T

(99417

Proceedings of the

Twenty-Seventh Hawaii International
Conference on System Sciences

Volume III:

Information Systems:
Decision Support and Knowledge-Based Systems

Edited by Jay F. Nunamaker, Jr. and Ralph H. Sprague, Jr.

Sponsored by:
The University of Hawaii
The University of Hawaii College of Business Administration

In cooperation with:

The IEEE Computer Society
Association for Computing Machinery

IEEE Computer Society Press
Los Alamitos, California

Washington e Brussels e Tokyo

BE GBI

Towards a Unified AI Formalism

Deepak Kumar
Dept. of Mathematics
Bryn Mawr College
Bryn Mawr, PA 19010
dikumar@cc.brynmawr.edu

Abstract

This paper presents a unified approach to busld-
ing Intelligent architectures. Our approach relies
on making some semantic, ontological, as well
as architectural commitments. Semantically, we
commil ourselves to principles governing the na-
ture of the entities represented by the knowledge
representation formalism, and the relationships
between the faculties of reasoning, acting, and
natural language understanding. More specifi-
cally, we concentrate on the nature and repre-
sentation of entities, beliefs, actions, plans, and
reasoning and acting rules. Based on these prin-
ciples we present the design of an integrated Al
architecture that has a unified knowledge repre-
sentational formalism as well as a unified reason-
ing and acting component. The design of the ar-
chitecture is based on object-oriented principles.
We also show that such a design is amenable to
implementation in a concurrent object-oriented
programming paradigm. We demonstrate the ad-
vantages of our approach using several examples
from our work.

1 Introduction

In this paper, we take a different approach towards the
integration process. We start with the premise that re-
gardless of the individual Al subfield involved, all intel-
lectual activity involves representation of knowledge and
reasoning. Thus, all knowledge required to fulfill various
tasks (NLU, planning and acting, reasoning, etc.) is to be
represented in a common KR formalism. We also take a
unified view of reasoning and acting and incorporate that
into a single acting and inference engine called a rational
engine. In what follows, we will identify the basic KR prin-
ciples, the relationship between acting and inference, and
use that to present the design of a new unified Al formal-
ism called the Object-based (or OK) Architecture. The
design of the OK architecture employs an object-oriented
methodology that is also amenable to concurrent imple-
mentations. We also present several examples of the kinds
of behavior exhibited by computational agents modeled

using this paradigm.

2 The OK BDI Architecture

We begin by pointing out that we are interested in model-
ing computational rational agents. The behavior of these

agents must be driven by their beliefs, desires, and inten-
tions. Al architectures that enable modeling of such agents

1060-3425/94 $3.00 © 1994 IEEE

Susan Haller
Dept. of Computer Science
State University of New York at Buffalo
Buffalo, NY 14260-2000
haller@cs.buffalo.edu

92

Syed S. Ali
Dept. of Computer Science
Southwestern Missouri State University
Springfield, MO 65804
#52231f0casm 560 smsu.edu

have come to be called BDI architectures {8]. Most work
on BDI architectures has as its underlying motivation the
need to examine the feasibility of modeling practical rea-
soning in resource bounded agents [18, 6]. To that effect
these architectures attempt to integrate reasoning, plan-
ning, and acting capabilities. Our work encompasses the
practical reasoning issues as well as additional issues in-
volved in NLU and KRR. Additionally, the architecture
we are about to describe is designed using the principles
of object-oriented programming. Such a design naturally
exploits all the benefits of object-oriented design, namely,
extendibility, and amenability to concurrency. We will re-
turn to these in a later section. First we will present our
underlying commitments.

3 Commitments

In the design of the OK architecture we have made several
commitments. Most of them deal with representational
issues. The representational formalism is designed to fa-
cilitate the representation of intensional concepts [22]. All
entities represented in the KR formalism are intensional in
that it will be possible to have two or more instances that
denote as many entities and yet may correspond to ex-
actly one extensional object (this is the “Principle of Fine-
Grained Representation® {22]). Thus, the identity condi-
tions for two entities will depend upon their manner of
representation. Additionally, there is no requirement that
the entity actually exists in the world (e.g, mnicorns) or
that it is possible (e.g., square circles) (this is the “Prin-
ciple of Displacement” [22]). In general, we would like
the entities represented to be extensional as well as inten-
sional. For example, the name of the entity may be one
way of linking up an entity to the external world. In the
OK Formalism, we also enforce the Uniqueness Principle
of representing intensional concepts—there is a one-to-one
correspondence between terms representing entities and in-
tensional concepts [22]. The Uniqueness Principle will be
applied to all entities in the formalism.

In previous work we have argued for a unified view of
acting and inference [13]. We have argued that inference
be treated as a kind of acting (mental acting). Reasoning
itself can be viewed as a sequence of actions performed in
applying inference rules to derive beliefs from other beliefs.
Thus, an inference rule can be treated as a rule specify-
ing an act—that of believing some previously non-believed
proposition (i.e., the believe act is implicitly included in
the semantics of the propositional connective). This leads
us to make two commitments in the OK architecture—that
there be a single operating module that is responsible for
reasoning and acting behavior; and that there be a proper
semauntic distinction between entities that represent beliefs,

Proceedings of the Twenty-Seventh Annual Hawaii
International Conference on System Sciences, 1994

B R . S N e,

LU YA DAL N

SR e AL e

acts, rules for reasoning, and rules for acting (plans). The
first, a unified module for acting and inference, is called a
rational engine (as opposed to an inference engine). The
second leads to an ontological commitment on the part
of the KR formalism. In what follows, we first describe
the OK Formalism, that is an object-oriented, intensional,
propositional knowledge representation formalism. Then
we will present the design of the OK Rational Engine that
is responsible for implementing the unified view of acting
and inference. Together, they constitute the OK BDI ar-
chitecture (see [13] for a detailed description).

