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Chapter 1

Introduction

1.1 Background

Research on human categorization! in cognitive science, psychology, linguistics, anthropol-
ogy, and philosophy has shown that in many cases, categories cannot be properly charac-
terized by a set of necessary and sufficient conditions; i.e. category membership is usually
not an all-or-nothing phenomenon but rather a matter of degree, and people can judge the
“typicality” and/or degree of membership of potential category members in a consistent
way (see e.g. [Wittgenstein 1953, Berlin & Kay 1969, Rosch 1978, Lakoff 1987]). This
applies not only to so-called natural categories, which correspond roughly to nouns in nat-
ural languages, but also to many categories used in science, e.g. biology [Lakoff 1987].
Perhaps the only exceptions are mathematical categories which are explicitly defined by
necessary and sufficient conditions. However, even the latter might be seen as abstractions
of real-world categories that would not necessarily be definable in the same way, or as being
constructed on the basis of such abstractions, cf. [Aleksandrov 1956]. Some of the ideas
about graded category membership have been formalized as fuzzy set theory [Zadeh 1971],
which has found applications in various areas of control theory and Al, for instance [Kosko
1992].

The concepts of embodiment [Lakoff 1987], symbol grounding [Harnad 1990], and situated

Mostly, categorization with respect to “natural categories”, as in an ontology of what is “out there”.

13



cognition [Suchman 1988] are related to issues in categorization. Embodiment is the notion
that the shape or extension? of categories (and hence the meaning of symbols representing
categories, in a referential type semantics) is in part determined by the physiology of the
organism doing the categorization.® For instance, Berlin and Kay hypothesize that the
universality of basic color category foci can be explained in terms of the underlying neuro-
physiological mechanism of color perception, which are the same for all people, regardless
of language [Berlin & Kay 1969].

Grounding is concerned with how symbols and their meanings are grounded in catego-
rization and perception of the environment the organism operates in. Harnad’s fundamental
claim is that the symbols of “traditional” symbolic Al systems are only meaningful to a hu-
man observer, and not to the system itself.* The meaning to a human observer arises from
the fact that the symbols are systematically interpretable and have a meaning assigned to
them via an external semantic mapping or model. Such a semantic model is an explanatory
device, but it does not play any role in the system’s internal functioning. In contrast, Har-
nad claims that symbols representing categories to people (like nouns in natural languages)
are meaningful because they are connected to the world in a causal and non-arbitrary way,
via perception.” We can say that the human symbols are embodied, while machine symbols
are not.5

I essentially agree with Harnad’s analysis. Since categories are an essential part of natu-
ral language semantics, the analysis implies that models of natural language semantics must
take physiology and perception, or in general, the nature of the cognitive mechanism under-
lying categorization, into account. This in turn implies that a traditional model-theoretic
approach to natural language semantics is inadequate. Model theory, as used in logic or

modern linguistics, starts with the assumption of a (real or possible) domain consisting of

] am using the term extension here in the traditional model-theoretic sense of the set of objects in the
model’s domain that corresponds to a constant symbol. Although part of the argument developed in this
dissertation goes against traditional model theory, I will continue to use the term in this way, for convenience.

*In particular, the physiology of perception, but perhaps also the physiology of motor control and even
the physiology of emotion; cf. [Lakoff 1987].

*This is essentially the point that Searle tried to prove in his famous Chinese Room argument [Searle
1980]

®This is true for directly grounded symbols corresponding to categories of perception only. The hypothesis
is that other symbols are indirectly grounded by being constructed out of directly grounded ones. Harnad is
not very specific on this point.

5The intersection of the set of people using the term“symbol grounding” with the set of people using the
term “embodiment” seems to be empty, but I will not let that disturb me.

14



discrete individuals, properties, and relations, corresponding via a static semantic mapping
with constant and relation symbols in the language of interest. These models have nothing
to say about how such a relation might be established or maintained in the first place. In
essence this defines the central problem of semantics” away. Since I take natural language
semantics to be part of the domain of the general study of intelligence, we may contrast
the symbol grounding or embodiment view with the “traditional” symbolic Al view that
intelligence (or “mental functions”) can be studied in the abstract, without reference to the
organism displaying it, or the mechanism implementing it (e.g. [Newell 1979]).

Situatedness holds (among other things) that “Communication ...is not a symbolic
process that happens to go on in real-world settings, but a real-world activity in which
we make use of language to delineate the collective relevance of a shared environment”
[Suchman 1988, p. 180]. Again, the environment or the “real world” is seen as the grounding
for language, which implicitly requires perception to be taken into account.

One particular area of natural language semantics where embodiment, grounding, and
situatedness seem to play an important role is that of color terms. In their anthropological
and linguistic work in the late sixties, Berlin and Kay [Berlin & Kay 1969] were looking
for semantic universals in the domain of color terms, hoping to refute the Sapir-Whorf
hypothesis which claims that there are no semantic universals, and that each language
performs the coding of experience into language in a unique and arbitrary manner. The
latter is of course in direct opposition to theories of embodied semantics, since these do
predict the existence of universals, based on the observation that all people share a common
physiology, regardless of the language they speak or the culture they live in. Berlin and Kay
found that there are indeed semantic universals in the domain of color, particularly in the
extensions of what they called “basic color terms”.® When they asked native speakers of
widely differing languages to identify (1) the best ezamples and (2) the boundaries of basic
color categories on a chart of color samples, they found that (1) the best examples (foci)
of basic color categories are the same within small tolerances for speakers of any language
that has (the equivalent of ) the basic color term in question, and (2) there is a hierarchy of

languages with respect to how many and which basic color terms they possess, such that,

T According to Webster’s online dictionary, “a branch of semiotics dealing with the relations between signs
and what they refer to and including theories of denotation, extension, naming, and truth”.

8n English, there are eleven basic color terms: white, black, red, green, yellow, blue, brown, purple, pink,
orange, grey.
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roughly speaking, a language that has i+ 1 basic color terms has all the basic color terms of
any language with ¢ basic color terms, and any languages with ¢ basic color terms have the
same ones (with respect to their extensions). It is of course apparent from these results that
(basic) color categories are characterized by graded membership functions, with some colors
clearly being non-members, some being prime examples, some being borderline examples,
and with other degrees of membership in between.

[Kay & McDaniel 1978] have made the first attempt to explain these results based on
neurophysiological findings in color perception, i.e. to specify how basic color categories
are embodied, or to specify a theory of symbol grounding in the domain of colors. They
used a fuzzy set model in which they interpreted (stylized versions of) neural response
functions as characteristic functions of fuzzy sets representing color categories. Their model
is interesting, it explains some of Berlin and Kay’s data, and it certainly deserves respect for
being the first to attempt to explain the connection between natural language semantics and
physiology, but it does leave several questions unanswered, as I will discuss in Chapter 4.
So far no adequate model of color term semantics has been computationally defined or
implemented, to my knowledge.

In this dissertation I attempt to define a computational model of color perception and
color naming, i.e. a semantic model of (basic) color terms grounded in color perception,
that is partly based on neurophysiological data and that can explain Berlin and Kay’s and
other relevant linguistic and anthropological data. In particular, the model attempts to
explain the graded nature of color categories and the universality of color foci, and it allows
an artificial cognitive agent to name color samples, point out examples of named colors in
its environment, and select objects from its environment, specified by color name. Such an
agent can participate in an experiment like Berlin and Kay’s, and its performance will be
consistent with human performance. An implementation for the computational model is

presented, as are some experimental results.

1.2 Thesis and Scientific Contributions

My central thesis is the following: To define an adequate model of the semantics of color

terms in natural languages, it is necessary to model the physiology of human color perception.
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Corollaries of the central thesis are:
1. Adequate models of natural language understanding require models of perception.

2. Purely symbolic models of natural language understanding, with or without model-

theoretic underpinnings, are inadequate.
3. Adequate models of intelligent behavior require models of perception.

4. Purely symbolic models of intelligent behavior, with or without model-theoretic un-

derpinnings, are inadequate.

Since the central thesis in its current form is hard to prove or falsify, my dissertation is
actually concerned with an (admittedly weaker) existence proof of the following kind: It is
possible to define an adequate model of the semantics of natural language color terms, and
an adequate model of color naming and color pointing behavior, by modeling the physiology
of human color perception. I consider an adequate model one that enables an autonomous
robotic agent to name colors of objects in its field of view, and to point out examples
of objects with specified colors in its environment, both in close agreement with human
performance on the same tasks.

The scientific contributions of this dissertation are in the following areas:

1. Cognitive Agent Architecture. The work presented here is a case study of embodiment,
symbol grounding, and situatedness in a natural language understanding context, and
as such can help to clarify the problems involved. I present an analytic and well-defined
approach to symbol grounding in a particular domain, which aids in the construction

of a situated cognitive agent.

2. Natural Language Understanding. I define a computational model of the semantics
of basic color terms that is not only explanatory, but also productive, in that it can
be used in a cognitive agent architecture. The semantic model is intrinsic to the
agent using it, and it does not suffer from problems related to the under-determining
of reference in traditional symbolic models of natural language understanding and
cognition. The model allows a computational cognitive agent to use color terms in a

natural language, in a way that is consistent with native speakers’ use of those terms.
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3. Knowledge Representation and Reasoning. Although my research is not what is usu-
ally understood by knowledge representation and reasoning (KRR), namely the use
of a formal language to represent human knowledge and perform inference on those
representations, it is nevertheless relevant in that context. It provides the grounding
for a set of terms which may be terms of a KRR system, e.g. (but not limited to)
SNePS [Shapiro & Rapaport 1987]. The more analog nature of the model underlying
this grounding can provide important semantic constraints on the formal (syntactic)

manipulation of the terms.

4. Color models. I define a computational color model that is based on neurophysiological?
data, and that can explain psychophysical'® findings in color perception. The con-
tribution lies in the partial bridging of the psychophysical and neurophysiological
domains, explaining the former in terms of the latter. In addition, the model may be

useful for computer vision work and potentially for computer graphics as well.

°Relating to the processes and phenomena of the nervous system.
1%Relating the magnitude of a psychological response variable such as amount of red or green percept to
some physical quality of the stimulus such as spectral composition of a light source, cf. [S. Edelman 1992].
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Chapter 2

Problem Definition

This Chapter discusses in some detail the problems involved in defining a computational

model of color perception and color naming, and defines terms and concepts involved.

2.1 Color Perception

As John Locke observed, objects do not have colors [Locke 1690]. Color is not a physical
phenomenon, but a perceptual phenomenon that is related in a complex way to the spectral
characteristics of electro-magnetic radiation in the visible wavelengths striking the retina
[Wyszecki & Stiles 1982, Boynton 1990, Danger 1987, Ronchi 1957]. An illustration of the
perceptual nature of colors is the phenomenon of metamers, or spectrally different stimuli
that are indistinguishable to human observers, and hence will be perceived as the same
color. For example, Judd has pointed out that the color of a Bunsen burner flame into
which sodium is introduced is very similar to the color of an orange (the fruit) in daylight,
yet their spectra are almost perfectly complementary [Mcllwain & Dean 1956, p. 24].
In fact there are infinitely many different spectral stimuli that will be perceived as the
same. In the discussion that follows I roughly adhere to a division into the three domains
of physics, physiology, and psychology that are involved in optical phenomena, following
[Ronchi 1957].1

'l am using this tripartite structure as an organizational tool only; no theoretical claims about the
boundaries between these domains are intended.
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The physical stimulus involved in color perception is light, or more precisely: electro-
magnetic radiation in the visible wavelength range, approximately 380-770 nm. I will
represent the spectral energy distribution of the stimulus (the radiation striking the retina)
as a function of wavelength E(\) after [Boynton 1990].> The stimulus energy distribution
E(X) of the radiation that is reflected off (or transmitted by) an object is determined by
(1) the spectral distribution of the radiation incident on the object (the light source) S(A),

and (2) the spectral reflectance characteristics of the object R(A), so we can write

E(\) = S(MR() (2.1)

in a simplified form.> It is easily seen from this equation that changing the light source
or changing the reflectance characteristics of the object changes the stimulus £(\). Were
we informally to think of object color as R(\), then the task of the color vision system is
to recover R(A) from E(A) (for some examples of this approach, see [Maloney & Wandell
1986, Maloney 1993]). Or as [Zeki 1993] puts it:

The brain strives to acquire a knowledge about the permanent, invariant and
unchanging properties of objects and surfaces in our visual world. But the
acquisition of that knowledge is no easy matter because the visual world is in a
continual state of change. Thus, the brain can only acquire knowledge about the
invariant properties of objects and surfaces if it is able to discard the continually

changing information reaching it from the visual environment. [p. 355]

The human visual system is to some extent able to identify the same “object color” (surface
reflectance, under the view just mentioned) under widely varying lighting conditions, a phe-
nomenon known as color constancy, but I will not be concerned with that. Color constancy
introduces considerable complexity that is not central to the aims of my work. What I am
concerned with is the internal structure of the color categories that invariant object colors
are perceived as belonging to. That is not to say that I will adhere to the “color science”

aperture mode of color perception either; I will take a psycho-physical approach to modeling

2) is typically used to represent wavelength in nanometer (nm). E then represents the energy of the
stimulus as a function of wavelength.

*This simplification does not take into account additional factors like incident and reflection angles,
transmission absorption and refraction, etc.
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color perception, while at the same time keeping neurophysiological findings in mind.

The response of the visual system to £(\) brings us into the domain of neurophysiology.
The human visual system is sensitive to differences in £(A) due to the presence of three
photo-pigments with different spectral sensitivities in three types of photoreceptor cells
(called cones) in the retina [Leibovic 1990b]. The cone types are sometimes called red,
green, and blue, for the spectral color corresponding approximately to their wavelength
of maximum sensitivity, but more appropriate designations are long, medium, and short
wavelength sensitive cones, respectively.? If we represent the cone action spectra (or linear
transforms thereof, see [Horn 1986]) as Z(A), 7(A), Z(A) and integrate them with the spectral
energy distribution E(\) of the stimulus [Boynton 1990, Horn 1986], we obtain the so-called
CIE® tristimulus values X,Y, Z:
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Any two stimuli that result in identical X,Y, Z values cannot be distinguished from each
other; i.e. they are metamers.

So far I have only described the response of the cone type photoreceptors to F(A). A lot
more is involved in the physiology of color perception, and below I will refer to subsequent
stages of processing as necessary.

From the psychological (or psychophysical) point of view, there is a lot more to be said
about color perception as well, see e.g. [Boynton 1990, Boynton 1979]. Some important
psychophysical dimensions of color perception are brightness or lightness (how bright a
visual stimulus appears to be, viewed in isolation or in context), chromaticity or hue (what
enables us to distinguish between equally bright and texturally identical fields — this is

the closest to the intuitive concept of color), and saturation (how pure a perceived color is,

* Spectral colors are the pure monochromatic components that white light can be split into by use of a
prism (“rainbow colors”), corresponding physically to pure single-wavelength radiation. One can also think
of spectral colors as impulse functions in the frequency domain.

®Commission Internationale de I’Eclairage, or International Committee on Lighting, a Paris-based stan-
dards organization.
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or how unlike grey). Another important concept is chromatic context, or the finding that
the appearance of a color depends importantly on its surroundings. Also, the intensity of
the light source, and even memory and psychological context can affect color appearance

[Boynton 1979]. I will return to some of these issues below.

2.2 Color Naming

Color naming also belongs in the domain of psychology. I define color naming as a mapping
N from visual stimuli to pairs of color terms (or symbols or names) and “confidence”,
“goodness”, or “typicality” measures.

More precisely, since I am not interested in spatial characteristics of visual stimuli, I will
represent stimuli as spectral distributions E(\) associated with single points in the visual

field only. The domain of A is thus the set of all such distributions:

E={F|E: X\~ R"} (2.5)

where A\ = [380, 770] represents wavelength in nm, and E represents a spectral distribution.
The functions F will not be further defined. They need not be continuous or differentiable,
for instance. A pure monochromatic stimulus would be represented as an impulse function,
and mixtures of several monochromatic primaries would be represented as multi-modal

distributions. The mapping AN can then be defined as

N:E—CxI (2.6)

where C is an enumerable set of undefined terms, and I is the closed unit interval [0, 1].
Informally, the preferred interpretation® of the model is that E represents the set of

spectral distributions that function as input to the visual system, C represents a set of basic

color terms, e.g. {white,black,red, green, yellow, blue, brown, pink, purple, orange, grey},

which is the set of basic color terms described in [Berlin & Kay 1969], and I represents the

6That is, the external interpretation of the mathematical model, not to be confused with a grounded
semantic model used by a cognitive agent.
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set of “confidence”, “goodness”, or “typicality” measures.

If we ignore the ¢ part of the (¢,i) € C x I, we might think of C as representing a
partition of the set of all possible color percepts E into a number of equivalence classes, one
for each color term. If we do take the 7 part into account, we could model the response to
any given stimulus F € E, i.e. N(FE), as a fuzzy partition of the set of color terms C [Zadeh
1971, Kay & McDaniel 1978], which constrains the numbers 7 of the pairs (¢,7) € C x I to

sum to 1, or

o 2vie,iy =1 (2.7)

ceC

where 27% is the selector of the second element of an n-tuple, for any N(FE). The mapping N
then defines a set of membership or characteristic functions f., one for each color category
¢ € C, on the universe E. It is not clear what the advantage of such a model would be,
however, or how well it fits the data on human color categorization.

The definition of A" implies that I will not be concerned with recovering R(\) or S(\)
from F(A), as noted above. A practical consequence of this is that changing the lighting
of a scene may yield a different value of A. 1 don’t consider this a problem as long as the
change is consistent with human performance on the same task.

From the brief discussion of the physiology of color vision above, it follows that if we want
to model the relation between the domain of £(\) and a set of color terms, i.e. if we want
to model color naming, it is not sufficient to define the extensions of color terms as intervals
on the wavelength range between 380 and 770 nm. In particular, this approach could only
work for pure monochromatic stimuli, which are very rare in real-world situations, and it
would not explain the typical graded membership functions one finds in anthropological
and linguistic research when subjects are asked to identify best examples and maximal
extensions of color terms with respect to a set of color chips with known properties [Berlin
& Kay 1969]. This approach would also leave out non-spectral colors like purple or brown

7 But perhaps the biggest objection against such an approach would be that

altogether.
it would constitute a system-external semantic model of color names, while our interest is

in system-internal semantics, to be explained below. I claim that to model human color

" Non-spectral colors are colors that do not appear in the spectrum of white light, i.e. they are not single
wavelength signals but complex signals. In the frequency domain, they are represented as non-impulse
functions.
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naming it is necessary to take human color perception into account, just as [Ronchi 1957]
claims that it is necessary to take human physiology and psychology into account when
studying optics, if that is defined with respect to visible light, i.e. implicitly with respect

to an observer.

2.3 Outline of the Model

I will define a computational model of human color perception and color naming, i.e. con-
struct an algorithmic mapping A as defined in Section 2.5, which is based in part on existing
data about the neurophysiology and psychophysics of color perception, and which can ex-
plain existing anthropological and linguistic data on color naming as well. The model should
allow an artificial cognitive agent (e.g. a GLAIR-agent [Lammens et al. 1994, Hexmoor
et al. 1993c, Hexmoor et al. 1993b, Shapiro & Rapaport 1987]), when equipped with the

necessary sensors and actuators, to

1. Name colors in response to a visual stimulus, and provide a confidence or “goodness
of example” rating of its judgment; this requires evaluation of A'(F) and some kind

of thresholding on the resulting pairs (c, 7).

2. Point out examples of named colors in its environment, and provide a confidence
rating, and as a derivative of this capability, pick the best example of a named color
from a set of color samples, or from its environment in general; this requires evaluation
of N(E) over the whole visual field, and some kind of maximization on the resulting

pairs (¢, ).

The performance on these tasks must be consistent with human performance on the same

tasks, as described in Chapter 4. In particular, this requires that

1. The model place the foci of basic color categories, as described in [Berlin & Kay 1969]

and elsewhere, in the same regions of the color space as human subjects do

2. The model place the boundaries of basic color categories in the same regions of the

color space (cf. Chapter 4) as human subjects do.

A more precise definition of “same region in the color space” will be given, to determine

success in this area.

24



The model deals only to a limited extent with a number of important issues in color
vision, most notably the effects of surrounds on perceived color, or in general the relation
between spatial and color vision, and color constancy. These issues are dealt with only in
as far as they are relevant to color naming.

The model has been integrated into a vision system capable of interacting with its
environment as described above. I will refer to this system as the Color Labeling Robot
(CLR),® after the Color Reader Robot described as a thought experiment in [Hausser 1989].
The model has also been tested on simulated data, and the results compared to known data
about human color naming.

A system that exhibits the behavior described above is an example of a (partly) embodied
[Lakoff 1987, Kay & McDaniel 1978] or grounded [Harnad 1990] system, or it can be seen

as an instance of situated cognition [Suchman 1988].

#Thanks to Bill Rapaport for suggesting this acronym, perhaps the most important part of an Al system.
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Chapter 3

Wider Significance

In this chapter, I describe what I believe to be the wider significance of my work with
respect to some foundational issues in artificial intelligence and cognitive science, and to

some extent also in philosophy.

3.1 Embodiment, Symbol Grounding, and Natural Language

Semantics

The computational model of color perception and color naming described in this disserta-
tion can be seen as a case study in embodiment, symbol grounding, and natural language
semantics. The symbol grounding problem is about how to make the semantic interpre-
tation of a formal symbol system intrinsic to the system, rather than just “parasitic on
the meanings in our heads” [Harnad 1990, p. 335], i.e. only accessible to us, as designers
or observers of the formal system, rather than to the formal system itself. The concept
of symbol grounding is closely related to those of embodiment [Lakoff 1987] and situated
action or cognition [Suchman 1988]. As mentioned before, the view of intelligence as being
closely connected to the properties of the intelligent organism and the properties of the en-
vironment the organism operates in can be contrasted with a purely symbolic view, which
holds that intelligence can be studied in the abstract, without reference to any organism

(e.g., [Newell 1979]).
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Since there is no clear definition available in the literature (Section 4.1), at least not
for my purpose, I define embodiment as the notion that the representation, manipulation,
and semantics of high-level symbolic concepts is in part determined by the physiology (the
bodily functions) of an agent and in part by the interaction of the agent with the world.
For instance, the semantics of color concepts is in part determined by the physiology of
the color perception mechanism, and in part by the visual stimuli this mechanism interacts
with. The result is the establishment of a mapping between symbolic color concepts and
analog representations that reflect some properties of both the color perception mechanism
and objects in the world.

My color perception and naming model grounds the color terms from the codomain of
AN1in the perception of visual stimuli, the domain of A/, by connecting them via the mapping
N itself. In other words, the mapping A constitutes a system-internal, referential semantic
model of the color terms, or embodies the semantics of color terms for the agent that it is
part of. Of course, such a model is an instance of situated cognition if we consider the color
terms to be “mental” representations that are causally connected to the environment the
robot operates in.

Note that one could simultaneously define a traditional external, model-theoretic seman-
tic model of the color terms the robot is using, which might be more or less co-extensive
with the internal semantic model.? Or a robot-psychologist could study the robot’s behav-
ior on color-related tasks and try to infer a semantic model from that. What’s important

about the internal model is the following:

1. Without it, the robot would not be able to perform any color-related tasks, since it

could not perceive any colors at all.

2. In the internal model, there is no ambiguity about which “objects” symbols are paired
with, since the relation is a causal one. As such, the model is immune to criticism of
logical models as models of meaning that is based on the indeterminacy of reference

or the under-determining of meaning by truth conditions, e.g., [Putnam 1981].

3. The pairing of terms with numerical “goodness” measures in the codomain of A al-

!The mapping from a color space to a set of color names, see Section 2.2.
2Chances are that the match will be less than perfect, however, without detailed knowledge of the internal
model.
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lows for both discrete, non-overlapping categories and graded, overlapping categories.
To accurately model human color categorization, it is necessary to use the second
kind of category [Berlin & Kay 1969, Kay & McDaniel 1978]. This property of the
model reflects and makes explicit the difficulty involved in mapping a (for all prac-
tical purposes) continuous world onto a set of discrete symbols such as color terms.
Subsequent processing in the symbolic domain may choose to ignore the overlapping
and graded nature of the color categories by using only the term component of the
pairs after applying a thresholding function to the numerical “goodness” component,

but access to the “goodness” component is possible, if needed.

My thesis with respect to symbol grounding is a pragmatic one. I do not claim that,
without grounding, a symbol system cannot truly “understand” the world, because that
would require a consistent definition of “understanding”, which is lacking to date. My
thesis is that grounding, as [ interpret it, enables a robotic agent to perform well on color-
related tasks and that it provides a well-defined model of the agent’s semantics of color
terms that also adequately models the semantics of human color terms. The latter may
be important for man-machine communication, as Winston has pointed out [Winston 1975,

p.154].

3.2 Knowledge Representation and Semantics®

The work presented in this dissertation is relevant to the field of knowledge representation
and reasoning (KRR), although it is not what is typically understood by that term. KRR
involves a formal representation language? with a set of inference rules that operate on

constructs of the language [B. Smith 1985]. Most KR languages can be translated relatively

°] am indebted to many people for the ideas presented in this section, too many to name them all.
Discussions on this subject have taken place over a number of years, in settings ranging from CS department
courses to the bar of a hotel in Italy. A few of the important conversation partners in this respect have been
(in alphabetical order): Stevan Harnad, Henry Hexmoor, William J. Rapaport, Kenneth Regan, Stuart C.
Shapiro, and Tim Smithers. The responsibility for what I’ve turned their ideas into is entirely mine, however.

*Or at least a representation language of some kind. The degree of formalism in KRR systems varies
considerably, along the lines of what has been called the neat-scruffy debate [Rapaport 1992]. Any (symbolic)
knowledge representation language uses terms of some kind, however, with an associated semantics not unlike
what I describe here. My characterization of KRR is not meant to be exhaustive, however, and my remarks
are addressed only to KRR systems of the kind alluded to.
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easily into predicate logic of some kind,® so I will assume a predicate-logic-like language for
the purpose of this discussion. The semantics of KR languages is typically (if at all) defined
in terms of Tarskian semantics or derivatives thereof, with an interpretation function that
maps terms and predicates of the language (the syntactic domain) into objects or sets of
objects (or properties) in the domain of interpretation (the semantic domain), whether that
domain is taken to be (part of) the real world, a possible world, or intensional objects in
an agent’s mind [Manin 1977, Shapiro & Rapaport 1987]. I see two problems with the
practice of KRR as I have just outlined it (see also critics of traditional Al, e.g., [Harnad
1990], [Lakoff 1987], [Searle 1980], or recently [Angell 1993], to name just a few). First, the
semantic models of KRR systems are purely hypothetical, in that they rarely, if ever, enter
into the workings of an implemented KRR system. Second, the semantic models used in

model theory for logical systems do not fit “natural” or perceptual categories at all.

3.2.1 Semantics as vaporware

Symbolic KRR systems are observer-level theories of agents’ representation and reasoning
capabilities, and as such should not be used as agent-level implementation vehicles, or only
with extreme care. They can be used to describe, discuss, and hypothesize about agents’
behavior among scientists (observers), but that is something very different from providing
an actual agent with such capabilities. Analogously, we may describe the workings of a
car engine using the language of differential equations, with an accompanying semantics.%
One would not expect, however, to find an interpreter for differential equations in an engine
upon opening it up, nor does it seem likely that we could build a working engine based
on such an interpreter. Why then would we want to use a KRR language to implement
a working agent (or agent’s mind)? Granted, a car engine and a mind are very different
things, at some level of description at least.

KRR systems are attempts at formalizing the way we intuitively and consciously perceive

®The proof of the stronger claim that all KRR formalisms can be translated into first-order logic is rather
simple, if one considers only languages and inference mechanisms which are implemented or implementable
on a Turing Machine (TM), and one further considers the TM-equivalence of first-order logic [Boolos &
Jeffrey 1974]. T am not aware of any KRR formalisms which are not implementable on a TM, and I will
disregard this possibility in the light of the Church-Turing thesis [Davis & Weyuker 1983].

