pure deductive approach to
acting. Since the TMS maintains a consistent
belief space at all times, we claim the agent acts
rationally based on its beliefs.

The above specifications of message process-
ing behavior of nodes realizes an implementation
of an agent which, using its propositional repre-
sentations of beliefs, plans, and acts, is able to
perform the tasks of reasoning and acting using
the uniform reasoning component.

5.7. Example revisited: Inference

The example of Section 4 can now be pre-
sented with a little more detail.

Sender Receiver Message Description
USER P2 Believe(P2)? What is a support?
P2 M1 Believe(P2) Help!
M1 P1 *  Believe(P1)? What is a support?
P1 M22 Believe(M22)?  What is a block?
M22 P1 Believe(M22)! A is a block!
P1 M1 Believe(M22)! A is a block!
M1 P2 Believe(M3)! Since A is a block,
and all blocks
are supports,
A is a support.
P2 M3 Believe(M3)! A is a support!
M3 USER Believe(M3)! A is a support.

First, USER sends a request to P2. Since P2 is an
unasserted proposition node, entry 2 of Table 2 indicates that
the message is passed to all rules nodes connected via conse-
quent arcs (see Fig. 3), i.e., to M1. M1 is an asserted rule
node, thus entry 1 of Table 3 applies: M1’s agenda is changed
to ACTIVE; and a Believe(P1)? message is sent to the an-
tecedent P1. P1’s agenda is UNASSERTED, entry 2, Table 2
specifies that a request be sent to match channels. There is a
match channel to M22, thus the message Believe(M22)? is
dispatched. M22 is ASSERTED, entry 1, Table 2 specifies
that the message Believe(M22)! be sent to P1. Entry 3, Table 2
applies to P1 so the message is forwarded on to M1. M1
(using entry 3, Table 2) confirms that all the antecedents of
the rule are satisfied, thus the rule can be fired, a node M3
representing the consequent is added to the network and the
message Believe(M3)! is sent to P2. P2 forwards it to M3 and
USER. M3 gets asserted and USER gets the response.

6. Example: Acting and inference

We will demonstrate the process of integrated
acting and inference using a simplified model of
the act of picking up a block in a blocksworld. We
inform the agent about the action by first saying

All blocks are supports.
Picking up is a primitive action.

which results in the propositions represented by
M1 and M2 (see Fig. 4). Preconditions of acts are
also represented as propositions. Thus, the input

Before picking up a block the block must be clear.

is interpreted as a generic rule specifying a pre-
condition for picking up a block. The rule is

No.: Formula

Support

M1! : Vx[lsa(x, BLOCK) — Isa(x, SUPPORT)]
M2! : Isa(PICKUP, PRIMITIVE)

< hyp, {M1!},{} >
< hyp, {M2!},{} >

M3! : Vx[lsa(x, BLOCK) — PreconditionAct(Clear(x), PICKUP(x))]
M6! : Vx[Isa(x,BLOCK) — ActEffect(PICKUP(x), =Clear(x))]
M11! : ¥x[Isa(x, BLOCK) — ActEffect(PICKUP(x), Held(x))]

M22! : Isa(A, BLOCK)

< hyp, {M3!},{} >
< hyp, {M6!}, {} >

< hyp, {M111},{} >
< hyp, {M221},{} >

M23!: Clear(A) )

M26! : PreconditionAct(Clear(A), PICKUP(A))
M29! : ActEffect(PICKUP(A), Held(A))
M30! : ActEffect(PICKUP(A), ~Clear(A))

< hyp, {(M231). {} >
< der, {M22}, M3}, {} >
< der, {M22!,M111},{} >
< der, {M22!,M6!}, {} >

Fig. 4. The agent’s belief space after the preconditions and effects of PICKUP(A) have been deduced. (M1: All blocks are supports.
M2: Picking up is a primitive action. M3: Before picking up a block the block must be clear. M6: After picking up a block is not
clear. M11: After picking up a block the block is held. M22: A is a block. M23: A is clear. M26: A precondition of picking up A is
that A is clear. M29: An effect of picking up A is that A is held. M30: An effect of picking up A is that A is no longer clear.)
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No.: Formula

Support

ML1! : Vx[Isa(x, BLOCK) — Isa(x, SUPPORT)]
M2! : Isa(PICKUP, PRIMITIVE)

M3! : Vx[lsa(x, BLOCK) — PreconditionAct(Clear(x), PICKUP(x))] -
M6! : Vx[Isa(x, BLOCK) — ActEffect(PICKUP(x), ~Clear(x))]
M11! : Vx[Isa(x, BLOCK) — ActEffect(PICKUP(x), Held(x})]

M22! : Isa(A, BLOCK)

M26! : PreconditionAct(Clear(A), PICKUP(A))
M29! : ActEffect(PICKUP(A), Held(A))

M30! : ActEffect(PICKUP(A), ~Clear(A))
M28! : ~Clear(A)