4 The OK Formalism

The basic class hierarchy of the OK Formalism is depicted
in Figure 1. A conceptual entity is anything a cognitive
agent can think about. In intensional representational for-
malisms, conceptual entities include individuals, variables,
acts, and beliefs.

4.1 Conceptual Entities

The class Conceptual Entity Termis the topmost class in
the OK Formalism. All instances of this class as well as
all instances of its subclasses are terms of the OK formal-
ism that denote intensional entities in the domain of dis-
course of the modeled agent. All instances of this class are
uniquely identified by a label which is denoted by an up-
percase letter followed by a number. The letters help iden-
tify the kind of entity represented. For example, E1, E2,

... denote basic (un-named) entities, I1, 12, ... denote
named individuals, B1, B2, ... denote propositions, A1,
A2, ... denote acts, and Vi, V2, ... denote variables.

4.2 Named Individuals

The class Individual Term is comprised of instances that
represent named entities in the domain of discourse. For
example, a term that denotes the named individual [JOHN]
i8 writien as JOBN.

4.3 Variables

Instances of the class Variable Term denote arbitrary
conceptual entities—individuals, beliefs, acts, etc. Vari-
ables are useful for representing generic individuals (e.g.,
‘a thing’); general propositions (e.g., ‘a thing that is a
block’); generic propositions (e.g., ‘something that John
believes’); and generic acts (e.g., ‘pick up a thing’). We
have given special attention to variables that represent in-
definite noun phrases and anaphora that models their use
in natural language understanding. We have arrived at a
non-atomic representation of variables (also called struc-
tured variables) [3, 4, 5]. The structure of the variable
includes complex internalized constraints (that includes,
but is not limited to, the type of the entity a variable may
be bound to) and internalized quantifier structures. The
semantics of structured variables is an augmented (by the
addition of arbitrary individuals) semantic theory based
on (7, 22). The use of such object-oriented variables leads
to much simpler representations for tasks as disparate as
representing natural language sentences and operators in
a planning formalism. Additionally, structured variables

B e R B P e L S P SR b i L AR R T p i ok)

allow a form of subsumption (a more general, or less re-
stricted, variable subsumes another more restricted vari-
able of the same sort) that corresponds directly to similar
natural language reasoning based on description subsump-
tion. We will illustrate the utility of structured variables
with a natural langnage processing example later.

4.4 Propositions

As mentioned above, propositions are also treated as
conceptual entities. Specific instances of the class
Proposition Term represent propositions. Asserted
propositions form agent’s beliefs. It is posaible for the mod-
eled agent to have representations of propositions that it
may not necessarily believe. Since all instances of the class
Conceptual Entity Term are also terms, this enables the
agent to have beliefs about its own beliefs as well those
of others. The agent’s “mind” is modeled as a set of
belicf spaces. Each belief space consists of the proposi-
tions believed by the agent either explicitly (hypotheses)
or via derivation. The instances representing propositions
also contain information typically employed by a truth-
maintenance system (TMS). In the OK architecture, we
necessitate the presence of a TMS because it {acilitates sev-
eral advantages in the representation of actions and plans
[15]. Also, it enables the agent to store results of its in-
ferences in order to make future recalls more efficient. For
example, an instance of an object that represents a propo-
sition “A is a block” would be written as

B1! Isa(A, BLOCK)

(sYp, {B1!}, {})

where Isa is a subclass of the class Proposition Term, A
and BLOCK are instances of the class Individual Term, B1
is the label of the instance, and the proposition as shown
is believed by the agent (denoted by writing the exclama-
tion following the label) as a hypothesis (HYP). See {15, 13]
for more details. The syntax of writing propositions is not
unique and is defined by the “print-methods” of the as-
sociated class. We are claiming that such object-centered
representations are inherently canonical in that they can
be translated into another KR formalism simply by sup-.
plying a different print-method for each class. In fact, in
[13] we have shown that the OK Formalism is isomorphic
to a semantic network formalism, SNePS [22].

4.5 Acts

An act is a mental concept of something that can be per-
formed by various actors at various times. This is also
important for plan recognition (facilitating a plausible con-
clusion that an agent performing an act could be acting to
fulfill some plan). By the Uniqueness Principle, a single
act must be represented by a single object even if there
are several different objects representing beliefs that sev-
eral different agents performed that act at different times.
Acts are represented by objects that are instances of the
subclasses of the class Act Term. Acts can be primilive
or complex (not shown in the figure). A primitive act has
an effectory procedural component which is executed when
the act is performed. Complex acts have to be decomposed
into plans.

Our present model of acting is based upon a state-
change model (see [14]). Weidentify three types of states—

[Conceptual Entity Terml

|Var1able|

IPropoaition Term]
Believe?

kpdividual Terml

Intend

Mental Act

{Physical Act]

Control Act

i

|Belief-act] |[Act-Belief]

ActEffeact

{Act-act]

|Belief-Belief]|

é;;é;;%.-

|Preconditionact |

-

DISBELIEVE
F |
WITHALL
DoALL
lSEQUENCE |
ITERATE

|WITHSOME | {ACEIEVE |

Figure 1: The class hierarchy of the OK Formalism.