5The preferred interpretation is one that relates the symbols used in the equations to such things as
mass and velocity of objects, although one can doubt whether these are things “in the world” or just more
abstractions derived from our perceptual experience (cf. [Heisenberg 1988], [Schrodinger 1988]).
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the world to be, including the way we perceive our own mind to work, in order to endow an
artificial agent with a similar understanding, and hopefully with similar capabilities to use
that understanding in order to function intelligently in the world. As such it relies heavily
on introspection and conscious awareness of the world and ourselves as a source of things
to formalize. But in the course of studying perception on the one hand and the physical
world on the other hand, we have come to realize that there is an enormous gap between the
physical world as we now understand it to be and our conscious perception of that world.
That gap is somehow bridged by our perceptual apparatus, and our knowledge of how that
works is still spotty at best. Moreover, the perceptual apparatus is entirely “invisible” to
the conscious mind,” to such an extent that even some scientist have proposed that we just
perceive the world directly, without any intervening mechanism at all (e.g., [Luce 1954]).
Strange as that may seem, it is a good indication of how convincing and “real” conscious
awareness of things is, or seems to be. In Al it has taken the concerted efforts in the field
of computer vision to enable computers to see, to realize just how hard the problem is, and
how well our brains manage to deceive the conscious part of us into thinking perception
is something direct and easy. FEven color vision, which this dissertation deals with some
aspects of, and which seems so natural and effortless to us, is a far from understood problem
of amazing complexity. In the light of all this, it seems limited at best to try to endow an
artificial agent with intelligence by merely trying to formalize our conscious awareness of
things and ignoring the very mechanisms which lead to such an awareness in the first place.

Although other kinds of models are emerging, some (like artificial neural networks)
based more closely on our present understanding of how the brain works, we may feel that
their level of description and operation is too low, that they therefore offer little hope for
working models of mind, and thus that any viable approach has to encompass some kind
of KRR capability.® Elsewhere we have argued for hybrid models of autonomous agents,
comprising both KRR and other “lower level” mechanisms [Hexmoor et al. 1992, Hexmoor
et al. 1993c, Hexmoor et al. 1993b, Lammens et al. 1994], and there are some signs that

the neural network community is trying to re-incorporate results from “traditional” AT and

TOr “cognitively impenetrable”, as [Pylyshyn 1981] calls it.

#One rather sobering observation about artificial neural networks concerns the size of the models, typically
no more than a few hundred artificial neurons, compared to the estimated 10 billion neurons in the human
brain, each of which may compute functions that are quite a bit more complex than the typical artificial
neuron does. Even taking the difference in speed of the underlying technology into account, the complexity
gap is huge.
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KRR [Zeidenberg 1990]. If we accept the premise that using a KRR language is a valid
approach to implementing (part of) an agent’s mind, we should be aware of the unusual
nature of trying to use an observer-level description as an agent-level implementation. One
of the consequences, I believe, is that we have to treat the semantics of our descriptive
language differently.

Ordinarily, it suffices that there exists a systematic interpretation (semantics), and that
all observers share it (or share the preferred interpretation). We then hope that we can
restrict the formal properties of the representation language in such a way that (1) we can
express anything in the domain of interpretation in the formal language (representational
adequacy) and (2) the interpretation of formal statements derived from others we consider
to be true, by means of formal inference, does not disagree with the facts of the domain
of interpretation, as we perceive them (inferential soundness). In addition, we may require
that (3) anything we perceive to be true of the domain of interpretation can be derived
from a set of basic premises by formal inference (inferential completeness).” Semantics does
not enter into the inference process; it merely serves as a tool for theorists to convince
themselves and each other that the formal system does what it is supposed to do. But
although semantics has been effectively shut out from the inference process, it is eventually
the yardstick with which the usefulness of models is measured. We hope that in turning
the crank of the formal system, it will provide us with formal conclusions representing true
statements about the domain of interpretation which we had not ourselves perceived before.
It is a tool for us to understand more about the domain of interpretation.

If we want a KRR system to be part of an agent-level implementation of a mind, however,
things are different. It is no longer the independent theorist who will use a semantic
yardstick to measure the performance of the formal system and hope to learn more about the
domain of interpretation by turning the formal crank. What we are after in implementing
a mind is to give the artificial agent itself the same kind of “understanding” of the domain
of interpretation as we have, to give it the same access to that domain as we do. In other
words, the semantics of the model can no longer exist independently of the system itself; it
has to be part and parcel of it. In terms of the subject matter of this dissertation, we do not

want to find out more about color by building a formal system and turning its crank, but

®These definitions are rather informal; some more formal ones are discussed below.

31



rather we want an artificial agent to understand color the way we do, i.e., to perceive color
the way we do. No amount of axioms and inferences in a formal system will ever give an
agent that understanding if it cannot identify the referents of the terms that are supposed
to be interpreted as representing colors, i.e., if it does not have an integral semantic model
of color terms as part and parcel of its “mind”.!1® Color perception in this case provides
the required grounding for a set of terms of the KRR system. It constitutes an internal,
referential semantic model of color terms, as I explained above. Even if we could provide
a blind agent with enough formal representations (without the associated semantics) to
not produce any statements about color which we would find in disagreement with our
understanding of it, it could hardly be said to understand those statements if it has no way
to identify or discriminate color in its environment at all, i.e., to make color play a role in
its interaction with its environment.!! This is, of course, what Steven Harnad has called
the symbol grounding problem [Harnad 1990].

I conjecture that an ungrounded agent will never be able to adapt to its environment in
an effective way, or to interact with its environment in a useful way, two things we can safely
regard as prerequisites for intelligence. The reason it cannot do these things is that it is
effectively cut off from its environment as long as its representations are ungrounded, i.e., as
long as they are formal only. In that respect I consider the type of approach as exemplified
by [Rapaport 1988] as insufficient, viz. that semantics is reducible to syntax. It seems to
arise out of an exclusive preoccupation with language, and I believe one cannot deal with
language without dealing with cognition in general, including perception. Language is the
top of a mountain of cognition, and we cannot hope to arrive at it without climbing.

For a slightly different approach to the same problem, let’s go back to the view of a KRR
system as a formal language for a moment. A formal language £ consists of an alphabet
A, a syntax describing the legal strings of the language S C A*, a set of axioms A that

are given as true statements of the language, and a set of inference rules R that allow us

101 as Cris Kobryn put it in a comp.ai electronic news article: “How does one verbally explain
what the color blue is to someone who was born blind? The problem here is to explain a sensory ex-
perience (e.g. seeing ‘blue’) to someone lacking the corresponding sensory facility (e.g., vision)” (article
<200@kvasir.esosun.UUCP>). Note that this formulation presupposes a person with a developed language
capability, however, which makes the problem considerably less hard than in the case of an artificial agent.

11 do not consider producing or accepting natural language surface forms to constitute interaction; indeed,
I would claim the blind agent I described cannot understand the meaning of the color words it might produce
or accept.
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to derive new statements from given ones [Manin 1977]. Any statement s € S that can
be derived from A using the rules in R is a theorem, and the set of all derivable theorems
plus the axioms is a theory. The inference rules R are sound iff given a consistent set A,
one cannot derive a contradiction, and the formal system is complete iff all statements that
are true in any model (interpretation) of the language are theorems of the language.!? The
notion of representational adequacy described above is more difficult to formalize. Once
we have defined a formal language £ = (4,5, A, R), we have once and for all defined a
corresponding theory, which we may regard as being implicit in the definition and able to
be made explicit by applying the inference rules to the axioms A and any previously derived
theorems.!? If we conceptualize the set A* as a space with each string represented as a point
(or a vector),'* then the theory defined by the formal system is necessarily a subspace of
that space. It is easy to see that we can change the shape and size of the theory-subspace
by changing the set of axioms A or the set of inference rules R.

What the ungrounded symbolic approach to KRR, for instance [Rapaport 1988], is at-
tempting to do, in my opinion, is to shape the theory-subspace such that it coincides with
the space of what we as external observers would consider to be meaningful statements.
It does this by introducing additional “meaning postulates” (axioms) or inference rules,
whenever an undesirable result is produced. For example, when a natural language under-
standing (NLU) system happily produces sentences like “Young old Lucy is a male girl”,
additional meaning postulates are added to the underlying KRR system whose intended
interpretation is that something cannot be young and old at the same time, nor male and
a girl at the same time, and the inference rules used during the NL generation process are
changed, if necessary, to take these constraints into account. Another example would be a
meaning postulate that states that although a phrase like “reddish green” is syntactically
well-formed, semantically it is not — or it is at least strange.!® One hopes, then, that

introducing enough of these meaning postulates and inference rules will eventually make

12 Alternatively, one could say the rules are sound iff every derivable wffs is true, and the rules are complete
if (Vs) F sV E =s.

13Strictly speaking, this applies to monotonic inference only. Since it has no bearing on the gist of the
argument, | will disregard non-monotonic inference for now.

MDetails of the construction of such a space are left as an exercise for the reader.

'*In an informal inquiry I did not find any natural language that uses such a term on a regular basis, and
I speculate (with many other researchers) that there is no such language, for a reason which will become
apparent later.
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the theory-space converge onto the space of meaningful statements, i.e. meaningful for the
human observer.

I will refer to this as the pruning problem, since it amounts to pruning down the tree of
theorems of the formal system. This, I believe, is in essence what [Rapaport 1988] refers to
as syntactic semantics, although he does not state it in these terms. The important thing
to notice is that “meaning”, as we humans understand it, does not enter into the picture,
except as an external yardstick used by the observer to measure how well the formal system
is performing. The formal system itself is blissfully unaware of any meaning. 1 believe
that although in principle it is possible to constrain a formal system enough in this way,
there is no indication that we are anywhere near that goal, or making substantial progress.
Probably the largest effort in this respect is the Cyc project at MCC [Lenat 1990], the
usefulness and robustness of which for practical applications remains to be shown. One of
the main problems with this approach seems to be that it is not clear where such postulates
should come from (whether there is a systematic “discovery procedure” for them), nor how
many one needs, nor indeed whether their number is finite at all. The Cyc project seems
to have resorted to a rather haphazard way of collecting meaning postulates (and inference
rules), essentially by having team members read anything they can get their hands on and
figuring out which postulates have to be added to make the system work properly [Lenat
1990].16

What is the alternative? If we want to use some kind of symbolic knowledge represen-
tation formalism, we will have to make sure that it is grounded in perception and action,
or embodied. Basically that means making sure that the agent using the KRR formalism is
able to identify and interact with the referents of a set of distinguished terms, the directly
grounded ones (cf. [Harnad 1990]). Other terms and constructs of the KR language, the in-
directly grounded ones, will have to derive their meaning from this set of directly grounded
terms. I will make these concepts more concrete in what follows. Indeed, this entire dis-
sertation can be seen as a case study of the grounding of a particular set of terms: basic
color terms (Section 4.2). As sketched in Section 2.3, and explained in detail in Chapter 5,

this approach makes a referential semantic model an integral part of the agent’s machinery,

18This is not meant to denigrate the efforts of the Cyc team. I believe that they are doing an excellent
job within the parameters of their project. I merely mean to point out some fundamental problems with the
approach itself, which does not reflect on the integrity of the Cyc team members or the value of their work.
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rather than something that exists only on paper or in the mind of the observer. Not only
can such an agent identify and interact with the referents of (a subset of) the symbols it
uses, a condition I cited above for understanding, but it also provides us with a different
approach to the pruning problem I mentioned before, one that looks more promising to me
than the purely syntactic approach. We can prune the tree of theorems from a semantic
point of view, rather than a syntactic one. That answers the question where meaning pos-
tulates come from, viz., from the constraints that are inherent in the perceptual and motor
mechanisms that ground the symbols of the KR language. FEmbodiment really matters;
one cannot study intelligence or cognition in the abstract. This approach may also provide
an answer to the question how many meaning postulates are needed. I propose that they
are generated on the fly, as needed, by using embodied reasoning mechanisms as well as
embodied representations.

To make all of this more concrete, let’s consider the grounding of basic color terms.
As T will describe in section 4.3, human color perception is thought to be organized in an
opponent fashion, red and green being one opponent pair, and blue and yellow another
(Figure 3.1). That means that opponent color percepts cancel each other, so that we can
well perceive yellowish green or reddish blue, but not reddish green or yellowish blue (the
mutual cancelation results in an achromatic white or grey perception). If our model of color
perception and color naming (i.e., our semantic model of basic color terms) uses an analog
color space representation that conforms to that organization, our agent can employ an
analog style “reasoning” process to think and speak about color, which basically amounts
to mental imagery, or envisioning the referents of terms in the perceptual space they derive
their meaning from.

Let’s assume for the sake of simplicity that the semantics (meaning) of a basic color term
(e.g. “red”)is a function from that term to a point in the color space and that the semantics
of a compound color term (e.g. “yellowish green”) is compositional, i.e. it is a function of
the meanings of its constituent terms.'” In particular, let’s assume that the point which
is the image of the compound term under the semantic function is halfway between the

points that are the images of the component terms.'® The meaning (which I take to be just

17T will relax the point assumption in Chapter 5. This example also ignores possible differences in the
relative saturation and brightness of colors, but without loss of generality.
18Using some metric on the color space, Euclidean or other; cf. [Shepard 1987].
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white

black

Figure 3.1: Schematic representation of a perceptual opponent color space
(see text). The coordinate system is cylindrical: the vertical axis, going from
black to white, represents perceived brightness and is also known as the grey
axis; hue (what we commonly refer to as “color”) and saturation (the “purity”
of a color) are represented in polar coordinates, with the origin on the grey
axis, hue as the angle between a given point and a distinguished point (usually
the location of red), and saturation as the distance from the grey axis.
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the image of the term under the semantic function) of “yellowish green” is then a point in
the color space corresponding to the color one perceives when superimposing yellow and
green lights, i.e., a yellowish green or greenish yellow color,'® and the same for the meaning
of “red-green”. However, in the latter case, the resulting percept is achromatic (white or
gray), i.e., not a color in the common sense.?’ Hence, there is no need for a syntactic
meaning postulate specifying that there is something semantically odd about “red-green”
as a color term but not about “yellowish green”: it is immediately obvious from envisioning
the meanings of these terms.

So, in a sense, having a semantic model as part of an agent’s mind provides meaning
postulates, but they do not have to be represented explicitly. How many such postulates
are there? Given that the perceptual space is represented in an analog fashion, the number
is infinite for all practical purposes, up to the limit of resolution of the perceptual space.?!
The semantics of terms used in KRR is now no longer something extraneous to the KRR
system, but provides essential constraints on the reasoning process. It is not yet clear to
me how these constraints should affect the reasoning process, only that they do. An agent
with grounded color terms will not likely attempt to paint its office walls reddish green, for

instance.

3.2.2 Categorial misfits

There is a more fundamental problem with Tarski-style semantics, with regard to its poten-
tial use for KRR systems. Given the discrete symbolic nature of logic, Tarski-style semantic
models have always presupposed an equally discrete domain of interpretation, consisting of
individuals that are the images of individual constants of the language under the interpre-
tation function, sets of such individuals corresponding to predicates of the language, etc. It
does not matter whether the domain of interpretation is taken to be the real world, a possi-
ble world, objects of thought, or something else; the discreteness assumption is universal. As
I discussed in Section 1.1, the categories of human perception (and, by extension, of human

cognition, since I firmly believe that perception is one of the foundations of cognition) are

¥The limitations of language become very apparent here.

2°The term achromatic color sounds somewhat contradictory to most ears, but is used as a technical term
in the color vision literature.

2! There are many other phenomena related to the graded nature of color categories that could be expressed
with similar meaning postulates, but it would lead us too far to discuss those now.

37



not discrete. This misfit between logical categories and perceptual categories is one of the
basic problems in trying to use logic-inspired KRR formalisms as agent-level mechanisms,
I believe (see also [Lakoff 1987], among others). If we want to make semantic models part
of the agent’s machinery, as described above, they will have to take the non-discrete nature
of natural categories into account. We find support for this point of view in a perhaps

unexpected place, viz. a textbook on mathematical logic:

Most natural and artificial languages are characteristically discrete and linear
(one-dimensional). On the other hand, our perception of the external world
is not felt by us to be either discrete or linear, although these characteristics
are observed on the level of physiological mechanisms (coding by impulses in
the nervous system). [...] The human brain clearly uses both principles. The
perception of images as a whole, along with emotions, are more closely connected
with nonlinear and non-discrete processes — perhaps of a wave nature. [Manin

1977, p. 18]

My dissertation work is a case study of how to map a continuous world onto a set
of discrete symbols, viz., basic color terms. The essential characteristics of the model in
this respect are that it contains an analog representation which functions as a perceptual or
psychological space (cf. [Shepard 1987]) causally connected to the outside world via sensors,
and a mechanism that relates regions in this space to individual terms and associated
“typicality” or “goodness” values (Section 2.3). The regions representing the extensions of
the terms may overlap or not, and the characteristic functions associated with the terms
(if we conceive of them as something like fuzzy sets) are continuous-valued. This, I believe,
represents a much more realistic attempt to characterize the semantics of a set of terms
than any discrete model can hope to achieve. As logicians, we may not like the inherent
fuzziness or “scruffiness” of a model with continuous numerical components, but as students

of cognition we are forced to accept and deal with it.??

22 Artificial neural networks have also embraced the notion of continuous-valued quantities rather than
discrete symbols, and I believe this is partly responsible for their success in modeling some aspects of
human perception and cognition. My own work is hybrid in nature, using both discrete symbols and
continuous numerical quantities. Recent neural network research has also attempted to re-introduce symbolic
representations [Zeidenberg 1990].
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3.3 Some Pseudo-Philosophical Notes

The discrete symbolic nature of both logic and natural language (at least in its surface
manifestations) has led many to propose discrete semantic models, as described above. If
the referents of symbols or words are taken to be in the world, this leads to incompatibilities
between the models and how we perceive reality to be. These incompatibilities are reflected
in philosophical problems like the question of indiscernibles: “At sunset, where does the
sky change from orange to yellow, yellow to ...to blue, blue to dark?”. Only if one assumes
that color is a discrete-valued object property would one expect it to change abruptly from
one value to another at a particular place. If one assumes that color is a continuous-valued
perceptual property, the question becomes ill-posed.

Another pervasive assumption in the domain of color is that color is a property of objects
in the world, and our visual system perceives that property. In logical models, this would
typically be represented as a predicate, so that, e.g., Red(x) is taken to mean that object
has the property of being red, and in formal semantic models these predicates would map
into sets of red objects. As I discussed in Section 2.1, color is not a property of objects but a
response of the visual system to certain physical stimuli, and this response is only indirectly
related to certain object properties and can vary in space and time with unchanging objects.
In the semantic model I propose, a term like “red” maps into a region of the perceptual
color space; i.e., redness is a perceptual phenomenon, not a phenomenon in the outside
world. It is then easy to see that a question like “What is the color of the sky at night?” is
ill-posed as well. The sky does not have any color, either during the day or at night.?3

In logical and philosophical writings on semantics, one often runs into strange denizens
like unicorns and round squares, and these poor creatures are habitually blamed for the
existence of possible worlds, accessibility relations, objects of thought, and the like. The
seldom explicated assumption underlying all this is that since the words exist and we can
use them in thought or natural language, they must refer to some object somewhere. But
where could unicorns and round squares live, other than in possible worlds or as mere
objects of thought? The assumptions of traditional model theory, as described above,

force one into accepting the strangest things. I believe we should abandon or review those

2% Along the same lines, one might doubt whether there is any sky to begin with, but I will not make that
case.
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assumptions, rather than force the universe to conform to them. Along the lines of what
[Harnad 1990] and others have proposed, I believe that meaning derives from perception
and interaction with the real world, not from possible worlds or objects of thought.?* In
order to understand what a unicorn is, we first have to know what horses and horns are.
If we want to ponder round squares, we’ll have to know what circles and squares are first.
Such knowledge comes from perception and interaction with the world, and we can consider
the corresponding symbols or words to be “directly grounded”. Other symbols or words,
like abstracta or “impossible” objects, which we can consider to be “indirectly grounded”,
can only be meaningful by virtue of being related to directly grounded ones in a systematic
way, and don’t have to refer to strange creatures in hypothetical modes of existence. 1
therefore consider the most urgent task of KRR to be to investigate how symbols can be
directly grounded in perception and interaction; we can worry about indirectly grounded
ones later. We have to learn how to crawl before learning how to walk.

The work on color perception and color naming presented in this dissertation is an
investigation into the grounding of just a small set of terms, and already the complexities
are considerable. Under those circumstances, it is useless to worry about unicorns and
round squares, or general purpose KRR and natural language processing, in my opinion.

Or as [G. Edelman 1992] puts it while discussing Lakoff’s cognitive grammar:

The important thing to grasp is that idealized cognitive models involve con-
ceptual embodiment and that conceptual embodiment occurs through bodily

activities prior to language. [p. 246, italics in original]

I believe this is essentially true, and in order to arrive at true language competence for
an artificial agent, it will have to go through at least some prior stages of conceptual
embodiment first.

My work may also shed some light on the empiricism vs. innateness debate in cogni-
tive science (whether “primitive” concepts or meanings are acquired through experience or
inborn), with respect to the origin of “primitive” concepts. In my model, (color) concepts
are grounded in the perception of the world, rather than in the world itself, but perception
is causally connected to the world. The mechanisms for abstracting perceptual data into

categories, in our case the neurophysiology of color vision, are to a considerable extent ge-

2*The latter proposal is entirely circular, in my opinion.
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netically determined, i.e. “innate”. That does not mean that a child is born with complete
color concepts, waiting to be “activated” by interaction with the world, except in a very
abstract sense. Since the basic mechanism (the neuro-anatomy and physiology) is innate,?®
any normal child will develop the same or comparable color concepts (categories) when
interacting with the same kind of environment (which may include cultural and linguistic
factors). But no matter how innate the basic mechanism is, no concepts (categories) will
actually develop without external stimuli. Also, different physiology leads to different “in-
nate” concepts, so one might consider cats, for instance, to have different color concepts
than we do, while they live in approximately the same environment, something which would
be hard to explain from a purely empiricist point of view. We can regard the innate vs.
empiricist position as duals; both are right in some respect, but both also miss a part of the
picture as a result of methodological dogmatism. To caricature the respective positions, one
might say that empiricists have overlooked the fact that human physiology is just as much
part of the world as trees and stones are, and it may (and in fact does) influence concept
formation, too. Nativists, on the other hand, have failed to recognize that interaction with
the world is a prerequisite for any concept formation at all, and that there is a systematic
correspondence between some properties of the world and some properties of categories,

albeit mediated (and perhaps transformed) by perception.

#Even this is a simplification. As [Maturana & Varela 1987], [G. Edelman 1992] and [Zeki 1993] point out,
for instance, there is considerable plasticity in even the adult brain. But for the purpose of our discussion
that is not immediately relevant.
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Chapter 4

Related Work

In this chapter, I review the relevant literature. Since the work presented in this dissertation
draws upon a variety of disciplines (artificial intelligence, computer vision, psychology, psy-
chophysics, biophysics, neurophysiology, anthropological linguistics, and philosophy), it is
impossible to exhaustively review the color-related literature in all of them. I have therefore
limited myself to a discussion of the literature that I consider most pertinent to the topic

of my dissertation, and I do not claim exhaustiveness or suitability for any other purpose.

4.1 Embodiment and Symbol Grounding

In [Lakoff 1987], conceptual embodiment is described as the idea that the properties of
certain categories are a consequence of the nature of human biological capacities and of the
experience of functioning in a physical and social environment. It is contrasted with the
“objectivist” idea that concepts exist independently of the bodily nature of any thinking
beings and independently of their experience (p. 12). Several sources from the cognitive
science literature at large are cited in [Lakoff 1987] as having contributed to the development
of this idea. My definition of embodiment in the context of autonomous agents is more
restricted, but more precise (Section 3.1).

According to [Harnad 1990], symbolic representations must be grounded bottom-up in

non-symbolic representations of two kinds:

e iconicrepresentations, which are “analogs of the proximal sensory projections of distal
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objects and events”, and

e categorical representations, which are “learned and innate feature-detectors that pick

out invariant features of object and event categories”.

Symbolic representations, according to Harnad, are grounded in these two levels of ele-
mentary symbols. Symbolic representations consist of symbol strings describing category
membership relations, e.g., An X is a Y that is Z. An example would be “A zebra is a horse
that is striped”.

Part of my model of color perception and color naming (Chapter 5) is a color space
defined by several dimensions derived from or modeled after the activations of the cone
photoreceptors in the human retina. This is an analog (continuous) transform of the sen-
sory “projection” of the radiation reflected off the “distal” surface of the object being
imaged; therefore, it qualifies as an iconic representation. A second part of the model is a
mapping from each point in the color space to one or more pairs consisting of a color term
and a “confidence” or “goodness” measure. The codomain of this mapping qualifies as a
categorical representation, in Harnad’s framework. My model does not involve symbolic
representations of the kind Harnad envisions, as it is limited to the level of terms only, not
sentences.

Harnad lists five tasks a cognitive theory has to explain: discrimination, identification,
manipulation, describing, and responding to descriptions of objects, events, and states of
affairs in the world. A CLR (Color Labeling Robot) is in principle able to perform all these

tasks:

e Discrimination: any two stimuli that result in different coordinates in the model’s

color space are discriminable for the CLR

e Identification: the CLR is able to identify (categorize) any stimulus as belonging to
one (or more) of the categories represented in the codomain of A, and give a confidence

or “goodness” rating.

e Manipulation: an extended CLR (equipped with manipulators) that is capable of
acting in its environment, in addition to perceiving it, is able to manipulate objects

based on their perceived color properties.
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e Describing: since the model only extends to the level of terms, describing is limited

to naming the colors the agent perceives in the world, which the CLR is able to do.

¢ Responding to descriptions: the CLR responds to a description (color name) by point-

ing out an example fitting the description (a colored object in its environment).

4.2 Basic Color Terms

The notion of basic color terms originates in the anthropological and linguistic work of Brent
Berlin and Paul Kay in the late sixties [Berlin & Kay 1969]. They studied color naming
behavior with native speakers of a variety of languages, and the existing literature on the

subject, and recorded two main findings:

1. There are substantial universal constraints on the shape of basic color lexicons.

2. Basic color lexicons change over time by adding basic color terms in a highly con-

strained, though not mechanically predictable, manner.

The research was carried out against a background of extreme linguistic relativism, also
known as the Sapir-Whorf hypothesis [Kay & Kempton 1984], which holds that each lan-
guage performs the coding of experience into language in a unique and arbitrary manner and
that there are no semantic universals (principles of meaning that hold across all languages)
in principle.

Basic color terms are defined as having the following characteristics:

1. They are “monolexemic”; i.e., their meaning is not predictable from the meaning of
their parts (for English, the following do not qualify: bluish, lemon-colored, but blue
and yellow do).

2. Their “signification” is not included in that of any other color term (for English,

crimson or scarlet do not qualify, as they are both included in red, but red does).

3. Their application is not restricted to a narrow class of objects (for English, blond does

not qualify, but brown does).

4. They are psychologically salient for informants, which is apparent from occurring at

the beginning of elicited lists of color terms, stability of reference across informants
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and occasions of use, and occurrence in idiolects of all informants (for English, red,

green, blue, yellow are good candidates, but chartreuse is not).

Some additional criteria are provided for borderline cases.

A set of 329 color chips mounted on a piece of cardboard was used as stimulus material.
The color chips were selected using the Munsell color system (Section 4.4), and represented
40 equally spaced hues x 8 degrees of brightness, plus 9 neutral hues ranging from white

through grey to black (Figure 4.1). A constant light source was used to illuminate the

Figure 4.1: Reproduction of the color stimuli used by Berlin and Kay. In the
actual experiments, the color chips were mounted on a grey background.

chips. After the basic color terms of the language in question had been elicited, subjects
were instructed to indicate the focal point (best example) of each basic color category and
its outer boundary in the set of color chips.

Berlin and Kay found that the foci of basic color terms are similar across totally unrelated
languages, and that they cluster into discrete, contiguous areas in the color space. The
boundaries between color categories, on the other hand, were found to be variable across
languages and even for repeated trials with the same informants. They speculate that unless

the effect is due to the experimental procedure,

it is possible that the brain’s primary storage procedure for the physical reference
of color categories is concerned with points (or very small volumes) of the color
solid rather than extended volumes. Secondary processes, of lower salience and
inter-subjective homogeneity, would then account for the extensions of reference

to points in the color solid not equivalent to (or included in) the focus. (p. 13)
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This suggestion is taken up almost 20 years later by [Lakoff 1987], who considers color
to be an example of a “generative cognitive category”, one that consists of a focus (or
foci) combined with a “complex cognitive mechanism” that generates other members of the
category from the focus in a consistent but not a priori predictable manner.

Berlin and Kay also found that although different languages encode different numbers
of basic color categories in their vocabularies, a total universal inventory of exactly eleven
basic color categories exists, from which the eleven or fewer basic color terms of any given

language are always drawn. The English terms corresponding to the eleven categories are
white, black, red, green, yellow, blue, brown, purple, pink, orange, grey.