M27! : Held(A)

< hyp, {M1!},{} >

< hyp,{M2!},{} >

< hyp, {M3!1},{} >

< hyp, {M6'},{} >

< hyp, {M11!},{} >

< hyp, {M22!},{} >

< der, {M22},M3!},{} >
< der, {M22!,M111},{} >
< der, {M22!, M61}, {} >
< hyp, {M28!},{} >

< hyp, {M271},{} >

Fig. 5. Belief space of the agent after the act PICKUP(A) is performed. (M1: All blocks are supports. M2: Picking up is a primitive
action. M3:Before picking up a block the block must be clear. M6: After picking up a block the block is not clear. M11: After
picking up a block the block is held. M22: A is a block. M26: A precondition of picking up A is that A is clear. M29: An effect of
picking up A is that A is held. M30: An effect of picking up A is that A is no longer clear. M28: A is not clear. M27: A is held.)

represented by node M3 in Fig. 4. It could be
paraphrased as “For all x, if x is a block then the
act of picking up x has the precondition that x is
clear”. Effects are similarly represented. Thus,
the following

After picking up a block the block is not clear
and the block is held.

is represented by two rules: one specifying the
effect that the block is no longer clear (M6); and
the other specifying that the block is held (M11).
Further, the agent is told

A is a block.
A is clear.

vyhich are represented as M22! and M23! in Fig.
4 2, When the user asks the agent to perform the
act

Pickup A.

2Note that in this simplistic model we have purposely
avoided the mention of a table and that A is on the table. The
purpose of this example is to illustrate the computational
rather than the representational features of the model. A
complete example of the blocksworld can be found in [10].

an Intend message is sent to PICKUP(A), its
current agenda is START, it changes its agenda
to FIND-PRECONDITIONS and sends a mes-
sage

Believe( PreconditionAct(p, PICKUP(A)))?

over a match channel to the consequent of M3!
thus starting a backward chaining inference. The
inference proceeds as outlined in Section 5.7, is
successful and the act PICKUP(A) receives the
message

Believe(PreconditionAct(Clear(A),
PICKUP(A)))!

Entry 7 of Table 4 specifies that the act node
change its agenda to TEST-PRECONDITIONS
and send a message

Believe(Clear(A)) ?

Le., the agent is testing to see if the act’s
preconditions are satisfied"(via backward chaining
though a belief-act transformer). The proposi-
tion M23 is asserted in the agent’s belief space
(Fig. 4) thus it responds to PICKUP(A) with the
message

Believe(Clear(A))!
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Entry 8 of Table 4 specifies that its agenda be
changed to FIND-EFFECTS and it sends a mes-
sage

Believe (ActEffect(PICKUP(A) ¢)) ?

Upon conclusion of this inference the act node
receives the messages

Believe( ActEffect(PICKUP(A), — Clear(A)))!
and '
Believe( ActEffect( PICKUP(A) Held(A)))!

The agent’s belief space is now as shown in
Fig. 4 where M26, M29, M30 are the inferred
propositions so far. .

Since the agent has determined that the act’s
preconditions are satisfied and it has also deter-
mined the effects of the act, the agenda of the act
is changed to EXECUTE (entry 9, Table 4) and a
Believe message is sent to determine if the agent
believes that the act is primitive (which is repre-
sented by the proposition M2!). Entry 10 specifies
that the effector component of the act be exe-
cuted (thus bringing about a change in the exter-
nal world) and an Intend message be sent to the
act '

DoALL(BELIEVE( ~Clear(A)),
BELIEVE(Held(A)))

The two acts are similarly carried out, and as a
result the agent has the beliefs shown in Fig. 5.

In the SNePS acting system we define two
mental actions: BELIEVE and DISBELIEVE,
that are used to update the beliefs of the agent
after an action is performed. The effectory com-
ponents of the two actions are the TMS opera-
tions add-to-context and remove-from-context,
respectively. The TMS facilitates automatic revi-
sion of the belief space after a hypothesis is
removed as a result of some DISBELIEVE ac-
tion (all derived beliefs having the disbelieved
hypothesis in their origin set are also removed).
This implements the extended STRIPS assump-
tion [3]. There are several advantages to this
approach. They are presented in Ref. [11].

The agendas for the WhenDo and DoWhen
transformers are similar to those of the belief-be-

lief transformers. The WhenDo transformer upon
becoming active during forward chaining results
in an intention to perform its action, thus model-
ing reactivity. Similarly, the DoWhen transformer
activates during backward chaining inference and
results in an action to be performed, which could

"lead to an acquisition of new beliefs. Thus, the
" notions of reactivity and knowledge acquisition

are not only represented, they are utilized by the
rational engine during the course of inference
and acting. The next section illustrates the use of
the DoWhen transformer.