REE

94

Raab 5 ot 04

s el

o v

R

external world states, mental states (belief space), and in-
tentional states (agent’s current intentions). Accordingly,
we identify three classes of actions—physical actions, men-
tal actions, and control actions that bring about changes
in their respective states.

4.5.1 Physical Acts

Physical acts are domain-specific acts that affect the out-
side world. For example, if the agent has an arm and is
asked to pick up an object, the arm actually moves to the
object, grasps it, and then lifts it up. Depending on the
set of interfaces provided to the agent we need corespond-
ing actuators to enable the carrying out the action in the
external world. This is done by specifying the effectory
component of the action by writing procedures that access
the actuator interface. PICKUP is a physical action in a
blocksworld. For example, the act of picking up a block
named A is represented as an object instance that is written
as

A1 : PICKUP(A)

4.5.2 Mental Acts

Beliefs of the agent may change when actions are per-
formed or an inference is carried out. We have BELIEVE
and DISBELIEVE as mental actions whose objects are be-
liefs. Simply adding and removing propositions from the
belief-space poses the danger of leaving the belief apace in-
consistent. This is especially true when all derived beliefs
are also added to the belief space. The presence of a TMS
solves this problem. Typically, TMSs provide explicit op-
erations for adding and deleting new beliefs to and from
a belief space. These operations, in addition to the as-
serting/deleting propositions, perform consistency checks
in order to guarantee a consistent resulting belief space.
Thus, in the presence of a TMS, the effectory components
of the two mental actions should be implemented using the
appropriate TMS operations. This strategy implements
the exiended STRIPS assumption [8].

4.5.3 Control Acts (Plans)

Plans, in our ontology, are also conceptual entities. How-
ever, we will not define a separate class for them as they
are also acts—albeit control acts. Control acts, when per-
formed, change the agent's intentions about carrying out
acts. Our repertoire of control actions includes sequenc-
ing (for representing linear plans), conditional, iterative,
disjunctive (equivalent to the OR-splits of the Procedu-
ral Net formalism [19, 23]), conjunctive (AND-splits), se-
lective, and achieve acts (for goal-based plan invocation).
These are summarized in Table 1. These control acts are
capable of representing most of the existing plan struc-
tures found in traditional planning systems (and more).
We should emphasize, once again, that since plans are also
conceptual entities (and represented in the same formal-
ism) they can be represented, reasoned about, discussed,
as well as followed by an agent modeled in this architec-
ture.

4.6 Transformers

In addition to standard beliefs that an agent is able to
represent, we also define a special class of beliefs called
transformers. A transformer is a propositional represen-
tation that subsumes various notions of inference and act-
ing. Being propositions, transformers can be asserted in
the agent’s belief space; they are also beliefs. In general, a
transformer is a pair of entities—((a), (b)), where both (a)
and (b) can specify beliefs or acts. Thus, when both parts
of a transformer specify beliefs, it represents a reasoning
rule. When one of its parts specifies beliefs and the other
acts, it can represent either an act’s preconditions, or its
effects, or a reaction to some beliefs, and so on. What
a transformer represents is made explicit by specifying its
parts. When believed, transformers can be used during the
acting/inference process, which is where they derive their
name: they transform acts or beliefs into other beliefs or
acts and vice versa. Transformations can be applied in
forward and/or backward chaining fashion. Using a trans-
former in forward chaining is equivalent to the interpreta-
tion “after the agent believes (or intends to perform) (a), it
believes (or intends to perform) (b).” The backward chain-
ing interpretation of a transformer is, “if the agent wants
to believe (or know if it believes) or perform (b), it must
first believe (or see if it believes) or perform (a).” There
are some transformers that can be used in forward as well
as backward chaining, while others may be used only in
one of those directions., This depends upon the spedific
proposition represented by the transformer and whether
it has any meaning when used in the chaining process.
Since both (a) and (b) can be sets of beliefs or an act, we
have four types of transformers— belief-belief, belief-act,
act-belief, and act-act.

4.6.1 Belief-Belief Transformers

These are standard reasoning rules (where (a) is a set
of antecedent belief(s) and (b) is a set of consequent be-
lief(s)). Such rules can be used in forward, backward, as
well as bidirectional inference to derive new beliefs. For
example, a class of transformers that represent antecedent-
consequent rules is called AntCq transformers. We use the

notation
(a) — (b)

to write them. For example “All blocks are supports” is
represented as

B1!: Vx[Isa(x,BLOCK) — Isa(x,SUPPORT)]

In addition to the connective above (which is also called
an or-entailment), our current vocabulary of connec-
tives includes and-entailment, numerical-entailment, and-
or, thresh, and non-derivable. Other quantifiers include
the existential, and the numerical quantifiers (see [21]).
Given the object-oriented design of the architecture one
can define any additional classes of connectives depending
on their own logical commitments.

4.6.2 Belief-Act Transformers

These are transformers where (a) is a set of belief(s) and
{b) is a set of acts. Used during backward chaining, these
can be propositions specifying preconditions of actions, i.e.