In addition, they found that if a language encodes fewer than eleven basic color categories,
then there exist strict limitations on which categories it will encode. The distributional

restrictions across languages can be summarized as a sequence of “evolutionary stages”:

1. All languages have terms for white, black (or more accurately, for light-warm and

dark-cool colors).

2. If a language encodes 3 categories, it contains a term for red, in addition to the terms

encoded in the first stage.

3. If a language encodes 4 categories, it contains a term for green or a term for yellow,

in addition to the terms encoded in the previous stage.

4. If a language encodes 5 categories, it contains terms for green and yellow, in addition

to the terms encoded in the previous stage.

5. If a language encodes 6 categories, it contains a term for blue, in addition to the terms

encoded in the previous stage.

6. If a language encodes 7 categories, it contains a term for brown, in addition to the

terms encoded in the previous stage.

7. If a language encodes 8 or more categories, it contains terms for purple, pink, orange,
grey, or some combination of these, in addition to the terms encoded in the previous

stage.
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This sequence of stages defines a partial order on the set of basic color categories with six

equivalence classes, which may be represented as follows:

purple
whate green pink
< | red | < < | blue | < | brown | <
black yellow orange
grey

where a < b means that equivalence class a is present in every language in which any
element of equivalence class b is present.

Berlin and Kay interpret this sequence as reflecting both distributional facts and a
chronological order of lexical encoding of basic color terms in each language. This chrono-
logical order is in turn interpreted as a sequence of evolutionary stages. More recent work
has revised the evolutionary sequence somewhat, e.g. [Kay et al. 1991]. Although Berlin
and Kay speculate that there is a correlation between the general cultural and technological
complexity of societies and the complexity of the color vocabulary (Figure 4.2), they also

admit that

[...] the particular order in which color foci universally became encoded in
individual lexicons [...] is a difficult problem which is only vaguely understood

at this time. (p. 17)

One may wonder why English, of all languages, turns out to have the most (11) basic
color categories, and thus sits at the top of the complexity hierarchy with respect to color
vocabulary. Other than reflecting the “general cultural and technological complexity of
society”, there might be an unintended bias in the experiment or the interpretation of the
data. For example, it might be difficult to recognize a basic color term in another language
for which there is no corresponding basic color term in English. Nothing in the data seems
to indicate that the 11 terms of English is a theoretical maximum. Indeed, Cairo [Cairo
1977] predicts some additional potential basic color terms which have not been lexicalized

in English (yet?), e.g. something akin to “khaki”.
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Figure 4.2: Anthropological fieldwork (Garry Larson, The Far Side).

Berlin and Kay seem to be concerned with issues of symbol grounding and embodi-
ment too, although they don’t use those terms of course (their work predates the symbol

grounding and embodiment work considerably):

The study of the biological foundations of the most peculiarly and exclusively
human set of behavioral abilities — language — is just beginning [...], but
sufficient evidence has already accumulated to show that such connections must
exist for the linguistic realms of syntax and phonology. The findings reported
here concerning the universality and evolution of basic color lexicon [sic] suggest

that such connections are also to be found in the realm of semantics. (p. 110)
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The research presented in this dissertation can be seen as a formal investigation into such
connections.

Berlin and Kay’s findings have been corroborated in numerous other studies since (see
the bibliography in [Berlin & Kay 1969]). Boynton, for example, reports that other research
has shown that basic color terms are listed first and used more reliably, with greater consen-
sus and shorter response times than any other color terms [Boynton 1990, p. 240]. They also
translate easily between languages and are commonly learned by the age of five, at which
time very few non-basic color terms are used. None of these special attributes apply to
non-basic color terms. Although Berlin and Kay discount the possibility that the boundary
effect is due to their experimental procedure, Kay and McDaniel [Kay & McDaniel 1978]
seem to be less convinced, as I will discuss below. Cairo [Cairo 1977] also has some doubts

about their experimental procedure.

4.3 Neurophysiology of Color Vision

There is a considerable body of literature on the neurophysiology of color vision, some
references to which can be found in [Boynton 1979], [Boynton 1990], [Dow 1990], and [Hubel
& Livingstone 1990], for instance.

The work of De Valois and his colleagues is some of the best known in this area [De Valois
et al. 1966, De Valois & Jacobs 1968, De Valois & De Valois 1975]. They made extracellular
electrical recordings of LGN! cell responses in the Macaque monkey, while the visual system
was stimulated with monochromatic light. They cite various kinds of evidence that indicate
that the Macaque’s vision system is very similar to that of humans, and conclude that
it is safe to generalize the experimental results to human neurophysiology. They identify
six types of cells, based on a statistical analysis of the responses of a large population of
cells. Four of these cell types display what they call spectrally opponent responses, and
two types display spectrally non-opponent responses. The opponent cell types respond
with inhibition to one part of the spectrum, and with excitation to another part. The
non-opponent cell types respond with either inhibition or excitation to the entire spectrum.

One can further distinguish three pairs within the cell types; within each pair, the members

!Tateral Geniculate Nucleus, a body of cells roughly halfway between the retina and the primary visual
cortex V1.
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display “mirror imaged” responses: when one type displays inhibition in response to some
part of the spectrum, the other displays excitation, and vice versa. De Valois et al. note that
the response functions of the six cell types seem to agree well with various psychophysical
findings on color perception, and are reminiscent of the opponent color response functions
of [Hurvich & Jameson 1957]. I will discuss these findings in greater detail in Chapter 5.

The existence of color opponent cells in the (Macaque) LGN has been confirmed in
numerous studies, for instance [Derrington et al. 1984]. The latter study finds groups of
parvo-cellular (P) cells that get opposed but not equally balanced inputs from only “red”
and “green” cones, which they refer to as “R-G” cells, and different groups of P-cells that
receive inputs from “blue” cones almost equally opposed by some (varying) combined input
from “red” and “green” cones, which they refer to as “B-(R&G)” cells. In the magno-cellular
(M) layer of the LGN they find cells that are both spatially and chromatically opponent,
where the “red” and “green” comnes contribute differentially to the center and surround of
their receptive fields. Some of these cells have inputs from “blue” cones as well.

The work presented in [Hubel & Livingstone 1990] discusses more LGN cell types than
[De Valois et al. 1966] does, in particular, the different characteristics of parvo-cellular vs.
magno-cellular responses. It also uses a different classification scheme, which has become
widely accepted after the work of De Valois et al. was published. Some of these cell types
are more sensitive to luminance contrast, others to chromatic contrast, and there are var-
ious kinds of receptive field organizations. These characteristics are not neatly separable,
and it seems that for any given response dimension (like luminance or chromatic contrast)
there is a range of differently sensitive cells. This organization is reminiscent of the orien-
tation columns in the cortex that consist of cells tuned to a particular direction of edges in
their receptive field, with the range of possible directions sampled at approximately regular
intervals by differently sensitive cell types [Dow 1990]. In addition, there are differences
in temporal response characteristics across cell types. The authors report similar response
characteristics and ranges for cortical cells, in addition to the presence of motion-selective
cells and other types. They also present some further evidence that the Macaque’s vi-
sual system is nearly identical to the human one in terms of color perception and other
dimensions.

There are no real spectral sensitivity measurements in [Hubel & Livingstone 1990], as

there are in [De Valois et al. 1966], and the kind of stimuli used is different. For the
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purpose of classifying different cell types in detail, and tracing the pathways between the
LGN and the visual cortex, the kind of stimuli used by [De Valois et al. 1966] may not
be the most appropriate, but for the purpose of measuring the spectral response of groups
of similar cells, they probably are. I will base what follows on the results reported in [De
Valois et al. 1966], while realizing that this isolates a particular response dimension in a
way that may not be fully supported by neurophysiological data. I feel this simplification
is justified though, at least at this stage of modeling, since my work attempts to deal with
color only, as a self-contained (set of) perceptual variable(s). It is in this context that I

interpret Boynton’s warning:

The facile identification of signals recorded from cells in the LGN with various
aspects of color appearance, which is now deeply rooted in many introductory

textbooks, is both premature and misleading. [Boynton 1990, p. 228]

I will use these LGN recordings as a starting point to construct a color space, which in turn
will give rise to measures that I will relate to color appearance, but this is by no means a

“facile identification”.

4.4 Color Models

A “color model”, or “color space”, or “color order system”, is a way to organize the set of
possible human color percepts in some systematic way. Four families of color models can
be distinguished in the color vision literature at large (see, e.g., [Boynton 1979], [Wyszecki
& Stiles 1982], and [Boynton 1990] for some references, and [Brown 1982] for an excellent
overview of color models and color theory). I use these categories merely as an organizational

tool; they are not entirely mutually exclusive. The four categories are:

1. Physiologically inspired models using 3 primaries, based on the three types of cones
in the human retina, starting with Hering’s theory of color vision, e.g., the familiar

RGB models used in computer graphics hardware.

2. Colorimetric color models, based on physical measurement of spectral reflectance,
usually using three primary color filters and some kind of photometer, e.g., the CIE

chromaticity diagram.
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3. Opponent models, based on perception experiments, using pairwise opponent primary
colors (yellow and blue, red and green), starting with the Young-Helmholtz theory,
e.g., [Hurvich & Jameson 1957].

4. Psychological and psychophysical color models based on the appearance of colors to
human observers, with data derived either in an impressionistic way (e.g., the Mun-
sell and Ostwald color models) or in an experimental way (e.g., the Hue-Saturation-

Brightness (HSB) family of color models, or the OSA uniform color space).

I will discuss some typical representatives of each category. Mathematical derivations

(where available) of a collection of color models can be found in Appendix B.

4.4.1 The Munsell and Ostwald color models

The Munsell and Ostwald color order systems represent some of the earliest attempts at
systematically organizing color percepts into a space [Munsell 1946, Birren 1969a, Birren
1969b, Boynton 1979, Meyer & Greenberg 1980, Wyszecki & Stiles 1982, Rogers 1985]. Both
are defined as comparative references for artists and others to use, in a fairly impressionistic
way (based on subjective observation rather than on direct measurements or controlled
perceptual experiments). As such, they are still in use today, especially the Munsell color
order system. The Munsell system has been and continues to some extent to be used
as a standard in industry, notwithstanding attempts to introduce colorimetric models to
replace it. The Munsell system was also used in [Berlin & Kay 1969], as described in
Section 4.2. Both the Munsell and Ostwald systems are based on reflective (subtractive)
color samples. Although quantitative transforms to other color spaces have been defined,
they are not typically used in computer vision and computer graphics work, which deals
with additive color. The general shape of both systems (using cylindrical coordinates, with
three dimensions corresponding roughly to the perceptual variables brightness (vertical),
hue (angular displacement from a reference color), and saturation (distance from the central

axis)) is preserved in many color models, including the ones more quantitative in nature.
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4.4.2 CIE chromaticity and related models

RGB color models as described in the next section rest on a scientific foundation that has
come about largely under the auspices of the Commission Internationale de I’Eclairage
(CIE), or the International Lighting Committee, a Paris-based standards organization.
Early in this century, this organization sponsored research into color perception which
lead to a class of widely used mathematical models [Wyszecki & Stiles 1982]. The basis for
all of these models is a number of color-matching experiments, where an observer judges
whether two parts of a visual stimulus match in appearance, i.e., look identical or not (Fig-

ure 4.3). By varying the composition of the light projected onto either part of the field

Figure 4.3: Color matching: light from two different sources is projected onto
the top and bottom half of a circular field of a projection screen (or other
device such as a CRT'), and observers are asked to judge whether the halves
match in color. The size and shape of the field may be varied, as well as the
composition of the light sources.

of view, researchers can investigate properties of human color vision. For instance, it has
been found that light of almost any spectral composition can be matched by mixtures of
only three suitably chosen monochromatic primaries (light of a single wavelength), which
is the principle behind color TV, as explained in the next section. By repeating this type
of experiment with many different observers and averaging the results, and measuring the
spectral composition and power of each of the light sources, the CIE has defined a number
of so-called standard observer color matching functions. Figure 4.4 shows the color match-

ing functions for a particular choice of monochromatic primaries with an approximately
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red, green, and blue appearance. Assuming that the human visual system behaves linearly,

0 500 50 600 650 700 750

Figure 4.4: The CIE 1931 standard observer color matching functions for the
set of pure monochromatic primaries (positive maxima left to right) 435.8 nm
(blue), 546.1 nm (green), and 700 nm (red). On the Y axis: relative amount
needed of each primary to match a monochromatic stimulus of the wavelength
indicated on the X axis. Negative numbers require that the primary in ques-
tion be added to the opposite side of the circular field (i.e., to the original
stimulus to be matched) for both halves to match. The energies of the pri-
maries are scaled such that a mixture of equal amounts of all three results in
an achromatic white perception. After [Mcllwain & Dean 1956, p. 48].

the CIE then went on to define the standard observer color matching functions in terms
of so-called wvirtual primaries. This amounts to a linear transformation such that the color
matching functions are all positive, which is desirable for practical applications. The re-
sulting primaries cannot be physically realized, however. The result is usually referred to
as the CIE 1931 standard observer color matching functions, and the individual functions
are labeled T, 7, and Z. These functions are also chosen such that 7 is proportional to the
human photopic luminosity function, which is an experimentally determined measure of the
perceived brightness of monochromatic light of different wavelengths (Figure 4.5). These

functions are the basis for most quantitative work in color science to date [Wyszecki & Stiles
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Figure 4.5: CIE 1931 standard observer color matching functions for virtual
primaries (see text). Positive extrema from left to right: z, 7, and 7.

1982], even though there have been several revisions since their original publication.? The
color TV spectral sensitivity functions presented in the next section are linear transforms
of the CIE functions (they are also the functions I used in Section 2.1). According to the
theory, the color matching functions are linear transforms of the actual spectral sensitivity
functions of the (average) human cone photoreceptors (Section 4.4.3). At the time of publi-
cation of the CIE functions, the cone spectral sensitivities were not known yet, but research
done since then has shown good agreement with the predictions [Boynton 1979, Wyszecki
& Stiles 1982, Boynton 1990].

If we know the spectral composition of a stimulus E(\), we can now determine its

chromaticity coordinates as follows (see also Section 2.1). First, we calculate the tristimulus

values X, Y, and Z:

X = /E(/\)E(A)d/\ (4.1)

_ /E(/\)y(/\)d/\ (4.2)

(AZE(N)dA (4.3)

N

(
—

S8

2For instance, the 1931 functions were measured for a 5 degree field of view, and in 1964 the CIE published
similar functions for a 10 degree field of view. Other revisions have been proposed by Judd, Vos, & Walraven,
and others [Wyszecki & Stiles 1982].
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Next, we calculate the chromaticity coordinates:

X

T Xiv+z (#4)

S (4.5)

y X+Y+7 ‘
7

= - 4.

i X+Y 17 (4.6)

Since the chromaticity coordinates are normalized, we lose all intensity information, but all
colors are otherwise representable in this form. Usually the coordinates are plotted as a
parametric z—y plot, with z implicit as 1—(z+y). Such a diagram is known as a chromaticity
diagram (Figure 4.6, left). The chromaticity diagram has a number of interesting properties.
It represents every physically realizable color as a point, within a well-defined boundary
(representing the spectral colors). It has a white point at its center, with more saturated
colors radiating outwards from white. When superimposing light coming from two different
sources, the resulting color percept lies on a straight line between the points representing
the component lights in the diagram. We can represent the range of all colors that can
be produced (the color gamut) by means of three primaries as the triangular area of the
chromaticity diagram whose vertices have coordinates defined by the chromaticities of the
primaries (Figure 4.6, right). The right half of Figure 4.6, for instance, represents the
gamut defined by the NTSC? color TV primaries. It is immediately obvious that not all
physically realizable colors can be realized by the NTSC primaries. In choosing primaries,
one generally tries to maximize the area of the chromaticity diagram covered, subject to
technical and other constraints [Mcllwain & Dean 1956]. The same holds, mutatis mutandis,
for other color producing devices like printers and computer monitors. There is much more
to be said about chromaticity, but this will suffice for our purpose. The interested reader
can consult [Wyszecki & Stiles 1982] for more details and references.

More recently, the CIE has defined some additional color spaces, based on the notion
of perceptual color difference expressed as Euclidean distance in the space (Appendix B).
Color spaces with this characteristic are generally referred to as uniform color spaces. The

best known examples of these are the CIE L*, u*, v* (for additive light) and L*, a*, b* (for

*National Television Standards Committee, alternatively known as the “Never The Same Color” standard.
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Figure 4.6: By plotting the 2 and y chromaticity coordinates of visual stimuli
in a parametric plot, we obtain the CIE chromaticity diagram (left). The
inverted U-shape defines the locations of all spectral (pure monochromatic)
colors, and the straight line closing the U shape, known as the purple line,
defines the most pure extra-spectral purples (mixtures of red and blue). All
physically realizable colors lie within this area. For instance, the 3 points
marked along the edge (clockwise, starting from the lower left corner) repre-
sent the chromaticities of the CIE spectral blue, green, and red primaries of
Figure 4.4. The central point represents a reference white color (known as
CIE C). The more “pure” (saturated) the color, the further away from the
white point it lies. On the right, an approximate representation of the gamut
defined by the NTSC color TV primaries (see text).
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reflected light) [Wyszecki & Stiles 1982, Novak & Shafer 1992]. [Robertson & O’Callaghan
1986] report that linear interpolation in these spaces (for computer graphics) is superior to
the more common RGB and HSL spaces. [Novak & Shafer 1992] believe that it is unlikely
that even the use of CIELUV coordinates? will solve the fundamental problems of color

image segmentation and analysis.

4.4.3 RGB color models

As [Boynton 1990] points out, it has been generally understood for nearly 200 years that
the initial basis for color vision lies in the differential excitation of three different classes

of cone photoreceptors in the retina (Figure 4.7; see also Section 2.1). If we represent a

600 650 700 750

Figure 4.7: Relative spectral sensitivity of the three types of cones in the
human retina, after [Wyszecki & Stiles 1982]. On the Y axis: relative response.
On the X axis: wavelength of monochromatic stimulus light, in nanometers.
From left to right: the S, M, and L (Short, Medium and Long wavelength
sensitive) types, also known as the B, G, R (Blue, Green, and Red sensitive)
types, respectively. The latter names are somewhat misleading, given the
broad-band responses. The functions have been normalized for a maximum
of unity, but in absolute terms the S type is much less sensitive than the M
and L types.

stimulus as a spectral power distribution (SPD), which is in turn represented as a function

of wavelength E, as are the cone sensitivity functions [, 7, and 5, and if we further assume

* Another type of color space coordinates endorsed by the CIE.
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that the response of the visual system is linear, we can represent the response of each of

the cone types to the stimulus as follows (Section 2.1):°
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The entire SPD is thus reduced to three numbers only. Obviously there is considerable
loss of information in this transformation, so that many different SPDs will result in the
same set of three LMS values. Any two stimuli that result in identical LMS values can-
not be distinguished from each other; we call such stimuli metameric (Figure 4.8). This
reduction can be seen as a first phase of categorization. The next phase, color perception
and naming, occurs after the transformation to three values, and is the main topic of this
dissertation. Without serious “data reduction” and categorization, the world would be a
place of “blooming, buzzing confusion”, as William James put it. It is the phenomenon of
metamerism, based on three different receptor sensitivities, that has made color TV and
color computer graphics possible. If our visual system were sensitive to the shape of SPDs
themselves, i.e., to differences in the amplitude of individual wavelengths, rather than to
the weighted energy content of three broad spectral bands, it would be much harder to
reproduce color in any way.

In the cases of color TV or color vision research, a scene is captured using photosensors
with broad spectral sensitivities resembling those of human cones (Figure 4.9) [Mcllwain
& Dean 1956, Ballard & Brown 1982]. Once an image is captured, colors are defined as
RGB triplets. In computer graphics work, these RGB triplets are generated directly, e.g.,
from an underlying imaging model [Foley & Van Dam 1982, Hill 1990]. The colors are then
reproduced by using the RGB values to drive three independent electron guns in a cathode
ray tube, each activating a particular kind of electroluminescent phosphor. The combined
light emitted from the three phosphors will then ideally result in cone excitations that are

proportional to what they would have been if the scene were viewed directly. RGB values

®The assumption of linearity is widely held in color science, e.g., [Wyszecki & Stiles 1982]. There may,
however, be some non-linear phenomena involved in color perception, as I will discuss below.
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Figure 4.8: Metamerism: the two different SPDs in the top row are integrated
with the same spectral sensitivity functions in the middle row, and the re-
sulting LMS values are shown in the bottom row. Fiven though the SPDs are
different, the LMS values are identical, and thus the perceived color is the
same.
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Figure 4.9: Spectral sensitivities used for color TV image capture, as defined
by the NTSC. The negative components of these functions cannot be physi-
cally realized, and have to be dealt with in some way during camera design
and calibration.

can also be used in color printing, after conversion to the complementary CMY (Cyan,

Magenta, Yellow) colors, using subtractive rather than additive principles [Rogers 1985].

4.4.4 Computer graphics and computer vision color models

Several different color spaces have been used in computer graphics and computer vision
work, see e.g. [A. Smith 1978], [GSPC-ACM 1979], [Meyer & Greenberg 1980], [Foley &
Van Dam 1982], [Cowan 1983], [Rogers 1985], [Turkowski 1986], [Hill 1990], and [Novak
& Shafer 1992] for some examples, and Appendix B for some mathematical definitions.
Most of these spaces are derived from either the RGB or CIE XYZ class of models. These
derivations can involve linear or non-linear transforms [Rogers 1985]. Many of the models
involved resemble the Munsell and Ostwald color spaces (Section 4.4.1) in that they use
dimensions corresponding to hue, saturation, and one of brightness (HSB), value (HSV),
intensity (HSI), or lightness (HLS or LHS models). Some models have been inspired by

opponent process models of color perception (Section 4.4.5).
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4.4.5 Hurvich & Jameson’s opponent-colors theory

Probably the best known opponent model of color perception is the opponent process theory
of Hurvich and Jameson, described in a series of articles ([Jameson & Hurvich 1955, Hurvich
& Jameson 1955, Jameson & Hurvich 1956, Hurvich & Jameson 1956, Jameson & Hurvich
1968], see also [Hurvich 1981]). The roots of this theory can be traced back to Hering’s
theory of color vision [Hering 1878] in terms of opponent hues which cancel each other when
superimposed:® yellow and blue on the one hand, and green and red on the other. Hur-
vich and Jameson developed an experimental procedure which they called hue cancelation,
which allowed them to quantitatively express the relative amounts of each of the four basic
hues present in any spectral stimulus. Figure 4.10 represents an example of the resulting

chromatic response or chromatic valence functions. The chromatic response functions are

750

Figure 4.10: Hurvich & Jameson’s chromatic response functions. For each
wavelength (X axis) the functions give the relative amount of each of the four
basic hues present in a pure monochromatic stimulus of that wavelength (Y
axis). The members of opponent pairs are given arbitrary but opposite signs.
Dashed line: blue (negative), yellow (positive). Full line: red (positive), green
(negative).

determined experimentally for each individual observer, but, although there are slight inter-
personal differences, the general shape of these functions remains the same. The functions

presented in Figure 4.10 are derived from the CIE 1931 standard observer color matching

5Unless specified otherwise, I will always refer to mixtures of colored light, rather than dyes or pigments.
The former are known as additive mixtures, the latter as subtractive.
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functions, and may be taken as representative for a large number of observers. Chromatic
response functions are assumed to correlate directly with hue perception. In addition to
the chromatic response functions, an achromatic response function is determined, which
represents the perceived brightness of a stimulus of a given spectral composition. Based on
the chromatic response functions, Hurvich and Jameson also derived hue coefficient func-

tions (Figure 4.11) and saturation coefficient functions (Figure 4.12). The hue coefficient

u
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Figure 4.11: Hurvich & Jameson’s hue coefficient functions. For each wave-
length (X axis), the functions give the ratio of each of the chromatic response
functions to the sum of all chromatic responses (Y axis). Dashed line: blue
(< 500nm), yellow (> 500nm). Full line: red (< 480nm and > 580nm), green
(480 — 580nm ). Note the instability of the functions at the extreme low and
high end of the spectrum, because of the division by very small values.

functions express hue as the ratio of each chromatic response to the sum of all chromatic
responses, at each wavelength. Thus, each of the four basic or physiologically primary hues
has associated with it a function which varies between 0 and 1 over the visible wavelength
spectrum. The wavelengths where these functions reach 1 are the loci of the unique or
pure hues. Only unique blue, green, and yellow exist as spectral colors, but not red, as
shown in Figure 4.11. The saturation coefficient functions give the ratio of the sum of the
chromatic responses to the achromatic response at each wavelength, and are supposed to
reflect the perceptual saturation of monochromatic stimuli of different wavelengths. Hur-
vich and Jameson showed that their model could account well for the stimulus attributes
of spectral lightness, hue, and saturation, and their associated psycho-physical functions.

They also showed how their model could account for some changes in perceived brightness,
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Figure 4.12: Hurvich & Jameson’s saturation coefficient function. For each
wavelength (X axis), the function gives the ratio of the sum of the chromatic
responses to the achromatic response (not shown). Note that the function is
only useful within a narrow frequency band.

saturation, and hue with chromatic adaptation, and to some extent for color constancy
phenomena. They finally defined a “psychological color specification system”, which is a
hue/saturation/brightness (HSB) color space based on hue and saturation coefficients in a
polar coordinate system, and achromatic response as the brightness dimension.

Hurvich and Jameson’s model is the first quantitative color opponent model based on
psychophysical experimentation, and as such deserves a lot of credit. They demonstrate
that an impressive range of psychophysical phenomena can be explained elegantly in terms
of their model. However, the model has a number of drawbacks for use as a computational
model of color perception and color naming, which I now outline briefly. One could interpret
the hue coefficient functions as categorial perception functions, but it is not clear how to
extend these to colors other than the four physiologically unique hues (as Hurvich and
Jameson call them). All their data deal only with some (moderate) luminance levels, and
there seems to be no systematic way to extend it to arbitrary luminance and adaptation
levels. Their discussion of adaptation phenomena is also limited to some specific steady-
state adaptation states, which require the spectral composition of the adapting light to be
known beforehand; i.e., the model is not useful as a computational model of color perception
if it is to operate in real-world environments where lighting characteristics are not known. In

addition, their model says nothing about the dynamics of adaptation with respect to time.
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With the requirements for computational models of color perception in mind, Hurvich
and Jameson’s model is to some extent a descriptive rather than an explanatory model.
Another problem with their discussion of adaptation is that it implicitly assumes that the
different photoreceptor types (the cones in the retina with different spectral sensitivities)
can change their adaptation states independently of each other. In view of their assumption
that adaptation is proportional to receptor output, and the large degree of overlap of the
spectral sensitivities of the photoreceptor types they propose (or even the ones currently
accepted), this independence is very unlikely. [Wyszecki & Stiles 1982] discuss problems
with another assumption underlying Hurvich and Jameson’s work, viz., the linearity laws
for opponent hue cancelation. These laws seem to hold for the red/green responses, but not
under all circumstances for the yellow/blue responses. The color space defined by Hurvich
and Jameson is only partial; there is no representation of an actual 3D color solid, only
selected planar sections through it at fixed luminance levels. The regular spacing of hues
in the polar coordinate system (red diametrically opposite green, and yellow to blue, with
the axes perpendicular to each other) is unlike that of, e.g., the Munsell color model. As
I mentioned above, the categorial boundaries of the four basic hues (red, green, yellow,
and blue) are “built in” to the color space, and it is not clear how other perceptual color
categories would fit in. The basic organization of my own color space using opponent color
pairs is of course similar to that of Hurvich and Jameson.

When compared to neurophysiological data, particularly [De Valois et al. 1966], the red
response in the short wavelength region is strikingly absent, although the overall similarity
is clear. It is not so clear how this discrepancy can be explained, other than to postulate

some unknown higher level neural mechanism that would be responsible.

4.4.6 De Valois & De Valois’s color model

In [De Valois & De Valois 1975], the authors suggest that the six types of LGN cells
found (see Section 4.3) can be grouped into three dimensions, when mirror-image pairs
are combined into one dimension. That results in red-green, blue-yellow, and black-white
dimensions, which can be arranged in a “double cone”-type color space. Hue would be coded
in a circular fashion (ranging through blue, green, yellow, red, and back to blue), saturation

as distance from the center of the hue circle (making hue and saturation specifiable with
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a polar coordinate system in the plane), and brightness along an axis perpendicular to the
hue circle. This kind of color space is well known from early work of, e.g., Munsell [Munsell
1946, Birren 1969a] and Ostwald [Birren 1969b]. De Valois and De Valois also mention
that this kind of color model can be “semiquantitatively” tested, e.g., through color naming
experiments. My color model, presented in Chapter 5, is very close in spirit to the model
they suggest, but as their adjective use suggests, theirs is not specified in any quantitative
detail. Their model is certainly not specified well enough to be usable in the context of

computer vision.