7. Acting in service of inference

In the example presented above, it is clear that
inference is being used in service of acting. This
is the way all Al architectures are built. In our
architecture, it is also possible for acting to be
performed in service of inference. Suppose the
agent has the following belief:

Red colored blocks are wooden.

and is asked the query:

Is A wooden?

We will present the reasoning process below
using english sentences (italicized ones are system
responses) rather than messages. The agent, in
response to the above query will proceed as fol-
lows:

I wonder if A is wooden.

I wonder if A is a block.

I wonder if A is red.

I know A is a block.

I do not know if A is wooden.

Typically, this would be a natural place for the
agent to perform an act, like looking at A, in
order to determine its color. Since inference is
modeled as a subordinate. process to acting in
traditional systems, it would be difficult to model
the desired behavior. However, in the SNePS
BDI architecture, the agent can have a desire.

If you want to know the color of a block look at it.
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which is represented using the DoWhen trans-
former shown in Section 3.3 above. The above
query will now proceed as follows:

Is A wooden?

I'wonder if A is wooden. -

I wonder if A is colored red.

I wonder if A is a block.

I know A is a block.

Since A4 is a block I infer

If you want to know the color of A look at it.
lintend to do the act look at A.

I wonder if the act look at A has any preconditions.

Now doing: Look at A.

Sensory-add: A is colored red.

Since A is a block and A is colored red and all red
colored blocks are wooden

1 infer A is wooden.

Notice how, in the above example, 2 backward
chaining query lead the agent to perform an
action in order to answer the query. Thus, acting
was performed in service of inference. See Ref.
[12] for a detailed discussion on this aspect of the
architecture. It is conceivable that the acts per-
formed in service of inference could be the ones
that query other agents (and or databases).

8. Future work

In this paper we have presented the design of
the SNePS BDI architecture. The architecture
uses a uniform formalism for the representation
of beliefs, acts, plans, and rules. We also pre-
sented the design of SNeRE, the SNePS Rational
Engine, and demonstrated how a parallel mes-
sage passing model can be used to implement a
unified model of acting and inference. Message
passing between processes is accomplished using
MULT], a simulated multi-processing system [16]
which is similar to the Manchester Data Flow
Machine [26] and is implemented in Common
Lisp. ’

We have experimented with this model in a
blocksworld domain (with simulated graphics). We
have also developed a prototype intelligent-agent

user interface to a geographical information sys-
tem (GIS) called ARC/INFO {20]. In this system
the agent acts as a natural language front-end to
the GIS. The operations on the GIS form the
agent’s domain of actions and plans. The model
is also being used for testing and implementing
communicative speech act theories [4] and natu-
ral language generation [5).

Our model can also be viewed as a meta-level
implementation of propositional attitudes. This
implies that, if interested, one can design more
types of messages based on different proposi-

‘tional attitudes (so far we have only experi-

mented with Belief, and Intentionality). We have
adopted a very simplistic theory of acting which is
not very different from most existing Al Plan-
ning/Acting systems from a behavioral point of
view. However, we suggest that this model be
viewed as a generic Al architecture rather than a
specific embodiment of a theory of acting. The
action ontology does not make any teleological
commitment, only a representational one. The
specification of the message passing behavior
seems to commit us to the simplistic view of
acting. However, the message passing behavior
can be made user-specifiable (depending upon
action theory being employed). For instance, one
may wish to use the forward chaining ActEffect
transformer only when it can be confirmed (maybe
via sensory acts) that the external world does
actually comply according to the results of the
action just performed. This only involves a slight
modification in Table 4 (entry 10). The model can
be made extremely amenable to such extensions
if reformulated using an object-oriented perspec-
tive [8]. Ref. [7] gives a concurrent-object-ori-
ented specification of a BDI architecture based:
on these ideas.

9. Remarks

A basic premise of our approach stems from
the empirical observation that, typically, good
knowledge representation and reasoning systems
are bad candidates for planning/acting modeling
and vice versa. If one wishes to extend a good KR
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system for planning /acting modeling one can take
the easy way out by simply integrating a mutually
exclusive off-the-shelf planning/acting system.
This only results in paradigm soups. The ap-
proach we have taken is to extend the KR system
by extending its ontology and at the same time
preserving its foundations. Additionally, we have
provided a unified computational model of infer-
ence and acting. The architecture provides a
unique opportunity to research various Al facul-
ties from an integrated perspective. The modeled
agent in this architecture has natural language
capabilities, is able to represent and reason about
beliefs, actions, and plans. The agent is able to
carry out its plans. Acting and reasoning is ac-
complished using a simple message passing
scheme. The TMS and belief revision facilities
are an integral part of the system. Benefits de-
rived from the ATMS and discussed in Ref. [11].
The overall model is designed to be extendible.
The main thrust of our research is that integra-
tion of various Al subsystems, if performed from
a representational perspective can result in sim-
pler, more manageable, elegant, yet powerful Al
architectures. *
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