A T RN TN T AR e

| Control Action

Description

SEQUENCE(ay,a3)

The acts a4 and aj are performed in sequence.
Example: SEQUESCE(PICXUP(A) ,PUT(A,TABLE)) is the act of first
picking up A and then putting it on the table.

DoONE(ay,...,an)

One of the acts ay,...,2n 1s periormed.
Example: DoOFE(PICKXUP(4) ,PICKUP(B)) is the act of picking up A

or picking up B.

DO‘LL(&1, csey &n)

All of the acts a4,...,an are periormed in some order.
Example: DoALL(PICKUP(A) ,PICKUP(B)) is

the act of picking up A and picking up B.

IF((Pi'll)" sey (pn,&n))

Some act a; whose p; is believed 1s performed.
Example: IF((Clear(A) ,PICKUP(4)),(Clear(B) ,PICKUP(B))) is the act of
either picking up A (if A is clear) or picking up B (if B is clear).

ITERATE((Py,21)s...+(Pm, an)) is repeated

Some act in aj whose corresponding pj is believed is performed and the act

Example: fmnx((Clear(a) ,PICKUP(4)),(Clear(B) ,PICKUP(B)))
the act of picking up A (if A is clear) and picking up B (if B is clear).

ACHIEVE(p)

The act ol achieving the proposition p.
Example: ACHIEVE(Clear(A)) is the act of achieving that A is clear.

VITHSDME(x,y,...)(P(X,Y, ...), 8(X,¥,...)}

Find some x, y, ctc that satisfy p and perform the act a on them.
Example: WITHSOME(x) (Held(x), PUT(x, TABLE)) is the act
of putting on the table something that is being held.

VITHALL(x,y,...)(P(X,¥,...), a(X,¥,...))

Find all x, y, etc that satisfy p and perform the act a on them.
Example: ¥ITHALL(x) (Held(x), PUT(x, TABLE)) is the act
of putting on the table everything that is being held

Table 1: Summary of control actions

(a) is a precondition of some act (b). We will call it a
PreconditionAct transformer and write it as a predicate

Preconditionict((a),(b))

For example, the sentence “Before picking up A it must be
clear” may be represented as

B26! : PreconditionAct(Clear(4),PICKUP(4))

Used during forward chaining, these transformers can
be propositions specifying the agent’s desires to react to
certain situations, i.e. the agent, upon coming to believe
(a) will form an intention to perform (b). We will call these
WhenDo transformers and denote them as

VhenDo((a), (b))

For example, a general desire like “Whenever something is
broken, fix it” can be represented as

B100! : Vx[WhenDo(Broken(x),FIX(x)]

4.6.3 Act-Belief Transformers

These are the propositions specifying effects of actions as
well as those specifying plans for achieving goals. They will
be denoted ActEffect and PlanGoal transformers respec-
tively. The ActEffect transformer will be used in forward
chaining to accomplish believing the effects of act (a). For
example, the sentence, “After picking up A it is no longer
clear” is represented as

B30!: ActEffect(PICKUP(A),~Clear(A))

It can also be used in backward chaining during the plan
generation process (classical planning). The PlanGoal

96

transformer is used during backward chaining to decom-
pose the achieving of a goal (b) into a plan (a}. For exam-
ple, “A plan to achieve that A is held is to pick it up” is
represented as

BS6! : PlanGoal(PICKUP(A),Held(4))

Another backward chaining interpretation that can be
derived from this transformer is, “if the agent wants to
know if it believes (b), it must perform (a),” which is rep-
resented as a2 DoWhen transformer. For example, “Look at
A to find out its color” can be represented as

DoWhen(LOOKAT(4),Color(A, ?color))

4.6.4 Act-Act Transformers

These are propositions specifying plan decompositions for
complex actions (called PlanAct transformers), where (b)
is a complex act and (a) is a plan that decomposes it into
simpler acts. For example, in the sentence, “To pile A on
B first put B on the table and then put A on B” (where
piling involves creating a pile of two blocks on a table),
piling is a complex act and the plan that decomposes it is
expressed in the proposition

B71!: PlanAct(SEQUENCE(PUT(B, TABLE), PUT(A,B)),
PILE(A,B))

5 The OK Rational Engine

The OK Rational Engine is an interpreter that operates
on specific instances of objects representing beliefs, trans-
formers and acts. In other words, it is the operational

component of the architecture that is responsible for pro-
ducing the modeled agent’s reasoning and acting behavior.
1t is specified by three types of methods (or messages)—

Belicve— A method that can be applied to beliefs for as-
sertional or querying purposes. Consequently there
are two versions—

Believe(p)!— where p is a belief, the method denotes
the process of asserting the belief, p, in the
agent’s belief space. It returns all the beliefs
that can be derived via forward chaining infer-
ence/acting.

Believe(p)?— where p is a belief, it denotes the pro-
cess of querying the assertional status of p. It
returns all the beliefs that unify with p and are
believed by the modeled agent either explicitly
or via backward chaining inference/acting.

Intend— that takes an act as its argument (Intend(a)) and
denotes the modeled agent’s intention to perform the
act, a.

Transform— These methods enable varions transforma-
tions when applied to transformers. Corresponding to
backward and forward chaining interpretations there
are two versions— T'ransform? and Transform!, re-
spectively.