4.4.7 Valberg et al.’s equidistant color space

In [Valberg et al. 1986], the authors investigate the relationship between a psychophysical
color space they have defined in earlier work and the responses of color-sensitive cells in
the Macaque LGN. They propose that a combination of the responses of various types of
spectrally opponent cells of the Macaque LGN may be related to the equidistant color space
they defined, using their SVF color difference formula. They mathematically simulate the
responses of some cell types as linear combinations of hyperbolic response functions of cone
outputs, and compute the coordinates of equidistant points in the Munsell and the OSA-
UCS color spaces. They conclude that neural correlates to elementary hues must probably
be sought in the visual cortex, not the LGN. In other words, some kind of second-stage
processing is necessary for the LGN cell responses to be turned into something that can
explain elementary hue sensations (red, green, yellow, and blue). The color model I present
in Chapter 5 can be thought of as such a second-stage model. Valberg et al.’s models of
LGN cell responses are not used for computer vision work. Their work examines some
properties of these responses in isolation, while my work attempts to construct a complete

color space based on the responses, usable for computer vision work.

4.5 Models of Color Perception and Color Naming

As outlined in the introduction, the working hypothesis of this dissertation is that the
characteristics of the underlying neurophysiological color vision process explain phenomena

like the universality of basic color category foci and graded membership of color samples

66



in color categories. In other words, both universal basic color foci and graded membership
properties must follow directly from the properties of the used color model, if we want
the color model to explain human color naming behavior. It is not sufficient for a color
model to merely categorize all possible color percepts in a systematic way; it must also
explain why some color percepts are more salient than others, and why category membership
judgments are graded. I hypothesize that when learning basic color names, some points in
the learning space are more salient than others and act as “attractors” for category foci.
These properties must follow from the color model, and it is against these criteria that I
will judge the usefulness of any particular color model. None of the existing color models
meets these criteria.

In the light of the requirements for color vision models set forth above, we can imme-
diately disqualify a number of simplistic models of color naming that might be intuitively

appealing:

¢ Extensions of color names as intervals on the wavelength line: Clearly, this kind of
model does not accommodate or explain the existence of universal foci or graded
membership functions. In addition, this model does not allow for non-spectral colors
like purple or brown at all. It is this kind of arbitrary model that Berlin and Kay
(successfully) sought to disprove in their study [Berlin & Kay 1969].

¢ RGB-based models: RGB models are loosely based on the three types of photorecep-
tors and their spectral sensitivities in the human retina (Section 4.4.3). As such, they
model a very early stage in the human color vision process, probably too early to be
useful for our purpose. Indeed, already at the LGN level, RGB-like signals have been
transformed into an opponent coding (yellow—blue and red-green), which continues to
the cortical level [Dow 1990]. As [Hurlbert 1991] points out, RGB codes perceived col-
ors neither uniquely nor efficiently. Since the cones adapt to the intensity and spectral
composition of the ambient light (including surrounding image areas), RGB values do
not uniquely specify colors. In addition, the ranges of wavelengths that the three cone
types are sensitive to overlap greatly, especially for the R and G cones. This makes
for rather inefficient coding of color. According to Hurlbert, the brain has evolved a
second-stage mechanism to transform cone triplets into more reliable and discrimina-

tory code, which discounts redundancies and enhances differences in cone responses.
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She claims that few color scientists would disagree that this color-opponent processing
occurs, but there is disagreement on exactly which directions the opponent-color axes

7 To summarize, although opponent representations are usually

take in color space.
thought of as “merely” linear transforms of RGB space, the opponent representation

is much more suitable for modeling perceived color than RGB is.

From a psychological point of view, the inappropriateness of RGB as a color model is
clearly demonstrated by the difficulty people experience in manipulating RGB color coding
in a consistent and intuitive way, and by the recent interest in different kinds of color models
(among which are opponent models) in computer graphics research [Meyer & Greenberg
1980, Naiman 1985, Rogers 1985, Turkowski 1986, Robertson & O’Callaghan 1986, Scheifler
& Gettys 1992]. [Rogers 1985] points out that RGB and all of the linear transforms thereof
(CIE XYZ, YIQ, CMY) are difficult for users to specify subjective color concepts in. A
closer look at the properties of RGB representations provides independent evidence. The
RGB color solid has the shape of a unit cube, with the achromatic (grey level) dimension
going from (0,0,0) to (1,1, 1), and the maximally saturated colors red, green, and blue at a
lower brightness level than the maximally saturated colors yellow, cyan, and purple, all of
which are situated at corners of the cube (Figure 4.13). This kind of organization does not
match the color naming data very well. As [Shepard 1987] points out, the representation of
stimulus data is of major importance for the interpretation of experimental psychological
results. He cites the example of generalization across stimuli, which can exhibit a non-
monotonic increase between stimuli separated by certain special intervals in a metric space,
for example, between tones separated by an octave, between hues at opposite ends of the
visible spectrum (red and violet), and between shapes differing by particular angles related
to inherent symmetries of those shapes. If we use a circular hue representation rather
than a wavelength interval representation, as in the Munsell color space, for instance, red
and violet become neighbors rather than opposites, and the apparent nonmonotonic effect
disappears. Similar conceptions of psychological spaces exist for pitch [Patterson 1986] and

shape [Walters 1987].

"The reddish-green and yellowish-blue reported to be perceived in some experiments [Crane & Piantanida
1983], and which apparently contradicts opponent process theories of color vision, seems to be a function of
lateral interactions in the cortex, and occurs only under very special circumstances, mostly in the absence
of a corresponding retinal stimulus. As such it is not a major objection to opponent process theories, since
they deal with ordinary stimuli in the main visual pathway.
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Figure 4.13: The RGB intensity color cube. The coordinate system
is tilted so that the black-white axis is displayed in vertical position.
The vertices of the cube correspond to minima and maxima along the
RGB dimensions: Bk=Black=(0,0,0), R=Red=(1,0,0), G=Green=(0,1,0),
B=Blue=(0,0,1), C=Cyan=(0,1,1), M=Magenta=(1,0,1), Y=Yellow=(1,1,0),
and W=White=(1,1,1).

The same holds, mutatis mutandis, for lookup tables specifying RGB values indexed by
color names (as found in the X-windows system, for instance), or the other way around.
This kind of “model” does not even provide a name for every point in the space, and graded
membership or learning names in a productive way is even harder to model in this context,
not to mention the existence of universal color foci.

Other kinds of existing color models (CIE chromaticity, opponent models, psycho-
physical and colorimetric models in general) all suffer from the same disadvantage of not
being able to explain the existence of universal foci, and to a lesser extent, the graded
category membership functions.

The only existing models of color naming based explicitly on the neurophysiology of
color vision and attempting to explain the universality of foci and graded membership
functions are [Cairo 1977] and [Kay & McDaniel 1978]. Apart from not being defined or
implemented as full-fledged computational models, both of these have important drawbacks.

Kay and McDaniel’s model interprets (stylized versions of) the response functions of four
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types of color-sensitive cells in the LGN [De Valois et al. 1966] as characteristic functions
of four fuzzy sets corresponding to the categories red, green, yellow, and blue. As such,
the model explains the existence of universal foci (which correspond to maxima of the
characteristic functions) and the graded membership functions (which correspond directly
to the characteristic functions) of these four basic color categories. But the model has to be
tweaked to account for other basic color categories (requiring the introduction of new and
ad hoc fuzzy set operations and a nonlinear compression of the wavelength dimension that
is without apparent external motivation), and it is not clear at all how non-spectral basic
color categories like brown or purple are to be dealt with, nor how to model the learning of
color names in this model. It also does not adequately explain the hierarchy of languages
with respect to the lexical encoding of basic color categories. Another objection that can
be brought against the model is that it predicts that a flat-spectrum white stimulus light
is a good example of every basic color category, since there is no opponent mechanism that
cancels out opponent primaries. This prediction is clearly not born out by experience or by
psychophysical experimentation.

Cairo’s model of color naming [Cairo 1977] is also based on findings in the physiology
of the pre-cortical visual system. It is four-dimensional: wavelength, intensity, purity, and
a fourth dimension representing the adaptation state of the retina. All of these dimensions
are defined as physical parameters of the stimulus, rather than as perceptual dimensions.
Cairo introduces a “data-reduction model” of analog-to-digital conversion in the pre-cortical
visual system, and represents Berlin and Kay’s eleven basic color categories as specific
combinations of quantized values on the four dimensions. In addition, he predicts four
potential new basic color categories beyond Berlin and Kay’s eleven, which he calls sky-
blue, turquoise, lime, and khaki.

Although this model is interesting for its attempt to take adaptation into account, it
suffers from a number of important drawbacks. For instance, the discrete nature of the
model and the use of wavelength as one of the dimensions forces complex stimuli to be
treated as if they were monochromatic, and this is done using the “dominant wavelength”
to represent an entire spectrum. While this may work in limited circumstances, it is clearly a
gross simplification which cannot hold in general (e.g., which is the “dominant wavelength”
of the spectra of Figure 4.87). In addition, Cairo claims that Berlin and Kay’s finding of

universal foci of categories is a mere artifact introduced by the use of the Munsell color
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system for the stimulus material used in the experiment. This conclusion does not seem to
be supported by the wealth of psychological and linguistic research done since Berlin and
Kay’s initial study (cf. the bibliography of recent research in [Berlin & Kay 1969]). On
the contrary, it seems that it is rather Cairo himself who is forced to deny the evidence
because of the discrete nature of his model, which does not allow for graded categories. The
discretization of the model itself seems to be fueled by a desire to make color notation the
subject of algebraic analysis, requiring a complete ordering of a discrete number of possible
color values. While that may be a noble cause, it also requires most of the data on actual
color naming behavior to be ignored, which is too much of a price to pay for a convenient
analysis. Berlin and Kay’s hierarchy of languages is explained in a rather circular fashion by
Cairo in terms of the “perceptual salience” of the four underlying dimensions, but without
explaining where their salience derives from. In general, this model seems overly biased by
an extreme information processing view of psychology that regards cognition quite literally
as a digital computational process.®

[Harnad et al. 1991] present a rather different approach to the categorization problem,
using artificial neural networks. They consider the problem of separating lines into two
classes. After training an auto-associator network (one that essentially reproduces its input
as its output), they add a categorization task to the same net. The result is that the
“similarity space” derived from the net’s hidden nodes’ activations is warped to reflect
categorial boundaries. The analysis of the network representations is interesting, and the
authors provide a good discussion of network representations, but the applicability of the
approach seems limited. An interesting thing to note is that the representations used by
this network seem just as ungrounded as the symbolic representations that the first author

criticizes in some of his other work [Harnad 1990].

80f course it is easy to see this with the 20/20 vision of hindsight. At the time Cairo wrote his dissertation,
these models were just as “hip” as graded cognitive models are today. Although his assumptions are now
relatively widely regarded as wrong, his work nevertheless provides some valuable insights.

71



Chapter 5

From Visual Stimuli to Color
Space

In order to construct a mapping A, rather than just define it extensionally as I did in
Section 2.3 (p. 24), we need a theory of how to transform a function F € E into one or
more pairs {¢,i) € C x L1 Recall that E rtepresents the spectral energy distribution of
a stimulus, as a function of wavelength; E represents the set of all such distributions; C
represents a set of color terms; I represents the closed interval [0,1]; and A represents a
mapping E — C x I, i.e., a color-naming mapping. I will conceptualize the mapping A as
being a composition of two mappings: one that takes us from E to what I will refer to as
a color space, and one that takes us from that color space to C x I. This chapter discusses

the first one of those mappings.

5.1 General

The first “half” of the mapping A needs to transform a visual stimulus ¥ € E into a
point in a color space. In Shepard’s terms, this is a psychophysical function that maps

physical parameter space into psychological space [Shepard 1987]. The reasons for using a

!The term theory is used here in the sense of David Marr’s distinction of the computational theory,
algorithm, and implementation levels [Marr 1982].
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color-space transformation are many:

1. The psychophysical literature on color perception commonly uses a color-space model
to represent color percepts; see Chapter 4 (p. 42). If we want to evaluate the psy-
chological validity of our model, using similar representations allows us to compare

results easily.

2. The color-space model reflects important constraints on color perception; e.g. the
constraint that similar spectra by and large evoke similar percepts is reflected in the
mapping of similar spectra onto nearby points in the color space. This is of course a

special case of the continuity constraint introduced by [Marr 1982].

3. The color-space model allows us to easily model some of the tasks a cognitive theory

has to explain (Section 4.1 p. 42), e.g.,

o Discrimination: Two stimuli are discriminable if and only if they map into dis-
tinct points in the color space (data on the minimum differences people can
discriminate under varying circumstances allow us to adjust the “resolution” of

the space to match human performance, if desired).

o Similarity judgment: We can straightforwardly model similarity between different
stimuli as the distance between the corresponding points in the color space (the

geometry of the space need not be Euclidean, however).

o Identification: we can associate regions of the color space with foci and bound-
aries of color categories, as shown in [Boynton & Olson 1987], which is of course

a consequence of the continuity constraint mentioned above.

The new color space I will describe is based as closely as closely as possible on known
data about the neurophysiology of color vision. In particular, an opponent model of color
vision as described in [De Valois et al. 1966, De Valois & Jacobs 1968, Dow 1990] seems to
be appropriate, since it conforms with widely accepted psychophysical theories of opponent

color systems, particularly the Young/Hering theory, cf. [Boynton 1979, Boynton 1990].
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5.2 Assumptions and Limitations

In modeling color perception, I will make some limiting assumptions to make the problem

tractable:

1. T am concerned with single-point determination of perceived color only; hence, I dis-
regard spatial adaptation and interactions in color perception [Boynton 1979]: T will
not be concerned with such phenomena as induced colors? or Mach bands® [Boynton
1979]. Context is only taken into account implicitly to the extent that it is neces-
sary for the discrimination and identification of basic color categories. For example,
a color like brown is not distinguishable from orange in the so-called aperture mode
of viewing (in isolation, through a small hole in a screen),* because brown is a “dark
color” which is only defined with respect to brighter colors in its surroundings. When
we examine the spacing of basic color categories in a color space, we implicitly take
this into account by comparing the location of brown to that of orange or white, for

instance.

2. I assume a fixed adaptation state of the visual system; i.e., I am not concerned with
issues of color constancy (invariant perception under varying light sources), pigment

bleaching, temporally induced colors,® and the like [Boynton 1979].

3. I assume foveal photoreceptors as sensors, and their spectral sensitivities as defined
in the CIE 1931 standard observer data [Wyszecki & Stiles 1982]. Although there
is some evidence that there are inaccuracies in these data, and several revisions have
been proposed and published, the standard is so well established that I have chosen to
adhere to it. From a practical point of view, it is also the basis of the NTSC color TV
standards and corresponding camera specifications. Moreover, the existing revisions
like Judd 1951, CIE 1968, and Vos 1978 [Wyszecki & Stiles 1982] are not so different
that they would have much effect on the relative locations of basic color categories in

the color space.

2 Apparent colors that are perceived in proximity to certain other colors.

#Narrow bands of lighter or darker shades of a color perceived around the boundary separating two bands
of different colors.

*Thanks to Chris Brown for pointing this out to me at the outset of my work. I wasn’t convinced until
he told me to look for a brown light.

® Apparent colors that are perceived when looking at a temporally alternating series of colors.
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Although these assumptions and limitations represent a considerable simplification in
some ways, they do not render my work useless for practical applications, as I will show

below.

5.3 Modeling Neurophysiological Data

I have based the color space which I will refer to as the NPP space® on the neurophysiological
data published in [De Valois et al. 1966]. Section 4.3 (p. 49) discusses this data and the

motivation for choosing it to base a color space on.

5.3.1 Reconstruction of 3D response functions

The data in [De Valois et al. 1966] consist of the averaged responses of six types of cells
in the Macaque LGN to monochromatic stimulus light, sampled at three radiance levels
and 12 to 13 wavelengths for each cell type. The cell types are designated according to the
approximate color of the light that results in a maximum excitatory (4) or inhibitory (—)
response: the four opponent types +R — G, +G' — R, +Y — B and +B — Y, and the two
non-opponent types referred to as excitators and inhibitors, which I will refer to as +L and
— L, respectively (the symbols are R for red, GG for green, Y for yellow, B for blue, and L
for any light). Figure 5.1 shows the six data sets. The inhibitory (negative) phases of the
responses are generally much smaller than the excitatory (positive) phases, because they
are relative to the spontaneous firing rate, which is typically 5-10 spikes/s, and negative
firing rates are obviously not possible. The columns of Figure 5.1 show pairs of cell types
that are complementary in nature, with responses that are a kind of “mirror image” of each
other (when disregarding the absolute sizes of the phases): in a wavelength range where
one type is excited, the other is inhibited (and the other way around), and the cross-over
wavelengths between excitation and inhibition (if any) are virtually identical. The use of
these mirror-imaged channels is common in the vertebrate visual system, and may be a way

to encode a larger dynamic range than would be possible with a single channel [Slaughter

1990].

5Neuro-Psycho-Physical color space; thanks to K.N. Leibovic for the suggestion.
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Figure 5.1: Data sets for six LGN cell types, after [De Valois et al. 1966].
On the Y axis: response relative to spontaneous firing rate (spikes/s). Note
that the Y scales are different. On the X axis: wavelength of monochromatic
stimulus light (nm). Data points are connected with straight line segments for
clarity. Each plot shows three data sets at the relative radiances listed above
the plot, higher radiances correspond to larger excursions (see text).

To reconstruct the 3D response functions” from this relatively sparse data set, I started

by fitting a model to the data in the radiance domain, followed by interpolation in the

wavelength domain. The reason for starting in the radiance domain is that a lot is known

about the response characteristics of photoreceptors and other cells in the visual system with

respect to changing stimulus intensity, and this knowledge provides important constraints on

the model. Based on the literature (e.g., [Leibovic 1990a, Slaughter 1990, Frumkes 1990]),

I have assumed a sigmoid-shaped function as the basic response model in the radiance

domain:

S(r)

S(h)

ﬁ
dr

(1+e7)! (5.1)
; (5.2)
%,7‘ _h (5.3)

where r represents radiance, h the half-response radiance, and ¢ is a parameter that de-

"Response is a function of both the wavelength and the radiance of the stimulus.
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termines the first derivative around the half-response point, sometimes referred to as the

temperature parameter. Figure 5.2 shows a plot of this function for h = 0.5 and ¢t = 0.1. In

Figure 5.2: A typical sigmoid function plot for A = 0.5 and ¢ = 0.1 (see text).

practice I use a scaled version of the sigmoid function:
S(r)=c(l+e7 )" (5.4)

where ¢ is a scaling factor that is usually 1, but takes on different values on some occasions
(see below).

This type of function is particularly appropriate for modeling, e.g., the operating curve
of photoreceptors that shifts along an absolute radiance axis as a result of adaptation, as
background radiance increases or decreases [Leibovic 1990a]. The visual system’s response
is always relative to its adaptation state, and if we assume a fixed adaptation state, a
function like the one in Figure 5.2 can be used to model the response. The parameter h
can be interpreted as a function of the adaptation state. Near r = h, the sigmoid function
is almost linear, but moving away from r = h towards —oo and +o0o it approaches the
limits 0 and 1, respectively. This can be interpreted as approaching threshold response and
saturation response, respectively. The sigmoid function is also commonly used as a node
activation function in artificial neural networks research (e.g., [Rumelhart et al. 1986]).

To model the response of an LGN cell (type) as a function of radiance (for a fixed
wavelength) with a sigmoid function, we need to interpret the data points in terms of r

and S(r), and then determine appropriate values of h and ¢ that minimize the error of
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fit. To make the computations easier, I will use the [0, 1] interval as the “useful” range of
r corresponding to a value S(r) going from near-zero (threshold) to near-one (saturation).
The radiances in [De Valois et al. 1966] are specified as log units below some maximum used
radiance. Log transformations of physical intensity are generally used in psychophysics to
express perceived intensities, since they roughly correspond to a perceptually linear scale,
over a significant part of the useful range.® Since these radiances are relative, we need
to decide where they should be situated along the radiance axis. 1 made the following

assumptions:

1. The dynamic range of the responses from threshold to saturation is 3.5 log units
of input radiance. This accords well with estimates of 3 log units for the “useful”
(near-linear) range given in [Leibovic 1990b] for photoreceptors, extended slightly to
allow for response threshold and saturation. This value works well for fitting the
sigmoid intensity response model to the data, as explained below. Since we know the
difference between the highest and lowest radiance level used in the experiments?, and
all measurements are made at a constant adaptation state', we can derive a rough

estimate of the maximum level used relative to the background light level, as

Ry, — R;
favg(Rh) - favg(Rl)

Ropaw = Javg(RR) (5.5)
where R, is the maximum level used in log units relative to the background light
level, Ry is the highest and R; is the lowest stimulus radiance used relative to the
maximum available, fu,,(R}) is the average firing rate across the spectrum at the
highest and f,,,(R;) at the lowest radiance used. I used the average responses to
minimize measurement errors. Of course this equation assumes linear response as a
function of log radiance, which we know not to be the case, but to be approximately
true around the half-response radiance. Table 5.1 summarizes the results. In some

cases (viz. +R-G, +B-Y, and especially -L), the estimated maximum is smaller than

8This is also true for perceived loudness (the decibel (dB)) or perceived pitch (semitones, octaves), for
instance.

°The stimulus radiance levels are given as attenuation relative to the maximum available, in log units.

19T he article states that “the animal was maintained under a low level of light adaptation”, and the pauses
between 1-second stimuli were 30 to 60 seconds, which should be long enough to re-establish the previous
adaptation state if it were at all affected by the preceding stimulus.
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type | Ry | B | Ry
+G-R | -0.2 08| 1.43
+R-G | 0.0 | 1.3 | 0.87
+B-Y | 0.0 | 1.1 | 0.99
+Y-B | 0.1 |09 1.01
+L 0.0 | 1.3 | 1.92
-L 0.5 | 1.7 | 3.02
average | 1.54

Table 5.1: Estimates of the maximum stimulus radiance used for each cell
type, as log units relative to the background light level. Symbols as in text.

the maximum attenuation used, which would imply light levels below that of the
background adaptation light. The article is not clear on whether or not this was the
case, and I have not been able to determine this any other way. The -L data are all
inhibitory, i.e., negative with respect to the spontaneous firing rate, and thus has a
small range. There may hence be a considerable measurement error involved for this
data set. In any case, it is safe to assume that the total useful range of input radiances
must be at least as large as the average of the values R,,,, as given above. In fact
it must be at least as large as the maximum value of R; (the maximum attenuation
used), viz. 1.7 log units, since the cells are still responsive at that level. The latter
argument would give us a range of about 2 log units. Since the measurements were
most likely done at radiance levels well below saturation, the total range must be

larger than this, which is consistent with the figure of 3.5 log units mentioned above.

. The preceding argument gives us a radiance range of about 2 log units for the ex-
perimental data, with a maximum of 3.5. The radiance of the brightest stimuli is
therefore about 1.5 log units below saturation level. The radiance levels for each of

the data sets are shown in Figure 5.1 (p. 76), normalized to [0, 1].

. The responses of all six cell types will eventually saturate at approximately the same
level if the stimulus radiance is turned up high enough, since this is more a function
of the biochemistry of the cell than of the absolute stimulus intensity. To scale the
responses of the cell types, [ used a global maximum (saturation level) of 150 spikes/sec

above the spontaneous firing rate. This is somewhat lower than typical LGN cell
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saturation levels of 2-300 spikes/sec,!! but the spontaneous rate in these data of 5-
10 spikes/sec is also lower than the typical rates of about 30. The fact that the
experimental subjects were anesthetized may have something to do with this general
lowering of the firing rates. The maximum occuring firing rate in the data of about 50
spikes/sec for the +Y-B cell type at about 610 nm for an estimated stimulus radiance
of about 2 log units would support a saturation level of about 150 spikes/sec for a
total of 3.5 log units, taking the non-linearity of the response at high radiances into

account.

. Since I measure responses relative to the spontaneous firing rate, I also need to de-

termine a maximum negative response. These responses represent inhibition, and the
absolute firing rate can obviously not drop below 0. Since the spontaneous rates in

De Valois’ data does not exceed 11 spikes/sec, I've set the negative maximum to -12.

Although the estimates of the total useful stimulus intensity range and saturation levels

are somewhat speculative (since there is not enough data to support better estimates), they

are generally not in disagreement with known characteristics of LGN cell responses. In

addition, the exact numbers chosen are not all that important, since using different values

amounts basically to a linear scaling of the (non-linear) response functions, as I will show

below.

With these assumptions in place, we can now fit the sigmoid models to the data. 1

manually extrapolated the data in the lower and upper wavelength ranges, so each constant-

radiance data set starts and ends with a zero point. In addition, I added a zero point to

each constant-wavelength set of data points, to constrain the sigmoid fit better. I used the

following algorithm to do the fit for each constant-wavelength data set:

1.

1.1

let data = sign(data)*data
¢ = {Abs[NegMax/PosMax], sign < O
{ 1.0 , otherwise
compute least-squares linear fit of data as function of r: a=mr+b

let hi

solution(mr+b=0.5 ¢) solving for r

let t1 solution(S’(h1,hl,t,c)=m) solving for t

1K N. Leibovic, personal communication.
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5. minimize(SE2(r,h1,t1,c)) solving for hl and ti

6. return sign(data)*S(r,hl,tl,c)

Since the sigmoid is really a function of three variables S(r,h,t) (with radiance r, half-
response radiance h, and temperature ¢, cf. equation 5.1 p. 76), we need to optimize the fit
with respect to one, r, by varying the other two, h and ¢. The data form a list of ordered
pairs (radiance, response) for a fixed wavelength and cell type, including the added (0,0)
point. Step 1 makes sure that all response values are positive. In principle, a data set may
contain both negative and positive response values, especially around the cross-over point
between inhibition and excitation, although in practice this is rare. This step is more useful
for the inhibitory phases of the response, which are represented as negative values since |
measure responses relative to the spontaneous rate. I define the sign of the data set as the

sign of the sum of the response values in the set:

sign(D) = sign [ZQnd(@‘,a%)] (5.6)

€D
-1 ,2<0
sign(z) = 0 ,2=0 (5.7)
1 ,2>0

where D is the data set, 2nd is the function that selects the second element from an ordered
pair, 7 is the relative radiance, and a is the response (activation). The sigmoid function
has to be either entirely positive or entirely negative, and this step chooses between those.
Note that this also turns a set of data points whose a’s sum to zero into all-zero a’s. This
can only happen around the cross-over point between inhibition and excitation, and is not
wrong, even desirable, because varying the radiance alone should not affect the sign of the
response, so the data are probably unreliable in that case. Step 1.1 chooses the scaling
factor for the sigmoid function, 1 for positive data and the ratio of the maximum negative

to the maximum positive response for negative data.!? To find initial values for 2 and t,

2Modeling the negative (inhibitory) responses with a sigmoid function may be questionable, but in view
of the small inhibitory responses relative to the excitatory ones, it does not make much difference anyway.
The unified approach to modeling both inhibitory and excitatory responses is to be prefered, in my opinion.
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we first compute a linear fit to the data set in step 2, using Mathematica’s least-squares
Fit function. Solving for a linear equation value of 0.5¢ gives us an initial estimate Al for
h in step 3 (recall that h is the half-response radiance, and the sigmoid function values are
normalized to [0, 1]). Step 4 gives us an estimate ¢1 for ¢ such that the first derivative of the
sigmoid function at r = h1l is equal to the slope of the linear equation. This is a reasonable
estimate, since the sigmoid function is near-linear around the half response point, and the
data points cover approximately the first half of the total radiance range. Step 5 does the
actual fit, using Mathematica’s FindMinimum function (which finds local minima using a
steepest gradient descent algorithm) on SE2, which is the summed squared error of fit over
the data set. The last step returns the sigmoid function model for the data set, restoring
the sign. The algorithm works well in practice. Figure 5.3 illustrates the procedure, and

Figure 5.4 shows some examples of the computed sigmoid fits. Actually, steps 2 through 4

1 1 1
0.8 0.8 0.8
0.6 > 0.6 > 0.6
0.4 . 0.4 . 0.4 ‘
0.2 . 0.2 . 0.2
5.2 0.4 0.6 0.8 1 5.2 0.4 0.6 0.8 1 5.2 0.40.6 0.8 1

Figure 5.3: The procedure for fitting a sigmoid function to a constant-
wavelength data set. On the X axes: relative radiance, on the Y axes: re-
sponse. From left to right: the data points with a superimposed plot of the
linear fit (step 2), the sigmoid fit with initial estimates for h and ¢ (step 4),
and the final fit after error minimization (step 5). The data set is for the
+Y — B function at a wavelength of 603 nm (cp. Figure 5.1 p. 76).

can be omitted and the minimization started with initial estimates of 0.5¢ for both A and ¢,
but in that case it may take longer to converge. A constraint ¢ > 0.1 is imposed on the fit;
if it is violated, a different iterative error minimization procedure is used that keeps ¢t = 0.1.
This constraint serves to prevent slopes of the sigmoid function that are too steep to serve
as realistic models of neural activation, but in practice this is seldom necessary.