Notice that the first two also correspond to the propo-
sitional attitudes of belief and intention. The methods
Belicve and Intend can be invoked by a user interact-
ing with the agent. New beliefs about the external world
can be added to the agent’s belief space by using Believe!
and queries regarding agent’s beliefs are generated using
Believe?. These methods, when used in conjunction with
transformers lead to chaining via the semantics of the
transformers defined above. Figure 2 shows the general
algorithm for the Believe? method. Notice how backchain-
ing through the DoWhen and AntCq transformers is accom-
plished. It is possible for a query to result in the agent
forming an intention to do some act in order to answer the
query. [13] contains detailed descriptions of all the meth-
ods. We will present several examples below illustrating
various features of the architecture.

The architecture also inherently provides capabilities
for consistency maintenance. Each specific object that is a
belief can have slots for its underlying support. The sup-
port is updated and maintained by the Believe methods
as well as the mental actions BELIEVE and DISBELIEVE (to-
gether they form the TMS). The effectory procedures for
BELIEVE and DISBELIEVE are implemented as belief revi-
sion procedures. We have found that such an integrated
TMS facility simplifies several action and plan representa-
tions (see [15] for details). The Intend method is used to
specify the fulfillment of agent’s intentions by performing
acts. All these methods can be specified (and specialized)
for the hierarchy as well as inherited. Thus, domain spe-
cific acts (physical acts) will inherit the standard method
for the agent to accomplish its intentions (i.e. the spe-
cific theory of intentionality employed), where as special-
izations of the Intend method can be defined for mental
and control acts (to implement the semantics of respective

6 Towards Concurrency

In this section, we will present issues relating to a con-
current implementation of the OK BDI architecture. The
central idea in any object-oriented system is that objects
represent logical or physical entities that are self-contained
and are provided with a uniform communication protocol.
These two properties facilitate orderly interactions, which
tend to be a perfect ground for concurrent programming.
Nelson [17] goes so far as to proclaim that “every object-
oriented programming langnage should be concurrent in
nature.” In a concurrent implementation of the OK ratio-
nal engine, acting and inference will be carried out by ob-
ject instances sending and receiving messages to and from
each other. The methods of the rational engine directly
correspond to messages. For each specific message, the
sender and receiver are explicitly identified. For example,
the invocation

Believe?(PreconditionAct(?x,PICKUP(4)))
can be viewed as the message

Send message Believe? to the object
Bi43: PreconditionAct(?x, PICKUP(A))

Thus, B143 is the receiver and the object sending the mes-
sage in the example above could be the act PICKUP(A)
itself. This is very similar to the Actor model of concur-
rent object-based computation [1, 2]. Like Actor systems,
message passing is employed as a basis of computation.
Object instances denote individual actors. Labels of ob-
jects denote their mail addresses. The only difference is
that the behavior of the objects is determined by inher-
ited methods, something that is missing in Actor systems.
Nevertheless, this seems to indicate that the OK architec-
ture can be implemented using Actor systems. Building
Al architectures has been a long-term goal of Actor-based
systems. In fact, the original motivations for Actor sys-
tems came out of Carl Hewitt’s work on PLANNER (12].
To this date, no attempts have been made to implement Al
systems using Actor languages. This is probably because
we don’t, as yet, have adequate primitives and environ-
ments to build large software using Actor languages. The
Actor view of the OK rational engine arises out of consid-
erations in making some representational as well as some
behavioral commitments. Only the latter are similar (or
conform) to the Actor view of computation. Transformers
of the OK formalism help capture the overall embedded
nature of the architecture. It is our hope that we would
be able to explore this in the futare. In the meanwhile, we
have implemented the rudimentary components of the OK
architecture in a conventional, quasi-concurrent paradigm.

7 Examples
We started this paper by indicating that we were interested
in building integrated rational cognitive agents. These

agents are capable of natural language interaction, reason-
ing, acting, reacting, and knowledge acquisition behavior.

7.1 The Blocksworld Domain

For instance, in the blocksworld domain, the agent is ca-
pable of understanding the following paragraph:

Method

BELIEVES$(¢ : Proposition Term; o : Substitution := NIL)

is
let 0 — ¢o
if ASSERTED?¥ (o) then

return the set {0}

elseif PATTERN?(0) then

RESULT — a set containing all asserted instances of o

endif

find the set T of applicable AntCq transformers, i.e.

let T — {t | ¢ # NIL A BELIEVE?(t), where é: —

UNIFY(CQ(t),0)}

also find all the applicable DoWhen transformers, i.e.,
let T — T U {t] é: # NIL A BELIEVE?(t), where ¢: — UNIFY(WHEN(t),0) }

for eacht € T loop

o

RESULT — RESULT U TRANSFORM?(t,¢:)

endloop

find the set of matching propositions, i.e.,
let B «— {b| éb # NIL, where ¢ « UNIFY(b,0)}

for each b € B loop

RESULT ~— RESULT U BELIEVES(b, $)

endloop

return RESULT
end BELIEVEY

Figure 2: The Believe? Method. See [13] for details of other methods.

There is a table. The table is a support. Blocks
are supports. A is a block. B is a block. Cis
a block. C is clear and on the table. A is clear
and on the table. B is clear and on the table.

Picking up is a primitive action. Putting is a
primitive action. Before picking up a block the
block must be clear. If a block is on a support
then after picking up the block the block is not
on the support. If a block is on a support then
after picking up a block the support is clear. Af-
ter picking up a block the block is held. Before
putting a block on a support the block must be
held. Before putting a block on a support the
support must be clear. After putting a block
on a support the block is clear. After putting 2
block on a support the block is on the support.
After putting a block on another block the latter
block is not clear.

A plan to achieve that a block is held is to pick
up the block. A plan to achieve that a block is
on a support is to put the block on the support.
If a block is on a support then a plan to achieve
that the support is clear is to pick up the block
and then put the block on the table.

The agent parses the above sentences and uses the for-
malism described to represent them. It can then perform
actions in the blocksworld using the information provided
in these sentences. It is also capable of carrying out re-
quests like

Pick up a clear block.

98

Notice that the sentence describes a variable that is a
block and it is clear. The request is represented using
the WITHSOME act as

WITHSOME(x)((Isa(x,BLOCK) A Clear(x)), PICKUP(x))

Structured variables can also be used to represent such ac-
tions. The agent in carrying out the intention of picking
up a clear block determines all the blocks that are clear
and picks up one of them. In a situation where, say, the
blocks A, B, C are clear, the agent will respond

The designator Isa(x,BLOCK) A Clear(x)

is effective on the following

Isa(A,BLOCK) A Clear(A)

Isa(B,BLOCK) A Clear(B)

Isa(C,BLOCK) A Clear(C)

for the act

VITHSOME(x)((Isa(x,BLOCK) A Clear(x)), PICKUP(x))

I intend to do
DoORE(PICKUP(A), PICKUP(B), PICKUP(C))

Chose to do the act
PICKUP(C)

Nowv doing: PICKUP(C)
BELIEVE (Held(C))
DISBELIEVE(Clear(C))
DISBELIEVE(Gn(C, TABLE))

Next, let us assume that in addition to the knowledge de-
scribed in the paragraphs above, the agent also believes

1. A1l red colored blocks are vooden.

2. Look is a primitive actiem.
3. If you wvant to now the color of a block look
at it.

If the agent is then asked the query:
Is A wooden?

At this point, the agent knows that 4 is a block but has
no beliefs about its colors. The query will backchain as
follows:

I vonder if Isa(iA, WOODEN)
I wonder if Isa{i, BLOCK)
I know Isa(A, BLOCK)

I vonder if Color(i, RED)

The query has backchained through (1) above. next it
backchains through (3). First, it derives the specific trans-

former
DoWhen(LOOKAT(A), Color(A, ?color))

which is then applied and the act LOOKAT(A) is performed.
As a result (assuming that A is colored red), the belief

Color(A, RED)

is added to the agent’s belief space which completes the
earlier chain of inference and returns the answer (that A
is wooden). Thus we see that it is also possible for infer-
ence to lead to actions. Similarly, one can forward chain
through WhenDo transformers in order to react to situa-
tions. The above example has illustrated an interesting
artifact of our architecture—that an agent is capable of
using acting in service of inference as well as inference in
service of acting (only the latter being the typical case in
most planning/acting systems).

7.2 Planning Discourse to Discuss Plans

We are also modeling an agent that is capable of describing
and justifying domain plans in an interactive natural lan-
guage setting [10, 11). The Interactive Discourse Planner
(IDP) relates two areas of research. The first area, plan
recognition, focuses on analyzing natural language that is
about plans to recognize the speaker’s intent and provide
helpful responses. The second area, discourse planning, is
concerned with using plans for selecting and structuring
text that achieves communicative goals. IDP operates in
a collaborative mode in which the system is the primary
speaker and the user is the primary listener. IDP is respon-
sible for planning text to describe and/or justify a domain
plan, and the user is responsible for providing feedback
that lets IDP know how to continne the discussion in a
way that is helpful.

IDP exploits the OK formalism by unsing a uniform rep-
resentation for the text plan that it formulates and exe-
cutes incrementally, and the domain plans that are under
discussion. In this way, the text plan and the domain plans
are both accessible for analyzing the user’s feedback. IDP
can interpret vaguely articulated feedback, generate con-
cise replies and metacomments, and detect user feedback
that initiates a digression. As a testbed for our model,
IDP discusses driving routes as the domain pians.

User: Should I take Maple or Sheridan
to go to the Eastern Hills Mall?
IDP: you should take Maple.
QUser: Why?
IDP: taking Maple avoids heavy traffic.
User: ¥hy?
IDP: since taking Maple there are fewer
businesses than taking Sheridan

By modeling the discourse with its evolving text plan, IDP
can produce concise text that does not repeat old infor-
mation along with the new. These types of interactions
are coherent and collaborative because each participant
knows how his contribution fits in. Levelt refers to this dis-
course property as discourse deizis [16]. Consistent with
the Gricean Maxims [9], IDP processes feedback with the
idea that the more the user says, the more he {eels he needs
to say for the system to identify the text plan expansion
that is sought. Therefore, IDP uses any additional infor-
mation that the user provides to try to recognize a text
plan. This can lead to text plan expansions that are not
immediate continuations of what the system said last. The
following example demonstrates this type of processing:
User: Should I take Maple or Sheridan
to go to the Eastern Hills Mall?
IDP: take Maple.
User: Why not go on Sheridan?
IDP: you could take Sheridan however,
taking Maple avoids heavy traffic.