After computing an array of sigmoid fit functions (indexed by wavelength) for each
sampled wavelength and each of the six cell types, we can compute the response of each

type to an arbitrary wavelength and radiance by interpolating between the values given by
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Figure 5.4: Some examples of computed sigmoid fits superimposed on the data
points for the +Y — B cell type, at the wavelengths listed above the plots.
On the X axes: relative radiance, on the Y axes: response. The second plot
is for a wavelength very close to the cross-over point between inhibition and
excitation (cp. Figure 5.1 p. 76)

the sigmoid functions of radiance that are closest to the given wavelength:

i = Minjea[Abs(A; — )] (5.8)

where ¢ is the index into the array of sigmoid functions A that we are looking for, A is the
wavelength for which we want to compute a response, and A; is the j-th wavelength for which
we have computed a sigmoid function. Note that before this interpolation is applied, there
is no smoothness constraint imposed on the parameters of the sigmoid fit from one sampled
wavelength to the next, so in principle there could be serious discontinuities. In practice one
would expect the parameters to change smoothly, and it turns out they do, to a considerable
extent at least. I used Mathematica’s standard cubic spline Interpolation function on the
7 sigmoid function values returned by the series of functions centered around ¢, adding
additional zero points above and below the sampled wavelength range (and specifying 0
first and second derivatives for the very lowest and highest, to constrain the interpolation
better):

a = Interpolation[{(ri—s, Si—3(7)), .. ., (Fit3, Sit3(7))}, A] (5.9)

where @ is the computed response (activation), Interpolation[{...},z] computes a cubic
spline interpolation function for the points in list {...} and evaluates it at z, r; is the i-th
radiance level and 5; the corresponding sigmoid function we have previously computed,
and r is the relative radiance and A the wavelength for which we want to compute the

response. The resulting functions are shown in Figure 5.5 for the same relative radiances
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as in Figure 5.1 (p. 76), and additionally for maximum relative radiance r = 1.'* We can

+R-G cells +Y-B cells +L cells
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Figure 5.5: Activation functions for six types of cells based on the data from
Figure 5.1 (p. 76). The radiance levels plotted for each type are the same as
in that figure, with the addition of the maximum r = 1 plot. Note again that
the Y scales are different.

see that the functions follow the data sets closely at the sampled wavelengths and radi-
ances, but they are continuous and extend beyond the sampled data in both domains. We
can see some irregularities in the maximum radiance level responses, which results from
extrapolating the data considerably, combined with the absence of smoothness constraints
as explained above. These irregularities will largely disappear in the next processing step,
as explained in Section 5.3.4 (p. 90). It is interesting to note the clear saturation effect in
most inhibitory response phases, and in the excitatory phases of the +Y — B and +G' — R
functions, due to the use of the sigmoid model. If we continued to compute function values
at ever higher radiances, saturation would eventually also set in in the other functions. It
is not clear whether the radiance range should be extended further to allow all functions to
reach saturation levels. Alternatively, the radiance axis could be normalized for each func-
tion individually, or perhaps for opponent pairs of functions, but that is not in agreement
with the assumptions I outlined above. Saturation effects are clearly in agreement with
neurophysiological data, but to my knowledge there is no other color model available that

incorporates them.

12 Although I could have used the Interpolation function directly on the data set in two dimensions, that
would not have resulted in the typical sigmoid behavior in the radiance domain, which I consider important.
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5.8.2 Saturation levels revisited

In Section 5.3.1 (p. 75), I motivated my choice of 150 spikes/sec as the absolute saturation
level response for all cell types. I will now show that choosing a different value basically
amounts to a linear scaling of the response functions, so the actual value chosen does not
matter all that much, as long as it is reasonable. The value should not be too much higher
than the maximum represented in the data sets (less than 50), or the extrapolation will
become too unreliable.

Following the procedure outlined in Section 5.3.1 (p. 75), I computed activation functions
for the six cell types using a saturation response of 300 spikes/sec, or twice the value used
before (the “negative saturation” level was likewise doubled). I then fitted the functions
in the second set linearly to their counterparts in the first set, for instance for the +R-G
functions:

Ra3oo = mRy50 + b (5.10)

where Rsgo represents the +R-G function with a saturation level of 300 spikes/sec, Riso
the same but with a saturation level of 150 spikes/sec, and m and b are scalars. The Root
Mean Square (RMS) error of fit over a data set of 231 points spaced in a regular grid (11 in
the radiance domain and 21 in the wavelength domain) was minimized using the steepest
gradient descent algorithm of Mathematica’s FindMinimum function, as a function of m
and b. Table 5.2 summarizes the results, and Figures 5.6 through 5.11 graphically show the

results and the errors of fit.

type m b RMSerror
+G — R | 2.13| 0.0046 0.016
+R -G | 1.77| 0.0073 0.034
+B-Y | 237| 0.0039 0.017
+Y — B | 1.33] 0.0194 0.073

+L 1.87 | 0.0055 0.018

—L 1.24 | —0.0067 0.010

Table 5.2: Linear coefficients and RMS error for linearly fitting 300 spikes/sec
functions to their 150 spikes/sec counterparts (see text).

As is apparent from Table 5.2, the fit generally amounts to just scaling by a factor in

each case (the offset b is negligible), and the error of fit is relatively low, with a typical RMS
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RActivation 0.00459082 + 2.13226 RActivation2 Difference, RMS err = 0.0161476

Figure 5.6: Linear fitting of Rapo to Riso (see text). Left to right: Riso,
b+ mRsgo, difference (error signal).

GActivation 0.00730777 + 1.77062 GActivation2 Difference, RMS err = 0.0337469

Figure 5.7: Linear fitting of Gapo to Giso (see text). Left to right: Giso,
b+ mGsgq, difference (error signal).

error of 1-2%. The worst fit is for the Y function, probably because it operates closer to
saturation levels than any other, but it is still quite reasonable. The scaling factors do vary
for the different functions, but that is not important (subsequent normalization will cancel

the effect of different factors anyway).

5.3.3 Reducing six dimensions to three

As discussed in Section 4.4 (p. 51), [De Valois & De Valois 1975] suggest that the six types
of LGN cells found can be grouped into three dimensions, when mirror image pairs!* are
combined into one dimension. That results in a red-green, a blue-yellow, and a brightness

dimension which can be arranged in a “double cone”-type color space. We now turn to

"The terminology of “mirror images” should be interpreted loosely, with respect to the overall shape of
the response profiles. The functions are by no means exact mirror images of each other.
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BActivation 0.00393309 + 2.37001 BActivation2 Difference, RMS err = 0.0168293

Figure 5.8: Linear fitting of Bsgg to Biso (see text). Left to right: Biso,
b+ mBsgg, difference (error signal).

YActivation 0.0193657 + 1.33248 YActivation2 Difference, RMS err = 0.0729537

Figure 5.9: Linear fitting of Ysp0 to Yis0 (see text). Left to right: Yiso,
b+ mYsgg, difference (error signal).

the construction of such a 3-dimensional color space based on the six response functions
described above. In view of the hypothesis that mirror-image coding of signals in the
nervous system is a way to increase the dynamic range of the signal [Slaughter 1990], and
following the suggestion of [De Valois & De Valois 1975], I will assume that the responses

of mirror-image pairs of functions can be added to give one composite function:

GR = R-G (5.11)
BY = Y-B (5.12)
Br = L-D (5.13)
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LActivation 0.00550617 + 1.86829 LActivation2 Difference, RMS err = 0.0183464

Figure 5.10: Linear fitting of Lsgo to Liso (see text). Left to right: Lqs0,
b+ mLszgo, difference (error signal).

. : Difference, RMS err = 0.0100444
DActivation -0.0066711 + 1.24219 DActivation2 !

i::':':'N
Y

AL ',i-'.~.-.f,
lll

L

Figure 5.11: Linear fitting of Dsgg to Diso (see text). Left to right: Diso,
b 4+ mDsqg, difference (error signal).

where GR is a new composite green-red opponent function, BY a new composite blue—
yellow opponent function, Br a new composite brightness function (non-opponent), and
R,G.Y, B, L, D represent the six response functions +R — G, +G — R, +Y — B, +B - Y,
+L, and —L, respectively. The members of the pairs have to be subtracted rather than
added because they are 180 degrees out of phase relative to each other, and we want the
corresponding phases to add up rather than cancel each other. The order of the terms
determines the sign of the phases of the composite functions, and is arbitrary. I will always
use the order of equations 5.11-5.13 as the convention. Figure 5.12 (upper half) shows the
resulting opponent functions at a relative radiance of 0.5. Some interesting properties of

these functions are:

1. The G'R zero crossing (upper left) at 605 nm is close to the maximum of the Y

(positive) phase of the BY function (upper middle) at 609 nm, and the zero crossing
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Figure 5.12: Upper: composite functions derived from the six neural response
functions (see text). From left to right: GR (green-red), BY (blue-yellow), Br
(brightness). Lower: the opponent functions and luminosity function defined
by [Jameson & Hurvich 1955], see Section 4.4.5 (p. 62). On the X axes:
wavelength, on the Y axes: response. The upper functions are plotted at a
relative radiance of 0.5, the lower ones are undefined with respect to radiance.

of the BY function at 503 nm is close to the maximum of the G (negative) phase of
the G R function at 528 nm.'® If we interpret the composite functions as perceptual
opponent functions in the style of [Jameson & Hurvich 1955] (Figure 5.12 lower), these
zero crossing wavelengths accord relatively well with their estimates of the wavelengths
of unique yellow (578 nm) and unique green (498 nm), i.e., wavelengths at which one
of the two opponent functions is zero and the other has a non-zero response.'® By
this definition, there is no unique red or unique blue based on our opponent functions,
since the other opponent function is non-zero over the entire red and blue phases.
This differs from the model of [Jameson & Hurvich 1955] where there is no unique

red, but there is unique blue.

2. The wavelength of maximum response of the Br function, 563 nm, is close to the

wavelength of the CIE Y (photopic luminosity) function maximum, 555 nm.

5The zero crossings actually vary slightly with radiance, which may be related to the Bezold-Briicke effect
[Wyszecki & Stiles 1982], but we can ignore that for the purpose of the present discussion.

1% Of course, their model is merely that, and it is not without problems of its own. The existence of unique
yellow and green wavelengths is well established, however. As with all psychophysical measurements, there
is some interpersonal variability in the exact numbers, but not in the general trend.
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3. The absolute maximum response of the green phase of the G R function is identical
to the absolute maximum response of the yellow phase of the BY function, and the
absolute maximum response of the red phase of the G R function is very similar to the
absolute maximum response of the blue phase of the BY function. This is without
any scaling on the 6 component functions or the resulting composite functions, other
than the assumption stated above that all cell types will saturate at the same absolute
firing rate, and the responses being scaled relative to that rate (150 spikes/sec). These
maxima are different from the Br function maximum, but since we consider that to

be an independent channel from the two color opponent functions, that is no problem.

In my opinion, these observations lend support to the assumption of one global maximum
firing rate, and to the method of combining the six component functions into three. I there-
fore feel confident in using the three composite functions obtained as a neurophysiological
basis for a 3-dimensional color space with a color opponent organization, interpreting the
G R and BY functions as color opponent dimensions and the Br function as the brightness
dimension. Later I will investigate the usefulness of this color space for the color nam-
ing problem. For now, I would like to note that this approach may provide an interesting
bridge between the neurophysiology and the psychology of color perception (see Section 5.5,
p. 106).

5.3.4 The sigmoid-of-linear activation model

The usual way to compute the response of a sensor to a certain stimulus of known spectral

composition is by means of equations like 2.2 (p. 21) from Section 2.1:

o(E) = /E(/\)E(A)dA (5.14)

where a(F) is the response of the sensor, F(A) is the power spectrum of the stimulus,
S(A) is the sensor spectral sensitivity, and A is wavelength. Since this depends crucially on
the linearity of 5(\), we cannot apply this equation to the basis functions we derived in
Section 5.3.3 (p. 86) because they are essentially non-linear. The solution I have adopted
for this problem is what I will call the sigmoid-of-linear (SL) model. This model rests on

the hypothesis that the basis functions of Section 5.3.3 can be modeled as the composition
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of a linear function and a sigmoid function:

W(E)= S(d(E)) = § [/ E(A)?(A)dA] (5.15)

where @ is the linear function, S is the usual sigmoid function, and s is the spectral sensi-
tivity of a’. I believe this is a reasonable hypothesis, since saturation (which is modeled by
the sigmoid function) is a function of the biochemical machinery of cells, and is determined
by total absorbed energy (total “quantum catch”) rather than by the spectral composition
of the stimulus. In Section 5.3.1 (p. 75), I treated each constant-wavelength data set as
independent from the others, and hence applied the sigmoid model at this level, but in the
SL model I separate the wavelength dependent component of the response from the radiance
dependent component. For @, we can use the activation functions from Section 5.3.3 (p. 86)

at relative radiance 1.!7 That gives us the following equations for the SL basis functions:

GRy(r,\) = S§'[rGR(1, ), har,ter] (5.16)

BYy(r,\) = S'[rBY(1,)), hpy,tBy] (5.17)

BTS[(TvA) = Sl [T Br(lv/\)vhBratBr] (518)

Sa k) = —mle) _ sign(a) (5.19)
14 ™= L4et

where GRg, BY,;, Brg are the SL basis functions derived from the previous set GR, BY,
and Br; r is relative radiance in [0,1]; A is wavelength; and hggr and tgg, etc., are the
sigmoid parameters for G Ry, etc. The sign function is as defined before, returning -1, 0,
or 1, depending on the sign of its argument. If GR were linear in r, then [r GR(1,\) =
J GR(r,A), and likewise for the other two. The function S’ is a straightforward relative
of the usual sigmoid function, meant to deal with both positive and negative values, and
subtracting the zero-offset (the value of the function at ¢ = 0) of the sigmoid with the given
parameters. The latter is a technicality introduced to prevent discontinuities around the

zero-crossings of opponent functions.

17The technical reason for choosing = 1 is that the ratio of the integral of the positive to the integral of
the negative phase of the functions is greatest at that radiance, which results in a more “regular” shape of
the normalized color space.
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All that is left to do now is to determine values for the constants hggr, tar, hay,
tey, hgy, tBr,. To do this, I fitted the SL functions GRg, BYy, and Brg to their non-
linear counterparts GR, BY , and Br, minimizing the mean square error of fit as a function
of h and t, over a regular grid of 441 points (21 coordinates in the radiance and 21 in
the wavelength domain), using the steepest gradient descent algorithm of Mathematica’s
FindMinimum function. The results are shown in Table 5.3 and Figures 5.13 to 5.15.'®

With an RMS error of fit of 2-5% over the data set, the model fits rather well. Some of

Sfunction ‘ h t ‘ RMS error
GRg 0.527639 | 0.178883 | 0.0352013
BYy 0.59439 | 0.158255 | 0.0483502
Brg 0.422241 | 0.202455 | 0.0188912

Table 5.3: Sigmoid parameters and RMS error for the three SI. basis functions
(see text).

S(L) {h,t,i}={0.527639, 0.178883, 1} Difference, RMS err = 0.0352013

Figure 5.13: Fitting the SL function G Rg to its non-linear counterpart G'R
(see text). From left to right: the non-linear function, the SL model fitted to
it, and the difference between the two (error signal).

the error is no doubt attributable to the higher intensity ranges of the functions (as evident
from the plots of the difference functions), which is the most extrapolated in the original
non-linear functions, relative to the data sets they themselves were based on. I will therefore
use the SL functions as the basis functions for the NPP color space, because they allow us

to continue our exploration of the color-space properties in an analytical way.

¥0One could apply equation 5.15 to the 6 component functions before they are combined into opponent
functions. I have tried this, but the resulting fits to the non-linear functions are no better than when applying
the equation to the opponent functions directly.
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BY s(L) {h,t,i}={0.59439, 0.158255, 1} Difference, RMS err = 0.0483502

Figure 5.14: Fitting the SI function BY,; to its non-linear counterpart BY
(see text). From left to right: the non-linear function, the SL model fitted to
it, and the difference between the two (error signal).

Br S(L) {h,t,i}={0.422241, 0.202455, 1} Difference, RMS err = 0.0188912

Figure 5.15: Fitting the SL function Brg to its non-linear counterpart Br
(see text). From left to right: the non-linear function, the SL model fitted to
it, and the difference between the two (error signal).

5.3.5 Normalization of the basis functions

We need one more step to turn the three SL functions into a convenient basis for a color
space. Since I consider the G Ry and BY functions to be color opponent functions, I
would like each function’s two phases to cancel each other out in response to “white” (flat
spectrum) light, i.e., to give a zero response. This corresponds to perceptual experience:
white light does not seem to contain any color, either red, green, blue, yellow (the four
primary colors), or any other one. I want the color model to reflect this directly. From

Figure 5.12 (p. 89), we can see that the phases of the opponent functions are not equal in
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size.' T therefore apply a normalization step as follows:

Ag(r,N)
Abs (8" [ea [T A(1,0)dA])

Al(r, M) = (5.20)

where Ag is any of the six SOL response functions as discussed in the previous section, A/,
is its normalized version, r is relative radiance, A is wavelength as before, S’ is the sigmoid-
ification function as in equations 5.16ff (p. 911F), ¢4 is an energy equalization constant, and
[T g(x)dz is the integral over positive values of g(z) only.2® The constant ¢4 is discussed in
more detail in Section 5.4 (p. 95). This normalization makes sure that the color-space di-
mensions are “square”, since the maximum response of each function is obtained in response

to a stimulus like

0, A< Ag

Q

S
>

Sa—’
[l

(5.21)
o(A) = 1, A> X

where Ag is the zero-crossing wavelength of the function, i.e., the wavelength at which the
response changes from inhibition to excitation.?! The normalization step makes sure that
these maximum responses are the same for all functions. When the normalized functions
are added pairwise, we get the normalized versions of the SL basis functions that I will refer

to as the SLN functions :

GRan = GRo(Ry—GY) (5.22)
BYyn = BY, (Y}, — Bi) (5.23)
Nmal’

Brgn = Bro[ ’Sl—Abs< ) ;l] (5.24)

with symbols as above, and N, and P, 4, representing the maximum negative and positive

response, respectively (see Section 5.3.1 p. 75). The normalization applied to the L and D

9The relevant measure is the area “under” the curve with respect to the Y axis, or the integral of the
functions with respect to wavelength.

2°For the —L function f_ is used, or the integral over the negative values only, since that function is an
inhibitor with an all-negative response.

2! The equation given is for functions with inhibitive responses in the lower wavelength range, and excitative
responses in the higher wavelength range. For the functions with the reverse profile, the inequalities have to
be exchanged. For non-opponent functions, A¢ can be thought of as oo for inhibitors and —oco for excitators.
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functions is slightly different because the L (or D) function is an inhibitor only, and has
a much more limited range than the other five. The overall scaling factors G Ry, BYy, and
Brg are set such that the maximum response of the Brgy function is 2, and the maximum
for each opponent function is 1. The response to an equal-energy “white” spectrum (defined
by o(A) = ¢) must therefore be close to (0,0,2). It is not exactly equal to that because
of the effect of the inhibitory phases of the opponent functions. The gray axis of the color
space (the path defined by the coordinates of equal-energy spectra of increasing radiance)
must therefore be close to the line through (0,0,0) (black) and (0,0,b) (white). Later I
will examine the shape of the gray axis in more detail. Figure 5.16 shows 3D plots of the

resulting functions.
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Figure 5.16: The normalized basis functions for the NPP color space (see
text). From left to right: the GRgsrn (green—red) and BYsry (blue-yellow)
opponent functions, and the Brgpy (brightness) function. On the X axes:
wavelength in nm, on the Y axes: relative radiance, on the 7 axes: response
(activation).

5.4 Visualizing Color Space Properties

To visualize the general “shape” of the NPP color space, I have computed the shape of
the Optimal Color Stimuli (OCS) Surface in NPP space. We can represent all physically
possible surface-spectral reflectance functions®? in a solid known as the Object Color Solid.
The surface of this solid represents the limit of physically realizable surface colors, known

as Optimal Color Stimuli, and can be generated by computing the response of a given set

220Qr transmittance functions, which makes no difference for our purpose.
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of sensors to a continuum of two kinds of spectra:

The spectral reflectance () is either zero or unity, and in moving through
the visible spectrum, there are generally not more than two transitions between
these values. Optimal color stimuli are imaginary stimuli in the sense that no
actual object surfaces have reflectance curves with abrupt transitions of this
kind. However, they are of considerable interest because they represent limiting
cases of all (non-fluorescent) object-color stimuli. [...] Two types of curves must
be distinguished; the first has zero reflectance (or transmittance) at wavelengths

A < Ay and A > Ag, the second at wavelengths Ay < A < Ay. [Wyszecki & Stiles

1982, p.181 ff.]

I have used the following differentiable approximations to these two types of reflectance

functions:

oo(A,7,0) =

o1(A,7,0) =

0.5
(1-x+6)2>
1— 0.5
(1+x-96)2>
1— 0.5
(1=X+6+~)2°
0.5
(1+x—0—7)2"
1— 0.5
(1-x+6)2>
0.5
(1+x-96)2>
0.5
(1=X+6+~)2°
1— 0.5
(1+x—0—7)2"

A< 8
f<A<6+1
0+2<A<0+7

0+ <A

A< 8
f<A<6+1
0+2<A<0+7

0+ <A

(5.25)

(5.26)

where A is wavelength in nm as usual, 7 is the width of the “gap” in nm, and @ is the

start of the “gap” in nm. Some typical examples of reflectance spectra generated by these

functions are shown in Figure 5.17. If we assume a flat-spectrum (white) light source,

defined by o(A) = 1, the light reaching the sensors has a spectrum identical to the reflectance
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Figure 5.17: Some examples of the two kinds of spectra needed to generate
Optimal Color Stimuli. Left: og(A,100,470), right: o1(A, 150,525). On the X
axes: wavelength (nm), on the Y axes: relative reflectance. (After [Wyszecki
& Stiles 1982, p. 181].)

function,?® and we can compute Optimal Color Stimulus coordinates for linearly responding

sensors as follows:

Au
po = ListY, / o0(A, 7, 8) N) dA (5.27)
_Al -
. _
= List, / o1(Ay, 8) S(N) dA (5.28)
_Al -

where Listly, is a list of expressions with index variable i ranging from 1 to N, N is the
number of dimensions (basis functions) of the color space, 3; is the spectral sensitivity of
each of the basis functions, and A\; and A, represent the lower and upper limit of sensitivity
for the sensors used, typically in the neighborhood of 300 and 800 for the human visual
system, respectively. By varying v and 6 over the visible wavelength range, and plotting
the resulting points pp and py, we can compute the shape of the OCS surface. It is made
up of two “halves” that fit together like clam shells, corresponding to the set of points pg
and pq.

Now we need to choose sets of basis functions 5;. If we choose the standard CIE XY7Z

functions (Section 2.1 p. 19), we get the result shown in Figure 5.18. This is the typical

2% Again ignoring other factors such as atmospheric absorption and scattering, viewing angle, etc., as I did
in equation 2.1 (p. 20).

97



“torpedo-like shape” that [Wyszecki & Stiles 1982] refer to. For the actual computations
involved in creating figures 5.18{T, I used a computationally more efficient technique than
suggested by equations 5.27ff, making use of the special properties of the functions g and

o1 and using a list of partial integrals as a kind of cache. The surface color?* in Figure 5.18

e
7T

777 _ﬂ_'ﬁ,
U777 E
Lo e

)

Figure 5.18: The Optimal Color Stimuli surface in the CIE XYZ color space
(see text). The color rendering is only approximate, derived by using a trans-
form from XY7Z to RGB for typical computer monitors, and re-normalizing
the result. In English reading order: four views rotating counter-clockwise
around the surface, and a view from above and below.

is (necessarily) only an approximation, derived as follows:

{r,g.b} = It (MXRé{;’y’Z}) (5.29)

#*For those having a color print available, or viewing this document on a color monitor. It is interesting
to view this and related figures with a PostScript previewer like ghostview, where one can see the surface
being built up in 3D. This gives a better appreciation of the shape, probably as good as possible short of an
animated plot.
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Lt(z) = " vt (5.30)

x, otherwise

1.26497  —0.569038 —0.198262

Mxgr = —0.42012  0.797003  0.0196274 (5.31)

0.0275845 —0.111426  0.46304

At

Ny |
Cx = Mxg - Listl_, [/ 01(A,0,0)57(N) dA (5.32)

where {r,g,b} are [0, 1] normalized RGB coordinates, Lt is a limiting function serving to
limit RGB coordinates to the gamut of the display device, Mxp is a linear transform from
XYZ to “typical computer monitor” RGB coordinates such as the ones given in [Rogers
1985] or [Hill 1990], {x,y, z} are the CIE XYZ coordinates computed with equations 5.27f
(p. 97), and Cx is the set of RGB coordinates corresponding to a maximum radiance flat
spectrum (white). The latter is used as a normalization factor for display purposes, which
is basically Von Kries adaptation [Wyszecki & Stiles 1982]. It is clear from these equations
that the displayed color has to be approximate, because of the limitations of the gamut
of the display device, the “typical” transform used, and the inability to control for such
things as gamma correction. Nevertheless, the rendered color is a reasonable indication of
the “real” color corresponding to that particular point on the QCS surface.?®

It is interesting to note that only a relatively small volume of the XYZ cube actually
corresponds to physically realizable colors. The same is true of course if we compute the
OCS surface in RGB coordinates, but the intersection of the volume enclosed by the OCS
surface with the all-positive (i.e., displayable) RGB subspace is even smaller than in the
XYZ case (Figure 5.19).

Choosing different basis functions results in different shapes of the OCS surface. The
computation for the SL functions is somewhat more involved then for the CIE XYZ func-

tions, because of the nonlinearities. The equations for computing points on the surface

2®Were it not that there is no such thing as a real color, of course.
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Figure 5.19: The OCS surface transformed into RGB space using the trans-
form Mxg from equation 5.31 (p. 99). Viewpoints as in Figure 5.18. The
parts of the surface that lie outside of the positive octant (i.e., outside of the
gamut of a typical RGB computer monitor) have been clipped.

are

i N - :
po = Listl, |sig: (CZ/ Uo(/\,’y,O)lini(A)d/\) (5.33)
L At _

i N - :
pr = Listll, |sig (CZ/ Ul(A,’y,O)lini(A)d/\) (5.34)
L Al _

where symbols are as in equations 5.27ff (p. 97), sig; being the sigmoid component, and
lin; being the linear component of the basis functions. Since the value of the sigmoid
function is a non-linear function of its input, there is an issue here with respect to scaling
the linear responses that was not relevant for the linear CIE XYZ functions. We have to
determine values for the constants ¢;. The method I have used is essentially scaling with

respect to the equal-energy (EE) or “white” response. The argument goes as follows. We
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want to scale the brightness (Br) dimension to range from perceived black to white, without
affecting the adaptive state of the visual system. Once I have determined a scaling factor
for the Br dimension I will use it to scale the other dimensions as well. It is justifiable
to use the same scaling factor for all color-space dimensions, since the functions I derived
in sections 5.3.3ff (p. 86ff) preserve the ratios of responses among the cell types involved.
Assuming (as usual) that the perception of “white” arises from the viewing of a stimulus
with a flat equal-energy spectrum o,(A) = 1, we can normalize responses with respect to
this type of stimulus.?® Since “white” is at the top of the Br dimension (always within the
adaptive range), a flat spectrum “white” (maximum relative radiance) stimulus must result
in the maximum response for the Br function, which is the function value at the wavelength

of maximum response and at maximum relative radiance:

Brnt® = Maxy [Bri, (1, A)] (5.35)

lin
The response of the linear Br function to a flat-spectrum “white” stimulus is given by?7
Brif, = [ Bria(1.0) ou(0) A (5.36)

And the desired scaling factor is then just the quotient of the two:

Briar
= ——un_ 5.37
¢ Bry ( )

The normalized response of a linear function to a stimulus o(A) is then simply

fﬁn(a):c/flm(l,/\)a(/\)d/\ (5.38)

269ometimes a non-flat spectrum is used as the white reference, e.g. the CIE standard light sources A to
D, but the differences are not important for our purpose.

2TFor integrating the linear response functions any relative radiance will do, as long as it is the same for
all functions, since the result is scaled before sigmoidification. 1 have chosen a relative radiance of 1 for
convenience.
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The final SL normalized function value is

as discussed above. Applying this normalization to the SL functions and computing the

OCS surface results in the shape shown in Figure 5.20.
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Figure 5.20: The Optimal Color Stimuli surface in the NPP color space, using
the SL basis functions (see text). The color rendering is only approximate,
computed the same way as for Figure 5.18. In English reading order: four
views rotating counter-clockwise around the surface, and a view from above
and below.

For the SLN functions the normalization process is as described for the SL functions,
except the scaling factor is computed using the + L function, and each of the six response
functions is normalized individually before being combined into 3 dimensions. The resulting

OCS surface is shown in Figure 5.21.
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Figure 5.21: The Optimal Color Stimuli surface in the NPP color space, using
the SLN basis functions (see text). The color rendering is only approximate,
computed the same way as for Figure 5.18. In English reading order: four
views rotating counter-clockwise around the surface, and a view from above
and below.

Since the white point is slightly off-center (i.e., not on the (0,0, Br) axis) in the SLN
space as shown above, I will apply a final linear transform to the color-space coordinates
to compensate for this. Since the SLN coordinates are in the range ([—1,1],[—1,1],[0,2])

(Section 5.3.5 p. 93), the transform we want is given by

2 0 gry 0.5 0 —0.25gr,
M=40 2 by, =4 0 0.5 —0.25by, (5.40)
00 2 0 0 0.5

where gr,, and by, are the GRyn and BYgn coordinates of the white point, respectively. 1

will refer to the transformed coordinates as the S LNp; coordinates, and the corresponding
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color space as the NPP color space. The OCS surface in S LNy; coordinates is shown in

Figure 5.22. The gray axis is now perfectly vertical, the coordinates of black being (0,0, 0),

Figure 5.22: The OCS surface in SLNps coordinates (see text).

and white being (0,0,1). The extrema of the OCS surface coordinates have now changed
from ([—1,1],[-1,1],[0,2]) to {[-0.4,0.6],[—0.6,0.4], [0, 1]), which makes the complete color
stimuli solid fit inside a unit magnitude cube.

For comparative purposes, the OCS surface is represented in CIE L*a*b* coordinates
(Figure 5.23), which represents an attempt to create a perceptually equidistant color space
for reflected light (Section 4.4.2 p. 53). The L*a*b* model is based on psychophysical
principles only, however, not on neurophysiological data as the NPP space is. Although the
order of hues around the NPP and L*a*b* spaces is the same, there are marked differences
in the overall shapes (e.g. the sharp protrusion of the L*a*b* space in the blue region is

absent in the NPP space), and the relative positions and areas that certain colors occupy
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Figure 5.23: The OCS surface in CIE L*a*b* coordinates (see text).

on the respective surfaces.?® These differences and their implications for theories of color
perception remain to be investigated in detail, but that is outside of the scope of this
dissertation. In the next section we will look at similarities between the NPP and other
spaces to the Munsell system, another often-used psychological color-order system.

In [Wyszecki & Stiles 1982], only black and white hand-drawn approximations of the
OCS shape (in different color spaces, but not NPP of course) are shown, and I am not aware
of any attempts to define the complete shape and its surface color analytically as I have
done. Later, I will use the OCS surface as a frame of reference to investigate the distribution
of basic color categories. It is well suited for that purpose, since it represents the limit of all
physically possible surface reflectances (giving rise to color perception when viewed under

an appropriate light source), and I can represent it in the neurophysiologically-based NPP

22 A note of caution: the color rendering of Figure 5.23 and the like is only approximate, as explained
before, so we should not give too much weight to the visual appearance of the OCS surface in these figures.
Nevertheless, the color rendering is a reasonable approximation, the algorithm used is exactly the same for
all spaces shown, and a picture is certainly worth a thousand words for our purpose.
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space.

5.5 Some Interesting Properties of the NPP Space

The OCS surface in NPP space as shown in Figure 5.22 (p. 104) is similar in shape to
the outer surface of the Munsell color solid, a psychological color-order system (or color-
appearance system) based on the principles of color perception [Wyszecki & Stiles 1982, p.
510]. This is remarkable in view of the fact that the Munsell system is a purely psychological
or “impressionistic” color model used especially by artists, and the NPP space is defined
in an entirely analytic way, based on neurophysiological measurements and physical object
surface properties alone. As I mentioned in Section 5.3.3 (p. 86), the NPP space thus
provides a tentative bridge between the psychology and the neurophysiology of (an aspect
of ) color perception, which has proved difficult to obtain to date [Boynton 1990].

A direct quantitative comparison between the NPP and Munsell spaces is not possible,
because the Munsell space is not defined mathematically, but rather as a set of example

color chips arranged in a certain way. We can do some qualitative comparisons however:

o The vertical dimension in the Munsell space is the gray axis, ranging from black at
the bottom to white at the top. This is also true for the NPP space (Figure 5.24). For
all practical purposes, we can consider the NPP gray axis to be straight (Section 5.6

p. 108).

e Hue varies as a polar-coordinate system around the gray axis in Munsell, and can
be expressed the same way in NPP. The spacing of the hues around the hue circle is

approximately the same in both spaces (Figure 5.25).

o The overall shape of the NPP color space?? is remarkably similar to the Munsell space
as well, e.g., when comparing planes of constant Munsell hue with planar sections

through the NPP space (Figure 5.26).

2®Whenever I say “the shape of the color space” I really mean the shape of the OCS surface as represented
in the color space, of course. The color space as such has no shape. The OCS surface is very well suited
for this purpose, since it represents the limit of physically realizable colors. The Munsell color system is
also based on the appearance of surface colors. The combination of the OCS surface and the color space
can be thought of as the representation of physical or “outside world” constraints in the internal perceptual
mechanism.
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Figure 5.24: The gray axis in NPP color space, using the SLNys functions
(see text). As in Munsell space, the gray axis is (as good as) straight.

For comparative purposes I have made similar sections through the OCS surface in
XY7Z space® (Figure 5.27) and in L*a*b* space (Figure 5.28). In XYZ space, both of
the sections are much more symmetrical in shape than the Munsell diagram shows,
which is also true for the “green-red” section in L*a*b* space. The “blue-yellow”
section in L*a*b* space is more similar to the Munsell diagram than the one in XYZ
space, but not quite as similar as the NPP section is. The asymmetry of the sections
through Munsell and NPP space is relevant, as it corresponds to greater saturation
ranges for some colors versus others, which is a psychological property of object colors

that is not reflected to the same extent in the XYZ or L*a*b* spaces.

Saturation is expressed as distance from the gray axis in the Munsell system, and can

be expressed the same way in NPP (Figure 5.25).

In Section 5.6, I will discuss how we can derive precise measures for these three variables

from the NPP space.

The OCS surface in NPP color space shows some clear “lobes” corresponding to the

locations of blue and red, and to a lesser extent yellow and green (Figure 5.21 p. 103).

The locations of white and black are also clearly marked, being respectively at the top and

0For this purpose, the XYZ space has been rotated appropriately to make the gray axis vertical and to
position the four primary colors in positions similar to the ones they occupy in the NPP space.
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Figure 5.25: Spacing of hues around the NPP color space is similar to hue
spacing in the Munsell psychological color space. Left: a horizontal section
through NPP space (using the S LNy functions) at Br=0.5 (half way up the
brightness axis). The black dot in the middle indicates the position of the
gray axis. Right: the Munsell hue circle as rendered artistically in [Munsell
1946, Plate 1.

bottom of the hull. These observations lend some preliminary support to the hypothesis
that there is a neurophysiological basis for the “basicness” of basic colors like the six primary

colors just mentioned. We will look into these matters in more detail later.

5.6 Psycho-Physical Variables

[De Valois & De Valois 1975] suggest that in the 3D color space derived from the six LGN
cell response functions, hue would be coded in a circular fashion (ranging through blue,
green, yellow, red, and back to blue), saturation as distance from the center of the hue
circle (making hue and saturation specifiable with a polar-coordinate system in the plane),
and brightness along an axis perpendicular to the hue circle. This kind of color space is well
known from early work of, e.g., Munsell [Munsell 1946, Birren 1969a] and Ostwald [Birren
1969b], and, as I have noted in the preceding section, the NPP space is similar to those
in it overall organization. It is relatively easy to define psycho-physical measures on the
NPP space, if one considers the axes to be orthogonal and one uses the standard Euclidean

distance metric.
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Figure 5.26: Comparison of the shape of the Munsell color solid with the shape
of the NPP color space (see text). Center: schematic diagram of the Munsell
color solid showing four planes of constant Munsell hue (from [Wyszecki &
Stiles 1982, p. 510]). Left and right: a planar section through NPP space
at GRgn,, = 0, and one at BYn,, = 0, respectively. Note the remarkable
similarity in shape and color of the latter two with the planes outlined in
the Munsell diagram (to compare the Munsell color coding with the rendered
NPP colors, refer to Figure 5.25 (p. 108).

I define saturation in the NPP space in the traditional way, as the distance between a

color point and the gray axis in an equal-brightness plane going through the point:

S(gr,by,br) = \/(gr — 1st[gray(br)])? + (by — 2nd[gray(br)])? (5.41)

where S(gr,by,br) represents the saturation of the color represented by NPP coordinates
(gr,by,br), and gray(br)is a parametric equation defining the gray axis in SLN coordinates

(before transformation via transform M given in equation 5.40 p. 103):
gray(br) = ( —0.295935 br, —5.55112 1077 + 0.211884 br, br) (5.42)

These linear equations produce an RMS error of fit of (0.0760,0.1139,0) over 11 equally-

spaced points along the gray axis, or (0.0380,0.0569, 0) normalized to a unit cube, which is
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Figure 5.27: Planar sections through the OCS surface in (rotated) XYZ space,
parallel to the (rotated) X and Y axes. Compare to Figure 5.26.

quite reasonable. When using a second order polynomial fit:

(0.0259402 — 0.104432 br — 0.0921772 br?,
gray(br)=" _0.0321185 — 0.0894883 br + 0.141793 br2, (5.43)

br )

the RMS error is reduced to (0.0238,0.0341,0), or (0.0119,0.0170,0) when normalized to a
unit cube.

I define hue also in the usual way, as the angle between a color point and some reference
point, with the gray axis at the origin, in a projective plane of constant brightness. The
reference hue is defined as 0 degrees. As the reference point, I have chosen the hue of unique
green, i.e., that wavelength at which the BY function is zero, and the G R function has a non-
zero green response. This is a good reference, since it is easy to define in an unambiguous
way, and the corresponding wavelength does not change with intensity. Unique green in
SLN coordinates corresponds to a wavelength of 504.934 nm, which corresponds to NPP
coordinates ( — 0.279332, —0.0959707, Br) (Figure 5.29). The equation for hue in the NPP
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Figure 5.28: Planar sections through the OCS surface in L*a*b* space, parallel
to the a* and b* axes. Compare to Figure 5.26.

space is thus:

(27 — H, + sin_l[byﬁ?ﬂ%ﬁ%ﬂ 1Y mod 2x, gr > Lst[gray(br)]

H(gr,by,br)= (5.44)

(3r—H, — sin_l[byﬁ?ﬂ%ﬁ%ﬂ 11y mod 2%, gr < Lstlgray(br)]

where H(gr,by,br) is the hue of the color point (gr,by,br), and H, is the reference hue.

The resulting values are in the range [0, 27].

Brightness, finally, is just the third dimension of the NPP space:
B(gr,by,br)=3rd[M - [gr, by, br]] (5.45)

which gives us a complete transform from NPP space to a psychophysical HSB (Hue-
Saturation-Brightness) space based on it. Since the computation of hue is inherently unre-
liable with low saturation values, a threshold is applied to saturation, below which all hues

are considered undefined.?!

*T have used a threshold of ﬁ, which corresponds to the smallest representable value with an 8-bit
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Figure 5.29: The unique green hue reference direction in the NPP color space
(black line, see text).

5.7 Learning a Color Space Transformation

Now that we have constructed the NPP space, we need to be able to transform data coming
from color sensors (typically an RGB color camera) into it, if we want the NPP space to be
usable for robotic agents (Chapter A p. 179) or for general computer vision work. Since all
color cameras in use today are based on the CIE XY7 standard, we need to transform XYZ
coordinates to NPP coordinates. This will proceed in two steps: a transform from XYZ to
the 6 linear functions from Section 5.3.4 (p. 90), followed by sigmoidification and a final
linear transform to make the gray axis vertical, as described in the same section. Although
it might be possible in principle to go directly from XYZ to NPP coordinates, I have chosen
the method just described because it follows the theoretical construction of the NPP space
more closely, and it provides additional advantages for the learning (optimization) procedure
described below.>?

Since it is not possible to determine a simple linear transform from XY7Z to the 6 linear

functions within a reasonable margin of error®®, I have used the error back-propagation

resolution.

#2Whether one sees the artificial neural network technique described below as learning or as optimization
depends largely on one’s background and one’s theoretical likes and dislikes. I will freely use “learning” in
the remainder of this section because that term is traditionally used in the neural networks literature, but
the reader should feel free to substitute “optimization” if (s)he finds the other term offensive. Please contact
the author for an Emacs lisp function to enforce the usage of choice.

*®As determined by some experimental attempts to do so.
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algorithm to determine such a transform, as commonly used in artificial neural networks re-
search [Rumelhart et al. 1986]. In contrast with many applications of the backpropagation
technique I did not use the network as a classifier, but rather to learn six simultaneous func-
tions of three real variables (the CIE X, Y, and 7 coordinates), implementing a transform
from one space to another. Using the networks this way imposes much stricter requirements
on the obtained transform than using them as a classifier does, since both the domain and
range are continuous-valued, and there are no “bins” in the range within which differences
in function values are not important, as is the case in classifier nets.

The error back-propagation algorithm is defined for N-layer®! feed-forward networks
with consecutive layers fully connected, no connections going to nodes in layers other than
the neighboring one(s), and using the sigmoid node activation function (Figures 5.30 and
5.31).

Since this kind of network is strictly feed-forward, the computation at each layer amounts

to the composition of a linear transform with the sigmoid node activation function:

0=5(M,-I) (5.46)

where M ; represents the weight matrix for stage j, I represents the vector of inputs to this
stage, i.e., the activations of the nodes at stage j — 1, O represents the vector of outputs of
this stage, i.e., the activations of the nodes at stage j, and S represents the usual sigmoid
activation function from equation 5.1 (p. 76). After the network has been trained we can
collect the matrices M; and implement the transform via equation 5.46, disregarding the
neural network simulation machinery. If we keep the networks “rectangular”, i.e., with
the same number of nodes at each layer, we can also determine the inverse transform by
inverting the matrices M; (if possible) and the sigmoid function 5. This turns out to be
possible for the transforms [ have computed, so I have indeed used rectangular nets, padding
the input and/or output with small fixed random values if necessary. This padding does
not seem to have any noticeable effect on the convergence of the backpropagation algorithm

or the quality of the computed transform (as determined by the procedure outlined below).

**There is some confusion as to whether N should refer to the number of layers of nodes or connections.
If the layer of input nodes is not counted, these measures are identical. I will refer to the number of layers
of nodes by N, however.
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Layer 3 (output)

Layer 2 (hidden)

Layer 1 (input)

Figure 5.30: Typical feed-forward network topology used with the error back-
propagation algorithm, for N (number of layers) equal to 3: the input layer,
one hidden layer, and the output layer. For N > 2 there are N — 2 hidden
layers. Each node in layer ¢ is connected via a feed-forward link (indicated by
the arrows) to every node in layer ¢ + 1, if any, with layers being numbered
starting from the input layer. This particular network has a completely regu-
lar structure with m nodes per layer, for a total of N X m nodes, which need
not be the case in general. Computation proceeds by setting the activation
level of each input node to a certain value, and propagating the values forward
through the weighted links from one layer to the next, until they reach the
output nodes (Figure 5.31). The output of the network is the vector of acti-
vation values of the output nodes after the feed-forward cycle is complete, at
which time the next input vector can be presented to the net. During the er-
ror back-propagation stage, the error between the output vector and a vector
of desired outputs (the teaching vector) is propagated backwards through the
layers, and link weights are adjusted proportional to their relative contribution
to the error. See [Rumelhart et al. 1986] for details.

One of the most critical problems in using the error backpropagation algorithm to learn
a particular transform is the selection of a proper training set. Since this learning technique
is a supervised one, one needs to construct a set of input-output pairs that covers the n-
dimensional input and output subspaces (assuming n input and output nodes) sufficiently
well to produce a smooth transform, without significant discontinuities and generalizing
well to new input/output pairs. In our particular case, the natural thing to do might seem

to be to construct a training set based on the pure frequency responses of the XYZ and
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Figure 5.31: A typical backpropagation network node is made up of three
parts: a function Y combining all inputs to the node, an activation function
A determining the node’s activation as a function of the combined inputs,
and an output function O determining the output value that is propagated
along outgoing links, as a function of the node activation. In our case, X
computes the sum of weighted inputs to node ¢ minus an offset or bias value:
> wjia; — 8; (wy; is the weight of the link going from node j to node 7, and
a; is the activation of node j), A is the sigmoid function from equation 5.1
(p. 76), and O is simply the identity function. See [Rumelhart et al. 1986] for
details.

NPP functions, by varying the frequency over the visible wavelength range:

in(A) = (T(A),7(A),2(N)) (5.47)
out(\) = Listly [lini(\)] (5.48)

with symbols as in Section 4.4.2 (p. 53) and equation 5.33 (p. 100). This type of training
set turns out not to work well, and some analysis reveals why: it does not contain any
training points on the gray axis (since no pure frequency signal results in an equal response
of all three XYZ functions) or any points in the purple region of the color space (since
purple is a “mixture of red and blue” which cannot be obtained from a pure frequency
signal), for instance. It is therefore no surprise that the transform does not work well in
these (and other) areas of the color space. What we need to do is to create a training
set containing points corresponding to complex stimulus spectra, including grays, purples,
and all other kinds. Since spectra can be thought of as real-valued functions of wavelength
(usually, though not necessarily, continuous and differentiable), the set of possible spectra
is infinite. Fortunately we can exploit some constraints on the physically possible surface

reflectance functions to generate a number of representative spectra, analogous to the way
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we constructed the OCS surface in Section 5.4 (p. 95). We know that all physically possible
spectra must result in points enclosed by that surface (including points on the gray axis),
so these are the spectra of interest for constructing a training set. Based on the technique
described in Section 5.4 (p. 95), I have created an extended one to generate a set of spectra
covering both the OCS surface and the space contained within it. The spectra are given by

the following function:

£1, A < 0
U(/\7%07P17P2) = p2, <A< O+~ (549)
P1s otherwise

where A is wavelength in nm as usual, v is the width of the “gap” in nm, 6 is the start
of the “gap” in nm (as in Section 5.4 p. 95), and p; and py are two reflectance levels in
[0,1]. By varying v and 6 over the visible wavelength range and p; and py over the [0, 1]
interval, we can generate a subset of all possible reflectance spectra, some of which are

shown in Figure 5.32.3% By varying v in 10 equal steps from 0 to 400, § in 10 equal steps
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Figure 5.32: Some example spectra generated by varying the parame-
ters v, 6, p1 and ps in equation 5.49. From left to right, parameter
values are (122,637,0.34,0.83), (26,493, 0.56,0.87), (192, 760, 0.02,0.03), and
(2,684,0.80,0.10) (see text). On the X axis: wavelength in nm, on the Y axis:
relative spectral reflectance.

from 380 to 780, and p; and ps each in 7 equal steps from 0 to 1, we obtain a set of 4900
spectra that cover the OCS surface and the space enclosed by it fairly well, as shown in

Figure 5.33. In this figure the XYZ coordinates corresponding to the spectra are computed

**This subset is itself infinite since the parameters are real-valued, but its cardinality is obviously less
than that of the set of all possible spectra. By discretizing the domains of each of the parameters we can
bring the cardinality down to a finite integer number.
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as in equation 5.27 (p. 97) ff, and these coordinates are the input values for the training set.
The output values for the training set are computed analogously using the 6 linear NPP

functions. Comparing Figures 5.18 (p. 98) and 5.33 we can see that there are no points

iz, o)
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Figure 5.33: Backpropagation training set input points. Each point corre-
sponds to a spectrum defined by equation 5.49. Comparing to Figure 5.18
(p. 98), we can see that the points cover both the OCS surface and the space
enclosed by it.

outside the OCS surface, which is expected of course. Such points do not correspond to
physically possible reflectance spectra, and hence are of no interest to us.

As a measure of convergence of the backpropagation algorithm, I have computed the
RMS error vector between the teaching vectors and the output vectors over the complete
training set. The results for two, three, and four-layer networks are shown in Figure 5.34. 1
have used the Rochester Connectionist Simulator for these computations. The results can
be influenced by some additional parameters such as a momentum term (preventing the
weights from changing too abruptly in the course of learning), a temperature parameter

(determining the derivative of the sigmoid node activation function), and the learning rate
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Figure 5.34: RMS error vector between the teaching vectors and the output
vectors over the complete training set (see text). On the X axis: iterations,
on the Y axis: RMS error. Values for each of the six output nodes are color-
coded, the average is shown in black.

(determining how fast the gradient descent learning proceeds). These parameters were
set by trial and error to 0.66, 0.44, and 0.03, respectively. In general, deciding when to
stop the learning is a relative of the general halting problem, and thus not a computable
function. Since we are doing optimization for one particular problem, we can hand-pick
a local minimum in the error landscape by examining the error plots over a long enough
period, but we can never really be sure that we have obtained a global minimum. Since
the magnitude of the error derivative tends to approach zero over the course of learning,
we can be reasonably confident that whatever local minimum we pick is not too far from
the global minimum, although networks with more layers tend to display sudden changes
in the error functions, as evident for the 4 layer network in Figure 5.34 (between 5000 and
6000 iterations).

Of course the quality of the obtained transform is more important than the RMS error
over the training set. To evaluate this, I will first compare the position of the gray axis in
the NPP space as derived in Section 5.3 (p. 75) to the gray axis as computed by the network-
derived transforms (Figure 5.35). Visual inspection reveals that the gray axis extends into
the negative brightness values for the 2-layer network transform, which is of course undesir-
able, but not for the 3 or 4-layer transforms. In all cases, the transformed gray axis is verti-
cal, and somewhat more curved than the original. The exact black and white coordinates are
((0,0,0),(0,0,1)) for the NPP space, and ({ —0.019,0.019,-0.11), ( — 0.019, —0.016, 0.98))
for the 2-layer network transform, ((0.019, —0.0035,0.0074), ( — 0.014,0.0038,0.98)) for the
3-layer, and ((0.017,—-0.0025,—0.0016), ( — 0.0034,0.00088,0.99)) for the 4-layer network

transform (to 2 significant digits). For 11 equally spaced points along the NPP gray axis,
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Figure 5.35: The gray axis in NPP space (left) and as computed via the XYZ
to NPP transform using a 2-layer (second from left), 3-layer (third from left)
or 4-layer network (right). On the X axes: Green-Red, Y: Blue-Yellow, Z:
Brightness.

the RMS error vectors relative to the transformed points are (0.0149,0.0128,0.0368) for the
2-layer net, (0.0110,0.00241,0.0105) for the 3-layer, and (0.0139,0.00515,0.00964) for the
4-layer net, which confirms the aberration in the brightness dimension for the 2-layer net.
The other two are close enough to make the difference insignificant.

Another important measure of the quality of the transform is what it does to the OCS
surface, which I will continue to use as a frame of reference for studying the spacing of basic
color category foci in the NPP and other spaces. Figure 5.36 shows the OCS surface as
transformed by the 4-layer network, the one with the lowest overall RMS error. It should be
compared to Figure 5.22 (p. 104), which shows the same surface in the (directly computed)
NPP space. We can see that the general shape of the transformed space (Figure 5.36)
is close to that of the directly computed space (Figure 5.22 p. 104), with a vertical gray
axis, similar spacing of hues around the perimeter of the surface, and comparable overall
dimensions. There are some differences too, e.g. the (approximately) red-purple region of
the transformed space is stretched and seems to bulge more relative to the directly computed
version. All in all, I consider this result satisfactory enough to be used in practice. We
should also be aware that the directly computed version is based on measurements of the
Macaque visual system, and the transformed one on a transform of human standard observer
functions, which may account for some of the observed differences.>® The exact parameters

of the transform are given in Appendix B.

%In addition, I have used the most common 5 degree 1931 CIE functions, and there are several modified
versions as well as 10 degree versions available. I have not investigated the effects of using any of these sets
of functions on the accurateness of the transform.
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Figure 5.36: The OCS surface as computed via the 4-layer network XYZ to
NPP transform (see text). Compare to Figure 5.22 (p. 104), which shows the
directly computed version.
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Chapter 6

From Color Space to Color Names

The second part of the mapping A takes us from a color space to a set of (basic) color names,
each with a “typicality” or “goodness” measure associated. In Shepard’s terminology, each
color name corresponds to a “consequential region” in psychological space. Categorizing a
stimulus then amounts to inferring the consequential region to which it belongs [Shepard
1987], together with its goodness value. In this chapter I describe the procedure I used for
fitting a particular category model to the experimental color naming data of [Berlin & Kay
1969], present a theoretical evaluation of the model, and outline a model for learning color

names.

6.1 The Normalized Gaussian Category Model

[Shepard 1987] provides an elegant argument for his claim that the probability of generaliza-
tion of an existing (known) category to a new (unknown) stimulus is a monotonic function
of the normalized distance in psychological space of the unknown stimulus to known stim-
uli belonging to the category. He further specifies that this function can be approximated
by a simple exponential decay or, under certain circumstances, a Gaussian function. The
distance metric is either Euclidean, resulting in circular (or spheroid) contours of equal
generalization, or a slight variant that results in elliptic (or ellipsoid) contours of equal
generalization.

Following Shepard’s suggestion, I have used a variant of the Gaussian normal distribution
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as a category model, which I will refer to as the normalized Gaussian model. The usual

normal curve in one variable (as used in probability theory) is given by

1 1
G(z) = -3(5H
(x) o 2He

(6.1)

where o is the standard deviation (determining the “width” of the curve), and p is the mean

or expected value (determining the location of the maximum) (Fig. 6.1). Since the normal

1 2 3

Figure 6.1: A plot of the normal curve in one variable, with 4 =0 and o = 1
(see text).

curve is used as a probability density function, it has the special property that [ G(z) = 1.
The term z — p in equation 6.1 is the Euclidean distance of the one-dimensional point z to
the mean p. To derive the normalized Gaussian function, we drop the factor ﬁﬁ’ since
we don’t need the interpretation as a probability density function, and we substitute the

general N-dimensional Euclidean distance function for the distance term, which gives us

ST (wi—n)?

o

Gplz)=e (6.2)

L
2

with symbols as in equation 6.1. An example of a two-dimensional version of this function
is shown in Figure 6.2.1 This function has a number of interesting properties for use as a

basic color category model:

!By an N-dimensional normalized Gaussian function I mean a function of N variables.
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Figure 6.2: An example of a two-dimensional normalized Gaussian function
with 1 = (0,0) and o = 1 (left) or ¢ = 0.5 (right).

¢ The maximum value occurs at p and is unity, regardless of the value of o.

The “width” of the curve is a function of the parameter ¢ only.

The value decreases monotonically (but not linearly) as a function of the distance to

I

It is strictly positive (non-zero) everywhere except at infinite distance from p.

o [t has a simple mathematical definition, using only two parameters p and o.