In this interaction, the user’s feedback indicates that he
would like the system’s respomse to include information
about the feasibility of an alternative route. IDP uses the
mentioned act, go-ing on Sheridan, to identify a discourse
entity and a text plan expansion that uses it. This is how
IDP continues to pursue its own intentions while providing
the implicitly requested information. IDP can also detect

user-imposed digressions:

User: Should I take Maple or Sheridan
to go to the Eastern Hills Mall?
IDP: take Maple.
User: Why should I take Maple?
IDP: taking Maple avoids heavy traffic.
User: Why?
IDP: taking Maple there are fewer
businesses than taking Sheridan.
User: VWhy is there heavy traffic now? =
IDP: since now is rush hour,
as I was saying, taking Maple
avoids heavy traffic.

The user’s third question (marked with an asterisk *) relies
on an inference that he made from the proposition that
IDP conveyed in its second response. IDP uses its text
plan to detect that this question, unlike the user’s first
two questions, initiates a digression. The system makes
this determination when it cannot find a way of expanding
the focussed portion of its text plan to answer it. When
IDP detects a user-imposed digression, it answers the ques-
tion, and then it immediately goes back to pursuing to its
own intention by expanding is text plan further. In these
examples that intention is to have the user adopt the plan
of taking the Maple Road route. As demonstrated by the
last two lines of IDP’s final response, the uniform repre-

sentation that is used for all information allows IDP to use »

its own text plan as content to do this.

7.3 Structured Variables

Our system is capable of natural language processing usmg.

structured variables. It includes a generalized augmented
transition network (GATN) natural language parser and
generation component linked up to the knowledge base
(based on [20]). A GATN grammar specifies the trans-
lation/generation of sentences involving complex noun
phrases into/from structured variable representations.

An advantage of the use of structured variables lies in
the representation and generation of complex noun phrasqg
that involve restrictive relative clause complements. The
restriction set of a structured variable typically consists of
a type constraint along with property constraints (adjec-
tives) and other more complex constraints (restrictive rela-
tive clause complements). So, when parsing a noun phrase,
all processing is localized and associated with building
its structured variable representation. When generating a
surface noun phrase corresponding to the structured vari-
able, all constraints associated with the variable are part
of its structure and can be collected and processed eas-
ily. This is in contrast to non-structured variable repre-
sentations (such as FOPL) where the restrictions on vari-
ables are disassociated from the variables themselves, in
the antecedents of rules. The interaction below shows sen-
tences with progressively more complex noun phrases be-
ing used. These noun phrases are uniformly represented
using structured variables. Parsing and generation of these
noun phrases is simplified because structured variables col-
lect all relevant restrictions on a variable into one unit, a
structured variable (user input is shown ijtalicized).

Every man owns a car
I understand that every man ovns some car.
Every young man ouwns a car
I understand that every young man ovns some car.
Every young man that loves a girl owns a car that is
sporty
I understand that every young man that loves any
girl owns some sporty car.
Every young man that loves a girl that owns a dog owns
a red car that is sporty
I understand that every young man that loves any
girl that owns any dog owns some red sporty car.
Every young man that loves a girl and that is happy
owns a red sporty car that wastes gas
I understand that every young happy man that
loves any girl owns some
sporty red car that vastes gas.

The parser parses the user’s sentence and builds a repre-
sentation of the user input. The resulting representation is
then passed to the generation component, which generates
the output response (sometimes prefixed by the canned
phrase I understand that). If comsiraints on variables
corresponding to the complex noun phrases were repre-
sented using first-order logic-based representations, then
it would be difficult to generate natural langnage noun
phrases corresponding to these variables. This is because
the constraints on variables would, likely, be well sepa-

100

rated from the variables in the antecedents of rules involv-
ing these variables. This is not the case in a structured
variable representation.

Because the structure of representations of rules using
structured variables is “fat”, that is, there is not the artifi-
cial antecedent-consequent structure associated with first-
order logic-based representations, it is possible to frame
questions whose answers are rules and not just ground for-
mulas. Because of the subsumption relation between struc-
tured variables (a more general, or less restricted, variable
subsumes another more restricted variable), useful infer-
ences are possible, directly. Since the structure of the
question will mirror the structure of the rule, any rule that
is subsumed by a question is an answer to that question.
What follows is a sample dialog involving questions whose
answers are ground propositions (e. g., s John mortal) as
well as questions whose answers are rules (e.g., Who is
mortal):

Every man is mortal
I understand that every man is mortal.

: Who is mortal
Every man is mortal.
: Is any rich man mortal
Yes, every rich man is mortal.

John is a man

I understand that John is a man.

+ Is John mortal

Yes, John is mortal.

: Who is mortal

John is mortal and every rich man is mortal and
every man is mortal.

Are all rich young men that own some car mortal
Yes, every young rich man that owns some car is
mortal.

Any rich young man that owns any car is happy
I understand that every young rich man that owns
any car is happy.

Is John happy
I don’t kmow.

Young rich John owns a car
I understand that mortal rich young John owns
some car.

Who owns a car
Mortal rich young John owns some car.

: Is John happy
Yes, mortal rich young John is happy.

This dialog also illustrates the uses of subsumption. Since
we told the system Every man is mortal, it follows that
any more specifically constrained man (e.g., Every rich
young man that owns some car) must also be mortal. Note
that this answer (a rule) follows directly by subsumption
from a rule previously told to the system. This is an-
other way in which rules may be answers to questions, in
a representation using structured variables. The utility of
structured variables is a pressing argument for the use of
object-oriented design at all levels of an Al formalism.