These properties allow us to interpret the normalized Gaussian function as a category model,
with p interpreted as the location of the center or focus of the category, and the function
value interpreted as the goodness value (or alternatively, the fuzzy membership value) of a
stimulus represented by its color space coordinates. By modulating the value of ¢ we can
affect the size of the volume of the color space that is included in the category, relative to
some threshold function value. The maximum goodness (or membership) value is unity, as
is common in fuzzy set models, but we can get a goodness value for any point in the color
space, no matter how far removed from the focus. This is important for our purpose, as I
will show below. The non-linear decrease of goodness with distance from the focus reflects
the general shape of psychological categories as discussed by [Shepard 1987], and it can
result in category extensions different from those obtained with a simple nearest-neighbor
criterion, since neighboring categories may have different values of o. The representation is

also economical, since a category can be represented by only two parameters.
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6.2 Locating the Berlin and Kay Color Stimuli in the Color

Space

Before we can apply the category model described in the previous section to Berlin and Kay’s
color naming data, we need to quantify the stimulus set they used for their experiments. As
described in Section 4.2, they used a set of 329 Munsell color chips consisting of 40 equally
spaced hues at 8 equally spaced brightness (Value) levels each, all at maximum saturation
(Chroma), and a gray scale consisting of nine equally spaced brightness (Value) steps. They
asked subjects to point out both the extent and the foci of the basic color categories of their
native language on the array of color chips, viewed under a light source approximating the
CIE standard source A (Figure 6.3).2

In the following sections I will always use the CIE XYZ space, the CIE L*a*b* space,
and the NPP color space for comparative purposes. The XYZ space is in a sense “the
mother of all RGB spaces”, since the various RGB spaces are simple linear transforms of
it. It is generally accepted as an approximation to the spectral sensitivities of the human
cone photoreceptors, and thus a “primary” representation, as close to the sensor as we can
hope to get. The L*a*b* space is defined by the CIE to be perceptually equidistant across
(most of ) the color gamut, and is often used as a reference in color work. It is a non-linear
transform of the XYZ space. It also performs very well for our purpose, as shown below.
The NPP space is of course the one that we derived from neurophysiological measurements
in Chapter 5, and is also a non-linear transform of the XYZ space. We use this space to
attempt to link the category model to the underlying neurophysiology.

The conversion from Munsell coordinates, in which the stimulus set is defined, to CIE
XY7Z coordinates, which is the basis for the color spaces we are interested in, is non-trivial,
and there is no simple mathematical conversion possible. Fortunately, the Munsell set of
standard color reference chips, from which the Berlin and Kay set is chosen, has been mea-

sured spectrophotometrically and converted to CIE xyY coordinates in the past [Newhall

2The choice of CIE A as a light source is somewhat unfortunate, since its spectral power distribution is
considerably skewed, which results in lower resolution measurements for some parts of the spectrum, as well
as problems with color constancy, since most color work is done relative to either a C or a flat spectrum
light source. We are thus forced to use perceptual color constancy in a somewhat perverse way, assuming
that it takes care of any distortions introduced by the light source, but ignoring it for all other purposes.
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Figure 6.3: The extent and focus for each of the eleven basic color categories
of (American) English, from [Berlin & Kay 1969, p.119]. The vertical bar on
the left represents the nine values of the grey scale used, the rectangular array
represents the set of 320 color chips: 40 equally spaced hues (horizontal) by 8
equally spaced brightness levels (values, vertical). The shaded areas represent
the extent of the categories, the dots inside the shaded areas their foci (a
category can have a focus extending over more than one chip). The legend
above the array contains some errors (which are reproduced here from the
original): “10. orange” should read “10. pink”, “9. pink” should read “9.
orange”, and its pattern should be a narrow cross-hatch as in the third shaded
area from the left in the color array. Compare to Figures 4.1 and 6.5 for the
color version of the stimulus set.
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et al. 1943].% After conversion from CIE xyY, we obtain unnormalized CIE XYZ coor-
dinates for each of the stimuli contained in the Berlin and Kay set. To normalize the
coordinates to the unit cube, with the gray axis going from (0,0,0) to (1,1,1), I used Von
Kries adaptation:

VE(T) = (6.3)

g | =l

where T is the vector representing the unnormalized stimulus values, and w is the vector
representing the unnormalized white reference stimulus values. Although Berlin and Kay’s
gray axis only runs from Munsell Value 1 to 9, I used the coordinates of Munsell Value
10 as white reference, since that is the maximum Munsell Value defined, i.e. the “whitest
white” available. Although Von Kries adaptation cannot theoretically be shown to exactly
undo all the effects of a non-flat spectrum light source, it works well enough in practice to
be allowable, especially with a light source that is as close to a flat spectrum as the CIE C
source used in these measurements [Wyszecki & Stiles 1982]. The obtained stimulus set is

shown in Figure 6.4, represented in CIE XYZ, CIE L*a*b* and NPP coordinates. Some

NPP

L*axb*

Figure 6.4: The Berlin and Kay stimulus set, represented in the CIE XYZ, CIE
L*a*b*, and the NPP color spaces (left to right). Each stimulus is represented
as a dot, with an approximate color rendition derived via conversion to RGB
and gamma correction, as described in Section 5.4. The stimuli are shown
together with a wire-frame rendition of the OCS surface, as described in the
same section.

interesting things to note about this figure are:

*These measurements have been made relative to magnesium oxide as white reference, and with a CIE
C light source — hence the assumption we have to make about color constancy.
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o In all color spaces, the stimuli lie near or on the OCS surface, as is expected since
they represent the maximum saturation levels available at each brightness and hue
value. The OCS surface was computed entirely independently, however, as described

in Section 5.4. This provides a nice cross-check for the consistency of both data sets.

e The spacing of the stimuli varies in the various color spaces. Although it is difficult
to see from the figure, the spacing is most equal in the CIE L*a*b* space, which was
created explicitly for this purpose. The NPP space is less than perfect in this respect.
One might speculate that this is due in part to the relatively early stage in the visual
neural pathway from which the corresponding measurements are collected, and that
perceptually equal spacing is an effect of subsequent transformations of the neural

signals.?

e There are some irregularities in the spacing of the stimuli, particularly in the blue
region. These irregularities had already been noticed by [Newhall et al. 1943], who
contribute them to problems with the underlying CIE standard observer functions
themselves. They are not serious enough to cast doubt on the validity of Berlin and

Kay’s results, however.

Some of the same features may be seen in Figure 6.5, which is a recreation of the Berlin and
Kay stimulus set based on the XYZ values obtained as described, and converted to RGB
for display as before. In particular, note the irregularities in the lower blue region. I have
added Munsell Values 0 and 10 to the gray axis, for a total of 11 stimuli.

Combining the information from Figure 6.3 with the derived color space coordinates
of the stimuli, we can now describe the boundary of a Basic Color category as a polygon
passing through the coordinates of each of the boundary stimuli, and the focus of a Basic
Color category as the center of mass of the points indicated as focal points. Figure 6.6 shows
the boundaries and foci obtained in this way. Note that the shape and size of the polygons
is different in different color spaces, and that in general a straight line on the Berlin and
Kay chart does not necessarily translate into a straight line in the color space, since the

stimuli are lying on or near a curved surface.

“But of course I won’t speculate.
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Figure 6.5: Recreation of the Berlin and Kay stimulus chart, based on XYZ
values of the stimuli (see text), converted to RGB for display, as described
above. Again, the displayed colors are only approximations because of the
unknown color gamut of the device that produced the color rendition you are
looking at, and the limitations of “typical monitor gamuts” which have been
used in the conversion. All colors have been brought into the target gamut by
truncating negative values and values exceeding 1 to 0 and 1, respectively (for
normalized RGB coordinates). On a typical computer monitor, most of the
colors are actually outside of the device gamut. For display purposes only, 1
have used Von Kries adaptation relative to Munsell Value 9, rather than 10,
for no other reason than that seems to result in a better color rendition of the
whole set.

6.3 Fitting the Model to the Data

After choosing a category model and quantifying the data set, we now need to fit the model
to the data. I will describe a one-pass procedure to accomplish this, but in principle it is
also possible to “learn” the fit incrementally, using one example at a time.”

The problem is complicated by having a continuous-valued model (the normalized Gaus-
sian) but discrete data (member of the category or not, focal example or not). We need
to choose some threshold value to be associated with the category boundaries, and another
value to be associated with the foci. Given our model it is natural to choose a value of
unity for the focus, and for the threshold value I have arbitrarily chosen % After some

experimentation, I have obtained the best results with a fitting procedure that minimizes

®See below for some remarks on learning versus optimization, and for a sketch of such an algorithm.
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Figure 6.6: The boundaries and foci of the Basic Color categories for (Ameri-
can) English, represented in the CIE XYZ, CIE L*a*b*, and NPP spaces (left
to right). Boundaries are represented as polygons and foci as dots, with the

color corresponding to the category in question.

the following quantity (independently computed for each category):

Ny No
E=Y [Ga(m57m0) — 07 + w0y Y [GulFosio) — 1] + 3 [ (Gulon 5.0 )P (64)
=1 =1 =1
which is of course a sum squared error criterion. In equation 6.4, F is the total sum squared
error for a particular category, composed of three separate terms. The first term quantifies
the error of fit with respect to the vertices of the bounding polygon, with N, representing the
number of vertices, G, the normalized Gaussian function from equation 6.2, T; a boundary
vertex vector®, 5 a linear scaling vector for the initial focus 7 of the normalized Gaussian, o
the “width” parameter of the normalized Gaussian, and # the threshold value for category
membership, in our case equaling % The second term quantifies the error of fit with respect
to the focal stimuli, with w; representing a fixed weight for this error term, set to % by
trial-and-error”, Ny representing the number of focal stimuli (indicated by black dots in
Figure 6.3), f; a focal stimulus vector, and the remaining symbols as in the first term. The

third term quantifies the error of fit with respect to other-category representatives, with

5The term “vertex” may be somewhat misleading here, as we are concerned with every stimulus along
the boundary of the category, regardless of whether it happens to lie on a straight segment of the boundary
or not.

T am somewhat bothered by the frequent need for “magic numbers” like this, and the associated arbi-
trariness. But then to some extent the choice of any mathematical model is a somewhat arbitrary event, of
course.
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N, representing the number of other-category representatives, T a threshold function (see
below), o; representing an other-category representative®, and the other symbols as before.
The other-category representatives are collected by selecting from the boundary or focus
stimuli of each other category those that are closest (in terms of Fuclidean distance) to
the initial focus of the current category (see below), for each dimension separately. The
union of the sets of such stimuli over all dimensions becomes the set of other-category
representatives. It is necessary to select the nearest points in each dimension separately,
because the dimensions may be scaled independently in a subsequent step. The threshold
function T is defined as

T(x) = " re (6.5)

x, otherwise

The effect of using T in the third term is to create a horizon for other-category represen-
tatives: as long as their function value for the current category’s model function is below
some value eta, it is not counted at all. I have used n = 0.94. The minimization of I
is carried out with respect to ¢ and 5 (each component independently) by Mathematica’s
standard FindMinimum function, which finds local minima in a function by following the
path of steepest descent from any point it reaches. Loosely speaking, this amounts to mov-
ing the focus of the model function (the normalized Gaussian) around in the color space so
as to bring the boundary stimuli’s membership values as close as possible to 8, the focus
stimuli’s membership values as close as possible to 1, and the membership values for any
other category’s representatives below the horizon value 7.

The use of other-category representatives in the error function may cause the category
boundaries of a category to shift to some extent as a function of the distance, or presence or
absence, of other categories nearby. There is some evidence in Berlin and Kay’s work that
the extent of categories may indeed be influenced by the total number of basic categories,
and hence by their mutual distance, but I have not examined this any further.

Since the minima found by the FindMinimum function are local, the initial values for

the variables ¢ and s are quite important. For the initial value of o I have used the identity

8No pun intended.
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scaling vector (1,1, 1), which combined with a value of p given by

N
Zj:f1 fji

= ListNd
lu =1 Nf

(6.6)
(with Ny representing the number of dimensions of the space, and f;; the i-th coordinate of
focal stimulus 7) places the initial model focus at the center of gravity of the focal stimuli,
and hence on or near the OCS surface. In order to determine an initial value for o, we
find the same-category stimulus s, (focal or boundary, but typically boundary) that is
farthest away from g as just defined (using Euclidean distance in the color space), and
then determine o such that G, (s,,,5,0) = 6. Since the value of the normalized Gaussian
is a monotonic function of distance to the focus, and s,, is the point in the set farthest
away from the focus, any value of o larger than (i.e. a “wider” curve) that will result in
a monotonically increasing square error over the complete set (for a constant focus), and
values smaller than that will lead to the nearest local minimum. Even if this minimum is
not the global one, this procedure will ensure it is the “same” minimum for all categories.
In principle the error landscape as a function of ¢ can have up to N local minima for N
points over which the error is computed. In practice the minimum found in this way seems
to be usually the global one, or at least very close to it. Figure 6.7 illustrates this for the
1-dimensional case.

error N=4 si=0.819021 error N=4 si=0.579301 error N=4 si=0.740368
1 . . .

o o o o
[ - )

sigma

sigma : I H
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 1.2 1.4

0.25 0.5 0.715 1 1.25 1.5
Figure 6.7: The value of the first term of the error E (equation 6.4) as a
function of the parameter o, for fixed values of ¢ = 0 and N, = 4, with
randomly chosen 1-dimensional points in [0, 1]. The initial value of sigma as
determined by the procedure described in the text is indicated by the dashed
line. On the X axis: o, on the Y axis: error. We can see that the error
landscape can have more than one local minimum, but in each case the one
closest to the initial value of ¢ is also the global one, although that is not true
in general.
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After determining the values of 3 and ¢ through error minimization, a second minimiza-
tion step is applied, which involves distorting the Euclidean nature of the space. The first
step used a Fuclidean distance metric, resulting in spheroid contours of equal membership
value. The second step allows the dimensions of the space to be scaled individually for each
category model, which can effectively results in an non-spheroid contour of equal mem-

9 The procedure for

bership value (cf. the discussion of Shepard’s model in section 6.1).
this scaling involves an other error minimization comparable to the first, with the objective

function defined by

N - 2 Ny o 2 Mo - 2
E = [Gn(s’ v, 8 W, o) — 0] +wy Z [Gn(s’ Jir sy, o) — 1] —I—Z [T (Gn(s’ 0;, s’ ,u’,a’))]
=1 =1 =1

(6.7)
which is basically the same as equation 6.4, but having both data points and category foci
scaled by the vector s/, and with p/ = 3 77 where 3 is the result of the first minimization step.
The minimization is carried out as before by Mathematica’s FindMinimum function, with
initial values o/ = ¢ after the first minimization step, and s’ = (1,1,1). Informally speaking,
this amounts to stretching (or compressing) the dimensions of each category to make it fit
the data better. Alternatively, one can think of it as stretching the dimensions of the color
space to make it fit the categories better, but locally only. The obtained scaling vectors
for the XYZ, L*a*b*, and NPP spaces are shown in Figure 6.8. One way to interpret this
figure is that the closer the vectors cluster to the main diagonal of the unit cube, the more
Fuclidean the space is (or the categories are), since that corresponds to spheroid surfaces
of equal membership value. There are clear differences between the spaces in this respect,
but there does not seem to be one “best” space in this respect.

The result of fitting the category models to Berlin and Kay’s data for (American) En-
glish, using the two-step method described above, is shown in Figures 6.9 to 6.11. These
figures show the locations of the category centers (the values of u’ for each category model)
only; the boundaries will be discussed below. It is interesting to note that some of the foci

lie outside of the OCS volume, which means that they do not correspond to physically re-

°In neurophysiological terms one might think of the “receptive field” of a neural (sub)network “imple-
menting” a particular category, and it is not unreasonable to assume that those receptive fields might be
somewhat differently shaped from one category to the next, and not necessarily spheroid in terms of the
underlying color space coordinates — but all this is highly speculative.
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Figure 6.8: The scaling vectors obtained by minimizing equation 6.7 with
respect to o/ and &, for the XYZ, L*a*b*, and NPP spaces (left to right). For
reference, the unit cube is displayed as well. The unit scaling vector, which
leaves the space unchanged, is the main diagonal of the unit cube, going from
(0,0,0) to (1,1,1). The vectors are colored according to the Basic Color
category they represent. Note that only one of them shows in case of multiple
overlapping vectors.

alizable (and perceivable?) surface colors. Technically, this is the result of allowing the foci
to “float” in the first part of the fitting procedure. While it is possible to constrain the foci
to lie on or below the OCS surface, that results in a considerably poorer fit, and degraded
performance for the algorithms using the category models, to be discussed in Chapter 7. 1

am not sure what might the the neurophysiological correlate of these “virtual foci”, if any.

6.4 Theoretical Evaluation of the Category Model

To evaluate the category model just described, we will compare the model’s categorial
judgments to the Berlin and Kay data, i.e. the data to which it is fitted.!® We will do this
for each color sample in the Berlin and Kay stimulus set, which is actually a superset of
the data the model was fitted to.!'! Note that our model (normalized Gaussians) implies
convex Basic Color category regions, and while that is not always the case for the regions
as depicted in Figure 6.3 (e.g. the green region), it is generally true for the regions as

mapped onto the OCS surface in the various color spaces, perhaps with some minor local

19Ty Chapter 8 we will evaluate the model on other data sets as well.
1T am purposely avoiding terms like “training” and “learning” here.
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Figure 6.9: The locations of the category model foci (values of ') in XYZ
space is shown by the colored dots, relative to a wire-frame rendition of the
OCS surface. In English reading order: four views rotating around the OCS
surface, and one from above and below.

Figure 6.10: The locations of the category model foci (values of /) in L*a*b*
space is shown by the colored dots, relative to a wire-frame rendition of the
OCS surface. In English reading order: four views rotating around the OCS
surface, and one from above and below.
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Figure 6.11: The locations of the category model foci (values of p’) in NPP
space is shown by the colored dots, relative to a wire-frame rendition of the
OCS surface. In English reading order: four views rotating around the OCS
surface, and one from above and below. The location of the blue category
focus is not shown because it lies too far outside of the figure’s bounding box.
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Figure 6.12: Categorization results for the CIE XYZ color space. The cate-
gory model judgments are shown as disks of the color corresponding to the
category function returning the largest membership value for each sample,
with a diameter proportional to the membership value. If all category func-
tions return a value below the threshold # (Section 6.3), no disk is shown.
This corresponds to a “none” or null judgment. The results are shown super-
imposed on a recreated stimulus chart as in Figure 6.5, with Berlin and Kay’s
category boundaries and focal stimuli indicated by lines and small rectangles,
respectively.

exceptions.!? Figures 6.12 to 6.14 show the results of this comparison.

From visual inspection of these figures it is apparent that the categorization works better
in some spaces than in others. In some spaces a certain category may “bleed” outside of the
Berlin and Kay category boundaries, e.g. in the XYZ space, green intrudes into the brown
region (and these two region’s boundaries do not touch in the Berlin and Kay data), and
black into green; blue spills over into the purple region, purple somewhat into pink, white
into pink, and green and blue slightly into gray. Other categories exceed their boundaries
without intruding into another basic category’s region, e.g. yellow in all three spaces (but
particularly in L*a*b*). Another type of mismatch is a category that does not fill enough of
its region (which may coincide with exceeding the boundaries in other areas), e.g. orange,
brown, green, blue, and purple in XYZ. The same type of errors occur in all three spaces,
but to varying extents. The L*a*b* seems to perform best in general, followed by the NPP
space and the XYZ space. Some errors do not seem as serious as others, e.g. the row of

white judgments for the very pale blue and pink stimuli in the top row in the NPP space

12We should keep in mind that the Berlin and Kay data represents averaged judgments over a number of
subjects, which may introduce phenomena that are not necessarily present in any individual subject’s data.
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Figure 6.13: Categorization results for the CIE L*a*b* color space. See Fig-
ure 6.12 for details.
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Figure 6.14: Categorization results for the NPP color space. See Figure 6.12
for details.
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does not seem like a particularly serious mistake, but judging gray as green or blue in the
XYZ space or as purple in the NPP space does. This judgment is qualitative in nature, of
course, and somewhat subjective. In addition, performance on color-related tasks may be
considered more important than this type of theoretical evaluation (see Chapter 8).

To try and get at a more objective measure of performance, we now turn to quantifying
the “goodness of fit” of the category models. There are two concurrent criteria we can
use: how well the extent (area or volume, depending on which representation we use) of a
model category fits the extent of the corresponding category in the data, and how close the
model focus of each category is to the corresponding category focus (or focal samples) in
the data. The following error metric attempts to capture the first of these (the extent of

the categories), and is computed over the complete set of Berlin and Kay stimuli

L
El’ = F Z(O[% — O[é)2 (68)
S 4=1
0, ol <ONC ¢ P
at al < ONCE € P
o = { o, al, > ONCi & PPAP A0 (6.9)

al —0, ol >ONCE P AP =0

9, al >ONCE € P
. o, P #£D
al = (6.10)
0, otherwise
ot = max{al.. .aévc} (6.11)
Ci = C; suchthat a; =al (6.12)
Pt o= {Ci|si€Cy) (6.13)

where I is the total error (again a Root Mean Square error metric), Ny is the number of
stimuli in the set, o is the predicted (model) and a! is the expected (data) membership
value for stimulus 7, ' is the maximum membership value for stimulus ¢ over all category

model functions, # is the membership threshold as before, C? is the category yielding the
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al . P'is the set of all data categories that the stimulus belongs to (decided by being

within the category boundaries as indicated on Figures 6.12 ff.), ai

% is the membership

value for stimulus 7 in model category C;, and s; is stimulus i.'> The complicated way
of determining «, is necessary to deal with various cases such as the predicted category
matching or mismatching the expected category, and with discrete data versus continuous
model. In addition to the error over the complete data set, the square error for each stimulus

is added to the running total for category C’; iff
(C; e PHYV(C; =CL Nal, > 8) (6.14)

i.e. either when the data or the model says it should belong to category C;, so we will get
an error when the model category is either too small or too large, as compared to the same
category in the data.

The error in the placement of the category model foci is determined as follows: for each
category C;, determine the stimulus s; that is closest to its focus fi;, using the regular
Euclidean distance metric on the color space coordinates. This is also the stimulus with the

7

%, since that is a monotonic function of distance to the focus.

maximum membership value «
Then the center of gravity E of the data focal stimuli is determined as in equation 6.6, and

finally the focal error is computed as the Euclidean distance between the two foci:

(6.15)

where I is the focal error, Ny is the number of dimensions of the color space (in our case 3),
and z? is the d-th coordinate of point Z. This is approximately equivalent to the distance
between the data focus and the orthogonal projection of the model focus onto the OCS
surface (there may be small deviations because the stimuli and data focus may lie slightly
below the OCS surface). The focal error is computed per category and averaged over all

categories.

13Tt would be easier to reproduce a piece of Mathematica code here than to try to write this down in
standard mathematical notation, as I have done. Mathematical notation is just not meant to deal with
complex data structures and other objects that occur frequently in programs.
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The computed errors for the color spaces of interest are shown in Figure 6.15 to 6.17.
Comparing these figures, we get confirmation that the L*a*b* space performs best in terms
of the extent of the color categories (leftmost bar of the left part of the figures, marked
“ALL”). For each of the categories individually except yellow, the error is less in L*a*b*
space than in the other two spaces, and for black, gray, and white (i.e. the gray axis),
the error is zero in L*a*b* space but not in the other two spaces. Between the RGB and
NPP spaces the differences are smaller, with the overall error virtually the same. For some
categories such as pink and white the error is smaller in NPP space, for others such as red
and yellow the error is smaller in XYZ space. In terms of the error of focus location, the
three spaces are comparable overall (leftmost bar marked “AVG” in the figures, with some

per-category variation among the spaces.

6.5 Comparing Performance for Different Color Spaces

In the preceding section we have looked at differences in performance of the categorial model
with respect to different underlying color spaces. We now take a closer look at why those
differences might arise, i.e. if there are any intrinsic properties of the color spaces that
might explain the differences in performance.

First of all it is important to note that both the XYZ and the L*a*b* are psychophys-
ical color spaces, defined by the Commission Internationale de I’Eclairage (International
Lighting Committee), based on color perception experimental data averaged over large
populations. In contrast, the NPP color space is based on neurophysiological recordings
made from a single individual (and a monkey at that). As such it should be representative
of a particular individual, but not necessarily of a population mean. The color naming
data of Berlin and Kay is also averaged over a number of experimental subjects, so it is
likely that theirs would be a better fit with the CIE spaces than with the NPP space, when
considering only the way both color spaces and naming data were constructed or collected.

The categorial model itself is of course also a psychological model, based on experimental
observations over a wide range of tasks and sizable populations [Shepard 1987], so again
we would expect similarly constructed color spaces to be at an advantage. The model

works best on the L*a*b* space, which is meant to be a perceptually equidistant space,

140



Figure 6.15: The error of fit of the model categories relative to the Berlin and
Kay data, for CIE XYZ space. Left: RMS error of fit of the extent of the
categories (equation 6.8), right: distance of projected model foci to data foci
(equation 6.15). Averages over the set of stimuli/categories is shown in black,
per-category error bars are color coded accordingly.

Figure 6.16: The error of fit of the model categories relative to the Berlin and
Kay data, for CIE L*a*b* space. Left: RMS error of fit of the extent of the
categories (equation 6.8), right: distance of projected model foci to data foci
(equation 6.15). Averages over the set of stimuli/categories is shown in black,
per-category error bars are color coded accordingly.

Figure 6.17: The error of fit of the model categories relative to the Berlin
and Kay data, for the NPP space. Left: RMS error of fit of the extent of the
categories (equation 6.8), right: distance of projected model foci to data foci
(equation 6.15). Averages over the set of stimuli/categories is shown in black,
per-category error bars are color coded accordingly.
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meaning that a fixed distance between two points anywhere in the space should correspond
to the same magnitude of perceptual difference (e.g., the perceptual distance between the
top two gray scale samples in Figure 6.5 should be the same as the distance between the
next two). This is not surprising giving the categorial model, which assumes a Fuclidean
distance measure on the underlying space, i.e. the perceptual differences should be equal
in all directions and in all areas of the space.

The reason the NPP space does not perform better may be related to the scaling issues
discussed in Section 5.3.5. For instance, the green region in the NPP space seems to be com-
pressed and low on the brightness dimension, compared to the L*a*b* space (Figure 6.6).
This means that the NPP space is not perceptually equidistant. The reason for this could
be either that at the LGN stage of color perception, there is no perceptual equidistance yet,
and equidistance is an effect of a “higher” stage in the neurophysiology, or it could be that
using a different scaling method might result in a more equidistant space. But the latter
could itself be seen as modeling a higher stage in neurophysiology, of course. I have not
investigated this question any further yet, but it is certainly an interesting one.

Finally, the error metric as developed in the preceding sections does give us a quanti-
tative basis for comparing the performance of different color spaces, but it is a less than
perfect one. For instance, it does not take into account how “serious” a categorization error
is: categorizing very pale blue as white is not as serious as categorizing green as red. It is
difficult to include such qualitative judgments into the error metrics, but doing so might

give somewhat different results.

6.6 A Sketch of a Developmental Model

Learning might very well be a domain where angels fear to tread, so my brief remarks on the
subject in this section should not be taken as having any relevance for, or being encumbered
by any knowledge of, the subject at large.

The fitting of the category model to the color naming data as discussed in Section 6.3
might be considered as an optimization problem, or perhaps a problem of parameter setting
in a prior structure, to use the terminology of [Brown 1994], but probably not as a learning

approach. Another distinction that [Brown 1994] makes is the one between experience-
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expectant and experience-dependent processes. The former would depend on species-specific
experience that might have (had) evolutionary importance, and might be described as “bi-
ased learning” or development, while the latter would depend on individual-specific experi-
ence, and would be closer to what is generally understood by learning. Biased learning is also
related to Edelman’s Theory of Neuronal Group Selection [G. Edelman 1992, G. Edelman
1989], in which the concept of selection plays an important role, as opposed to recognition.
In a nutshell, the idea is that categorization (and, by extension, cognition) may be a matter
of the selection of certain neuronal groups by certain stimuli, rather than the recognition of
a stimulus by a general categorization mechanism.!* The connection I see between biased
learning and selection is that one might consider each of the neuronal groups to “implement”
a different bias (or “attractor”) for the feature/parameter space over which development
and/or learning takes place.