8 Remarks

We have presented a unified formalism for modeling com-
putational rational agents. In doing so, we have made

HTERYEL AR Ty TR

some ontological as well as semantic commitments. The
object-oriented design of the formalism enables a canon-
ical representation of entities. The architecture has been
specifically designed to be extendable—in its ontology, as
well as the underlying logic and action theory. This is a
direct benefit from the object-oriented design. One can
easily extend the formalism by defining additional classes
and/or subclasses. The rational engine can be modified
by changing (or specializing) its methods. We have also
briefly addressed the possibility of implementing a concur-
rent rational engine. Finally, we presented several exam-
ples from our work illustrating various Al faculties that
can be modeled.

Acknowledgement

All the work discussed in this paper was carried under
the direction of Dr. Stuart C. Shapiro. Our representa-
tional commitments are a direct result of over two decades
of work of Dr. Shapiro and his associates on the SNePS
semantic network processing system.

References

(1] Gul Agha. Concurrent Object-Oriented Program-
ming, Communications of ACM, 33(9):125-141, 1990.

[2] Gul Agha and Carl Hewitt. Concurrent Program-
ming Using Actors. In Akinori Yonezawa and Mario
Tokoro, editors, Object-Oriented Concurrent Pro-
gramming, pages 37-53. MIT Press, Cambridge, MA,
1987.

[3] Syed S. Ali. A “Natural Logic” for Natural Language
Processing and Knowledge Representation. PhD the-
sis, State University of New York at Buffalo, Com-
puter Science, 1993. Forthcoming,.

[4) Syed S. Ali. A Structured Representation for Noun
Phrases and Anaphora. In Proceedings of the Fifteenth
Annual Conference of the Cognitive Science Society,
pages 197-202, Hillsdale, NJ, June 1993. Lawrence
Erlbaum.

(5] Syed S. Ali and Stuart C. Shapiro. Natural Language
Processing Using a Propositional Semantic Network
with Structured Variables. Minds and Machines, 3(4),
November 1993. Special Issue on Knowledge Repre-
sentation for Natural Language Processing.

(6] Michael E. Bratman, David J. Israel, and Martha E.
Pollack. Plans and Resource-Bounded Practical Rea-
soning. Computational Intelligence, 4(4), 1988.

[7] Kit Fine. Reasoning with Arbitrary Objects. Basil
Blackwell, Oxford, 1985.

(8] Michael P. Georgeff. Planning. In Annual Reviews of
Computer Science Volume 2, pages 359—400. Annual
Reviews Inc., Palo Alto, CA, 1987.

[9) H. P. Grice. Logic and conversation. In P. Cole
and J. L. Morgan, editors, Syntaz and Semantics 3:
Speech Acts. Academic Press, New York, 1975.

101

[10] S. M. Haller. Interactive generation of plan justifica-
tions. In Proceedings of the Fourth European Work-
shop on Natural Language Generation, pages 79-90,
1993.

f11] S. M. Haller. An interactive model for plan explana-
tion. In Proceedings of the Australian Joint Confer-
ence on Artificial Intelligence, Melbourne, Australia,
November 1993. to appear.

[12] C. Hewitt. Procedural embedding of knowledge in
‘ planner. In Proceedings 2nd IJCAI, pages 167-182,
1971.

[13] Deepak Kumar. From Beliefs and Goals to Intentions
and Actions— An Amalgamated Model of Acting and
Inference. PhD thesis, State University of New York
at Buffalo, 1993.

[14] Deepak Kumar and Stnart C. Shapiro. Architecture
of an intelligent agent in SNePS. SIGART Bulletin,
2(4):89-92, August 1991.

[15] Deepak Kumar and Stuart C. Shapiro. Deductive ef-
ficency, belief revision and acting. Journal of Ez-
perimental and Theoretical Artificial Intelligence (JE-
TAI), 5(2), 1993. Forthcoming.

[16] W. J. M. Levelt. Speaking: From Intention to Artic-
ulgtion. MIT Press, Cambridge, 1989.

[17] Michael L. Nelson. Concurrency & Object-Oriented
Programming. ACM SIGPLAN Notices, 26(10):63—~
72, October 1991.

[18] Anand S. Rao and Michael P. Georgeff. An Abstract
Architecture for Rational Agents. In Bernhard Nebel,
Charles Rich, and William Swartout, editors, Proceed-
ings of the 2nd Conference on Principles of Knowl-
edge Representation and Reasoning, pages 439449,
San Mateo, CA, 1992. Morgan Kaufmann Publishers.

[19] Earl D. Sacerdoti. A Structure for Plans and Behav-
ior. Elsevier North Holland, New York, NY, 1977.

[20] S. C. Shapiro. Generalized augmenied transition net-
work grammars for generation from semantic net-
works. The American Journal of Computational Lin-
guistics, 8(1):12-25, 1982.

[21] S. C. Shapiro and The SNePS Implementation Group.
SNePS-2 User’s Manual. Department of Computer
Science, SUNY at Buffalo, 1989.

[22] S. C. Shapiro and W. J. Rapaport. SNePS considered
as a fully intensional propositional semantic network.
In N. Cercone and G. McCalla, editors, The Knowi-
edge Frontier, pages 263-315. Springer—Verlag, New
York, 1987.

[23] David E. Wilkins. Practical Planning-Eztending the
Classical Al Planning Paradigm. Morgan Kaufmaan,
Palo Alto, CA, 1988.