Bringing the discussion back to color categorization, one might consider the foci of the
Basic Color categories to represent biases or attractors of this kind. Indeed, Berlin and
Kay suggest that the 11 basic color categories represent a universal inventory out of which
particular languages choose to lexicalize some number up to 11, presumably dependent on
their environment and needs (Section 4.2).15 T have not been able to relate the location
of the foci to any particular neurophysiological phenomena, but let’s assume that they are
indeed universal, for the purpose of the discussion.!® Given that we know the locations
of the foci in (a particular) color space, a simple developmental or experience-expectant
algorithm for determining both the extent and the labels (names) of the categories might

go like this:

1. Given: a stimulus, represented as a point P in color space

optional: a label [, represented as a symbol or a string

2. collect the membership values a of p for every category in the set C of known categories:

Q:{af|C¢EC}

3. select the best candidate category: C), = C; s.t. a; = max(}

"These concepts derive in part from Edelman’s Nobel Prize winning work in immunology.

5 There is some evidence that there may be more than 11 such universal categories, but I will ignore that
for now.

1®The location of the foci may have more to do with the environment in which the color perception
mechanism evolved than with any intrinsic features of the mechanism itself, but at this point I can only
speculate on this matter.
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4. if necessary, adjust the width parameter o, of (', such that a,; > 8, without changing

the categorization of any other stimulus not belonging to the null category
5. if a label | was provided :

(a) if no label L,, is associated with C,,, associate [ with it: L,, =1
(b) if a label L,, is associated with C,,, and L,, = [, do nothing

(c) if a label L, is associated with C,,, and L,, # [, shake.

Step 4 could be implemented by keeping a list of examples of each category on hand,
and doing a minimization as described in equation 6.4, with the appropriately chosen other-
category representatives, or such a list could be generated as needed each time around by
selecting for each other category C,, the point p that is closest to the focus of the best
candidate category C,,, such that o = #. This list has to be recomputed every time
because the o; may change in the course of development. Step 5c is a somewhat complicated
case, which could either be due to contradictory input, to a problem with the category
model itself, or to a previously overgeneralized category. In any of these circumstances,
the system has to be “shaken up” or relaxed into a new maximally consistent state, but I
have not considered any algorithms for doing this. The sketched algorithm also needs the
o; associated with each category to be initialized to some default value, which has an effect
on the categorization behavior in its initial stages: choosing the initial o; to be small will
result in categories that are the smallest possible to contain all examples “seen” to date,
while choosing it to be large will result in the largest possible categories that do not conflict
with any examples seen to date. These two possibilities may converge to the same state

eventually after seeing sufficiently many examples, but I have not investigated that.
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Chapter 7

Putting It All Together
From Visual Stimuli to Color Names, and Back

In this chapter I will put all the pieces together, and discuss the complete behaviors that
can be modeled using the work described so far. Here we will refer back to the original
goals of the research set forth in Section 1.2, viz. to enable an autonomous robotic agent
to name colors of objects in its field of view, and to point out examples of objects with
specified colors in its environment, both in close agreement with human performance on the
same tasks.

As I have explained before, I will not be concerned with issues of color constancy,
assuming constant and homogeneous flat-spectrum lighting, nor with issues related to color
in context, i.e. the influence context may have on color perception. However, in Chapter 8,
where I present an application based on the model, the constancy issue will be dealt with

to some extent.

7.1 Naming Color Samples

The complete process required for naming the color of an object (or a blob) in one’s field of
view is schematized in Figure 7.1. The sensing device, e.g. a color camera, color scanner,

or special-purpose color sensor, typically outputs RGB (Red, Green, Blue) values for each
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Figure 7.1: Schematic diagram of the color naming process. Boxes represent
devices or operations, ellipses represent data representations. Directed line
segments represent data transformations. In general, most operations are
invertible, at least to some extent.

pixel in its sensor array, which are transformed into the color space coordinates of choice
(e.g. XYZ, L*a*b*, or NPP). This transform is usually, but not always, reversible (this
is especially easy when dealing with a simple linear transform such as the RGB to XYZ
conversion). A blob of a uniform color in the field of view thus corresponds to a point in
color space, p. Once we have determined p, we determine its membership (or goodness)

value with respect to each of the defined color categories C; € C:

A = {({Ca) | C; €C} (7.1)
o, = Gn(ﬁ, I, Ui) (7.2)
C; = <m, Ui,li> (7.3)

where A is the set of all membership values, «; is the membership value for category
C;, and C is the set of all defined (non-null) categories.! G, is the normalized Gaussian
function from Section 6.1 with the corresponding parameters u (the focus) and o, and [;
is the label (name) associated with category C;. Note that it is always possible to get a
non-zero membership value for any category, because the normalized Gaussian is strictly
positive everywhere except at infinite distance from the focus. This property is important
in forced-choice identification tasks, as we will discuss below.

Next we select all categories for which the membership value exceeds the threshold for

'If we think of a category model as a fuzzy characteristic function for the corresponding fuzzy set C, we
could write & = pc(P), but I am avoiding this notation because of the potential confusion with the category
parameter p.
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category membership 6, and the corresponding membership values:?

B = {<Ci,ai> | <Ci,ai> cCAANQ; > 0} (7.4)

These are the candidates to provide a name for the color of the stimulus.® More than one
membership value can potentially exceed the threshold, so there may be more than one
element in this set (the set may be empty too, as the combined extent of the categories
does not cover the entire color space, at least when thresholded). This is particularly the
case for overlapping categories such as red and orange (Figure 6.5 p. 128).

Next we sort the candidates by decreasing membership value:

S={Cr ), ... (Coyan)), a;>a; 0> (7.5)

and the first element of this n-tuple is our categorization judgment with the corresponding
membership or goodness value. The name corresponding to the perceived color is then
simply 374(CY).

Using a particular threshold value # amounts to doing a free choice naming experiment
with 11 named basic color categories and one null category for everything that does not
exceed the threshold for any of the named categories. Using a zero (or no) threshold amounts
to a forced-choice experiment where we will always assign one of the 11 named categories
to the stimulus, regardless of how low the best membership value might be. This technique
has been used by [Hurvich & Jameson 1957] for instance, using only the four primary colors
red, green, blue, and yellow, to obtain psychophysical measurements of the color-opponent

processes assumed to underlie color perception.

2The description of the various steps is mainly for explanatory purposes, and need not reflect an actual
implementation strategy. The first two steps can easily be combined into one, for instance.

*In practice I apply a “fudge factor” é to 8, so that the condition becomes a; > @8, with ¢ = 0.99. The
reason for this is that the minimization procedure as described in the previous chapter often results in values
slightly below ¢ for the boundary stimuli, because of the RMS error metric used.
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7.1.1 Complex color names

Once we have the sorted list of candidates §, we can not only return the name of the best
candidate category, but also a complex color name, constructed from the names of the top
two candidates. The following algorithm presents a tentative way of doing this. I claim no
significance for this algorithm other than being an illustration of how one might go about
constructing compound names. I have not compared it with experimental or other existing

data on compound color names (if any).
1. Given: S (equation 7.5), but using 6 = 2 (equation 7.4)

2. p=1%(S)
s = 2"(8)

3. the compound name is given by

(a) null,if S =0 v 2" (p) < 6

(b) 374(p), if s = null

(c) (374(s) + “ish”,374(p)), if 27(s) > 0

(d) (“somewhat”,3"(s) + “ish”,3"%(p)), otherwise

where 277 selects the second element of a tuple, and 3"¢ the third. The lower threshold ¢ is
used to select both primary and secondary candidates, because the secondary candidate’s
goodness value is allowed to be lower than the regular threshold for category membership.
Step 3a returns a null name (i.e. a no-category judgment) if no candidates exceed the
regular threshold #. Step 3b returns only the primary candidate’s name if no secondary
candidate is found. Step 3¢ returns names of the form “greenish blue”, where “blue” is the
primary name (highest membership value) and “green” the secondary, if both candidates
exceed the regular threshold 6. Step 3d, finally, returns names of the form “somewhat
greenish blue” if the secondary candidate does not exceed # (but the primary candidate
does). Chapter 8 shows some examples of compound names derived with this algorithm.

Varying the parameters (magic numbers) 6 and 6’ affects the behavior of the algorithm, but

I have not explored this in any detail.
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7.2 Pointing Out Examples of Colors

The complete process required for pointing out an object (or a blob) of a named color in

one’s field of view is schematized in Figure 7.2. Compared to the color naming process, we

RGB —! transform —= color | category
frame /= 1 ——\_ space ,/<— model
CRT AN

| IS

E sensor

color name
goodness
index

Figure 7.2: Schematic diagram of the color pointing-out process. Boxes rep-
resent devices or operations, ellipses represent data representations. Directed
line segments represent data transformations. In general, most operations are
invertible, at least to some extent. The pointing device suggested here is a
monitor (CRT), but could in principle be a robot arm or some other device.

also need a pointing device (a color monitor is suggested in the diagram, but other pointing
devices like a robot arm could be used), a complete color image (frame) rather than just a
blob, and an index into the image for each blob to be categorized. In Chapter 8, I present
an application along these lines, and further implementation detail is provided there.
When given a color name N to point out an example referent of, we sample the image
using a certain sample (blob) size, collecting the averaged device RGB values and the image
coordinates of (the center of ) each blob, and transform the RGB values to the color space of

choice, which gives us a set of points in color space with corresponding image coordinates:*

I={<p_1,ﬁ>,---,<p_s,§>} (7'6)

where P; is a point in color space, ¢ is the position vector of the corresponding (center of
the) blob in the image (field of view), and s is the total number of samples (blobs).

We then determine the membership (goodness) value of the samples in the appropriate

* Again, the description is for explanatory purposes, and not meant to suggest an implementation strategy.
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category:

A = {{aj,@) | (i) € I} (7.7)
aj = Gu(Dis i 05) (7.8)
C; = <:uj7 R N) (7.9)

where (&, is the normalized Gaussian as before, and (; is the category with which the name
N is associated, with its corresponding parameters u; and o;.
Next we select all samples with a membership value exceeding the threshold for category

membership 6:

B={{a; @) |(a;,7) € AN, > 0} (7.10)

These are all candidate referents for the name N.

As before, we sort the candidates by decreasing membership value:

S={{an,e), ... (0, @), > a;&i>] (7.11)

If we just want any referent for the category named N, we pick an arbitrary element r € §
from this tuple (or from set B), and if we want the best example we take the first element
r=1(8S).

After selecting a referent r, all that is left to do is point it out in the image (or in the
world giving rise to the image, which is harder to do), using the index vector 27%(r).

As is the case with color naming, we can do forced choice experiments if we use a zero
threshold, in which case a referent will always be selected regardless of how good an example
it is, or we can do free choice experiments using the standard threshold #, in which case a

referent will only be selected if it is a “good enough” example of the category in question.

7.3 Choosing Objects by Color

When combined with an image segmentation algorithm, we can use the same techniques

to choose objects by color. For instance, if a robot is instructed to “get the red foozle”,
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and it does not have the capability to distinguish foozles from non-foozles,” it can still
make an educated guess provided it can segment foozles from the background, and there
aren’t too many red objects around. Color provides another constraint for determining
the referents of expressions, and while it may not be sufficient to determine the referent
uniquely, it may provide enough constraint to enable a unique determination in combination
with other constraints such as shape and size, even if none of these alone would be sufficient.
Interestingly, some non-basic color names are so specific that they practically provide all the
information necessary to pick out the intended (class of ) referent(s). Consider for instance a
term like “blond”, which is applicable to very few object classes only (mainly hair, possibly
beer too).% If one has a perceptual category for such a term, one can pick out the intended
referent by color only.

Another interesting observation in this respect is that the robot’s color perception mech-
anism need not be as good to perform this task (discrimination) as to perform the naming
or pointing tasks. The categories may be considerably “wider” and more overlapping, or
the robot’s idea of what constitutes a particular color may vary to some extent compared
to the agent issuing the request, as long as the colors of potential referents are distributed
widely enough throughout the color space. This task is probably best performed with § = 0,
to avoid quibbles over whether or not a particular object color is a good enough example

of the requested kind (or in other words, to be maximally cooperative).

7.4 Semantics, Grounding, and Truth

Meaning derives from embodiment and function, understanding arises when
concepts are meaningful in this sense and truth is considered to arise when
the understanding of a statement fits one’s understanding of a situation closely
enough for one’s own purposes. Thus, there is no absolute truth or God’s-eye
view. Our view of what exists (metaphysics) is not independent of how we know

it (epistemology). [G. Edelman 1992, p. 250]

We now return to the subject of Chapter 3, discussing some of these issues in the light

®This is of course hard to imagine, but let’s assume it is the case for the sake of the argument.
5Flemish has a term “ros” which means “red”, but is only applicable to hair, to my knowledge.
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of the model of color perception and color naming we have presented.

I consider the model of color perception and color naming as presented in this disser-
tation to be a true referential semantic model in the domain of (basic) color names. It
is true in the sense that it is well-defined and computable, and enables certain behaviors
that require a semantic model to bridge the gap between the external world and internal
symbols, and referential in the sense that it expresses the meaning of color terms in terms
of a mapping to/from another domain. The referents of the color terms are not directly
objects or properties in the world, however, but certain areas in an internally represented
color space. But the color space itself is causally connected to the outside world, which I
consider a necessary property for any referential semantic model, or at least for the models
that constitute the “direct grounding” for some set of terms. Other terms may derive their
meaning from being systematically related to directly grounded ones, but without such
a core set of directly grounded terms, I believe no meaning or understanding is possible.
To put it succinctly: no amount of semantics will ever allow a robot to relate its internal
symbols to its environment without some set of directly grounded terms. The algorithm
for determining compound color names as presented in Section 7.1.1 may be regarded as
a primitive compositional semantic characterization of such terms, which are indirectly
grounded in the meanings of (characteristic functions of) the set of basic color terms. I
therefore do not agree with an extreme solipsistic view of semantics that would hold that
the world is permanently “out of reach” of cognition, and that it therefore does not matter
how we choose to characterize the meanings of concepts, as long as this characterization is
internally consistent. Meaning is a function of at least two variables: what is “out there”,
and what is “in here”. The world and the cognitive mechanisms both have a necessary role
in meaning and understanding. An agent equipped with an arm can actually reach out and
touch the things out there that in its internal representation correspond to the referents of
some of its internal symbols, and while one may contend that the referent of its symbols is
really part of its internal representation and not part of the external world, the difference
is not relevant for most practical purposes. One might consider the internal thing to be the
“direct referent” and the external thing the “indirect referent”, and in most cases they will

be causally related.” It is possible, however, to uncouple this “alignment” (see Appendix A)

"In some cases, one can completely internalize the indirect referent of one’s symbols, e.g. by eating it.
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under certain circumstances, and in this case we might speak of “being deceived by one’s
senses” (as in optical illusions) or of “perceptual defects” (as in blindness).

A ubiquitous red herring in writings about semantics is truth. Truth, of the metaphysical
God’s-eye variety, has very little to do with meaning, in my opinion. The Edelman quote
above expresses this sentiment quite well. The often-found Tarskian statement that “snow
is white if and only if [snow] [is] [white]”, where [x]| denotes the referent of x (an object
or relation over objects) is of no use if those referents are assumed to be in the world, and
one is supposed to verify the metaphysical, God’s-eye truthfulness of the description of the
state of affairs, without the intervention of any perceptual or cognitive mechanism. The
most one can say is “I believe snow is white if and only if G,(Psnow, fwhites Twhite) > 0)7,
where Psron 18 a point in color space corresponding to a sample of an image of something
belonging to the perceptual class “snow”. Usually, though not always, this will be the case
when one has the appropriate white and cold stuff in one’s field of view. It is futile to
torture oneself with existential doubt as to whether what one is beholding is “really” snow,
or merely a very good imitation of it. The duck test applies.

With our concrete model of basic color term semantics before us, it is also easy to
see what makes a symbolic representation symbolic. The labels [; in equations 7.1 are the
(names of the) symbols we use for the perceptual categories that they are paired (associated)
with. They carry meaning only by virtue of being associated with those categories, but there
is nothing intrinsic about them that makes them mean what they mean. The association
is arbitrary, and can easily be changed without changing anything fundamental about our
understanding of color. A rose would look just as red by any other color name, so to speak.
What is not arbitrary is the perceptual model, however, since changing any parameters in
there will literally make us see the world differently. The perceptual categories might thus
be considered analog or iconic in nature, as opposed to symbolic. This also sheds some
light on how translation is possible. Without any perceptual underpinnings, the knowledge
that “red” = “rood” does not mean much at all. While it may allow us to syntactically
substitute one for the other, it would not help us much if we were to move to Flanders. But
in the presence of the perceptual category, knowing that “red” = “rood” allows us to move
to Flanders and understand what people mean when they talk about “rood” things, and
pick out the referents in the world without any further learning. I contend that without

a more or less common set of perceptual categories (and hence directly grounded terms),
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learning a foreign language would not be possible — indeed it would not be possible to
understand what anyone else is talking about, and probably it would not be possible to
learn any language at all.

Some related issues are brought up in [Davidoff & Concar 1993], where the authors
discuss the “memory palette” for colors, or the “internal color space” which functions as
a link between the mental worlds of color vision and color language. They report that
children have difficulty learning color names: red, green, yellow, and blue are learned first,
in no particular order, and only when all four of these are learned can they use any of them
correctly. These colors have been called “landmark colors”. They are easy to name, form
associations with, and children prefer to point to examples of them. They play a central role
in learning to name other regions of the color space. Categorization is reported to be not
necessarily hardwired, and to some extent alterable by experience. It can be impaired while
color vision itself is intact. These findings support the two-stage model of a color space with
a separate set of categorization functions defined on that space, and the “looseness” of the
coupling between perceptual color categories and color names. Some similar views can be
found in [G. Edelman 1989], who mentions research in pre-verbal concepts and complains
that concepts and their names are usually tied together in computational models, which is
not the case in our model of course. As will have become obvious by now, I share the view
of cognition as being based in perception.

With respect to Knowledge Representation and Reasoning issues, the color model can
be seen as providing the direct grounding for a set of atomic concepts (base nodes in SNePS
terminology, cf. [Shapiro & Rapaport 1987]). These may in turn take part in reasoning
about color or about colored objects, but I believe that to be relevant, such reasoning
must take the semantics of these terms (the perceptual model) into account, for instance
in determining the meaning of compound color names based on the meanings of their
constituent terms, as was hinted at in Section 7.1.1. In other words, meaningful reasoning
requires meaningful terms. Such meaning must derive directly or indirectly from grounding
through perception and action (see Appendix A), and cannot be based on imaginary worlds

or descriptive semantics in manuals.
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Chapter 8

An Application and Some

Empirical Results

This chapter presents a simple application for naming colors, pointing out examples of col-
ors, and selecting objects by color, based on the model presented in the preceding chapters.
Some empirical results are presented and discussed, and some ideas are presented for future

work along these lines.

8.1 A Simple Application for Color Naming, Pointing Out,

and Selecting

8.1.1 Outline

For ease of experimentation, the application consists of two separate parts, one concerned
with selection and display of samples from images, and the other concerned with the actual
color perception and categorization model (Figure 8.1).

The display program runs under X Windows, and allows one to display a 24-bit RGB
image (a TrueColor Visual, in X lingo) acquired from, for instance, a camera and frame

grabber, or a color scanner. It also allows one to select samples (blobs) of a certain pre-
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Figure 8.1: Outline of the color naming/pointing/out selecting application,
consisting of a display and select part (left), implemented as an X Windows
program, and a transformation and categorization part (right), implemented
in Mathematica code. The two parts communicate asynchronously via a sim-
ple file protocol.

defined size (currently 12 x 16 pixels) from the image using the mouse, which will be passed
to the categorization program. It can subsample the entire image using the same blob size,
and pass the result to the categorization program. Finally, it can draw boxes around blobs,
whose center coordinates it gets from the categorization program.

The categorization program is a collection of Mathematica functions that can

e Name the (average) color of a blob pointed out on the image being displayed by the

display program, and provide a goodness value.

o Point out examples of a named color category on the image, and provide a goodness

value.

e Select one from a number of samples whose color best fits a given category, specified

by name.

The names returned can be simple or complex, and the best n candidates can be returned.
The category membership threshold 8 may be specified, as well as the underlying color
space to use. The names specified for the pointing-out function can be simple or complex
as well, and the threshold 6 can be specified. The function can either return (point to)
any n examples (the first exceeding the threshold) or the best n examples. The underlying

color space to be used can be specified as well. The select function always points to the
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best example of the specified category (name) within the set of samples provided, using a
specifiable underlying color space. It will ask the user to provide it with a set of samples from
the image first, to get around the absence of any image segmentation or object recognition

algorithms.

8.1.2 Constancy

To make the color naming and pointing algorithms work in practice, with real images,
we can no longer avoid the issue of color constancy. The approach I have adopted to
deal with this problem is of a rather pragmatic nature, and I make no claims about its
generality or applicability to other problems. Nevertheless, the results are interesting, and
the approach seems to be fairly robust with respect to different lighting conditions, and to
some extent even with respect to different sensing devices. It is presumably related to the
“white balance” algorithms implemented in home video cameras and the like, but that is
difficult to verify because of the secrecy surrounding commercial applications.!

The first thing that needs to be done, if it hasn’t been done already, is to gamma correct

the image, to make intensities perceptually linear:

1

=15 (8.1)

where I represents the normalized intensity in [0, 1], v represents the gamma correction
factor, typically somewhere in the range [1,2.5], and I’ represents the gamma corrected
intensity. Video cameras (especially home camcorders) often incorporate gamma correction,
but scanners may not, or may allow it to be specified under software control. This step is
required since the CIE XYZ standard assumes perceptually linear intensity responses, and
also for display on computer (or TV) monitors. I used a gamma correction factor of 2.2, if
necessary.

Next we need to compensate for differences in lighting, both with respect to intensity

1For instance, despite repeated attempts and written assurances that the information would not be
spread any further, I could not convince the manufacturer of the color scanner I used to acquire some of
the test images to provide me with the spectral sensitivity functions of the scanner’s color sensors. These
sensitivities can be measured given the right equipment, which I did not have access to, however. Sad to
say, | have had no more success getting similar information from some academic sources that shall remain
equally anonymous.

157



and with respect to spectral characteristics. Although the spectrum of the light source
can never be completely recovered from the image (see Section 2.1), we can use Von Kries
adaptation (Section 6.3) with good results, as long as the spectrum of the light source is
not too wildly skewed or irregular.? In real camera (and scanner) images it turns out that
not only is white not white (i.e. the RGB values are not equal and unity, viz. (1,1,1)), but
black is often not black either (i.e. the RGB values are not equal and zero, viz. (0,0,0)). To

compound the problem, lighting may vary considerably across a single image (Figure 8.2).

Figure 8.2: An illustration of the lighting problem. This is a narrow strip
taken from an actual camera image, representing a homogeneous white paper
background. The image is not very homogeneous, however, and not even all
that white, when seen out of context. Paradoxically, taking things out of
context is the only way we can fool our visual system into seeing something’s
“true colors”, but this is all our algorithm has at its disposal.

The “constancy” algorithm I have developed searches (a subsampled version of) the
image for likely representatives of white and black, and then uses those do to a modified

Von Kries adaptation:

p=2—2 (8.2)

o>~ Sl

g

where p/ is the “adapted” pixel value (an RGB vector), P is the original pixel value, b is the
black representative, and w is the white representative (both RGB vectors). Finding the

black and white representatives works as follows (regarding an image as a set of pixels for

convenience):
T = {(rg.b)} (8.3)
S = {{r,g,b),r+g+b)[(r,9,b) €T A \/(7‘ — 9P+ (g-0b)+(b—r)*<ef (84)
b = 15t(r2n73§18) (8.5)
W= 1515(%13;(8) (8.6)

2An extreme case would be a single-frequency light source, in which case the effects can never be undone,
and no color perception is possible at all.
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where 7 is the set of image pixels, represented as normalized RGB vectors (r, ¢,b) in [0,1], S
is the subset of Z containing potential gray axis pixels, and b and @ are the chosen black and
white representatives, respectively. The criterion used to select potential gray axis pixels is
another RMS measure, enforcing a summed square error between pixel components of less
than e. 1 have obtained good results with ¢ = 0.01. The black and white representatives,
then, are the potential gray axis pixels with the lowest and highest brightness, respectively,
as determined by a simple sum-of-components measure. A visual way to think of this process
is that it stretches the image’s actual gray axis and realigns it with the theoretical gray axis
for perfectly homogeneous and flat-spectrum lighting, i.e. the line segment [(0,0,0), (1,1, 1)].

The procedure is illustrated in Figure 8.3. One can image that this procedure might fail on

Figure 8.3: An illustration of the adaptation procedure, run on the (subsam-
pled) image from Figure 8.4. Left: the image samples in RGB space. Middle:
the set of potential gray axis pixels &, with a line connecting the black and
white representatives b and . Right: the set of adapted image samples, and
a line connecting the adapted black and white representatives.

certain images. It is not meant to be foolproof under any circumstances, but to work well
enough for our purpose on a large class of “ordinary” images.>

The performance of the algorithm is of course influenced by the choice of the parameter
¢, and perhaps by the method chosen to compute the brightness of pixels (or blobs). I have

not investigated this in any detail, but settled on values that seem to work well for the

range of images I have used to test the naming functions on.

®And of course, people’s adaptive mechanism can fail too, under certain specific circumstances. The
important thing is that it works under most ordinary circumstances.
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8.2 Some Empirical Results

The best way to get a good feel for how well (or how poorly) the algorithm performs is to
run it for oneself (See Appendix C for downloading instructions). Barring that, the best
we can do is look at an image and the judgments the algorithm makes on it. Again, I must
caution against taking the color reproduction on paper too seriously; too many unknowns
are involved, but it will do for a rough impression. Figure 8.4 shows a particular test image
(which has not been involved in “training” or optimizing the category models at all) taken
with a hand-held regular home camcorder whose composite NTSC* signal was hooked up to
a cheap Sun VideoPix frame grabber. This equipment is certainly not of lab grade quality,
not calibrated, and the lighting for the scene was just the available office TL lighting, not
controlled or adjusted in any way. The image shows some toy utensils and other objects of
various colors, none particularly good examples of Basic (or primary) colors.?

A trace of the run is shown below, with only minor editing to remove superfluous white

space, and with comments added, preceded by percent signs (“%”).

% the demol function starts the external image display and blob
% selection/display program, and calls the various functions in turn with
% appropriate parameters.

In[2]:= demoi[]
520 x 381 pixels, max value 255
Color Naming

Mouse commands:

left - sample blob around point

middle - stop sampling

right - toggle examples display

Keyboard commands (in the Color Naming window):
S — Subsample and save

Q - Quit program

% The first thing it does is to call the adaptation function, which needs
% to read (a subsampled version of) the image. Since the display program
% and the Mathematica process communicate asynchronously, we see their

% respective outputs interleaved.

% this is Mma

*Never The Same Color.

®These objects are relics of a robotics project that was supposed to include manipulation of the objects
with a robot arm as well as color perception (Appendix A). Unfortunately the project met with a premature
demise, mainly due to lack of working equipment and funding.
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Figure 8.4: A frame grabbed from a regular home camcorder, in ordinary
office lighting conditions. Note the shadows and the varying brightness across
the even white background, and fuzziness of the objects’ outlines. The objects
are placed on a regular piece of white paper, on a real simulated woodgrain
desk top.

Please sample the image
working. ..

% this is the display prg
Wrote 43 x 23 subsampled file /projects/lammens/pix/subsampled.ppm

% This is the adaptation function reporting the normalized RGB values found
% for black and white, as described above.

{BlackRGB, WhiteRGB} = {{0.196078, 0.203922, 0.164706},
> {0.937255, 0.945098, 0.988235}}
% Next the color naming function is called, in simple name mode. It uses a

% category membership threshold of 0.35, and the L*a*b* color space. It asks
% for a sample which it gets from the display/choose program, which in turn
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% reports the coordinates of the center of the blob and the average

% unnormalized RGB values. This corresponds to the thin rectangle labeled
% ‘1’ in the figure (upper left corner). Note that the RGB values are

% around 50 each, or 0.25 normalized, i.e. not black in absolute terms.

*** Color Naming, simple names ***
sample?
Blob at (8,9): 51 54 46

% After turning the crank a bit, the naming function returns its color
% judgment as a list of {name, goodness} pairs (only one has been

% requested). The reported color is black, because of the adaptation
% performed. It’s not all that good a black, however.

{{black, 0.573432}}

% Sample 2 selects the highlight on the blade of the knife, which is a

% specular reflection of the overhead office lights. Not surprisingly, the
P g 2 g~y

% answer is ‘‘white’’ -- remember that these algorithms work in a

% context-free manner. It’s a pretty good white too.

sample?
Blob at (417,192): 252 253 254
{{white, 0.876566}}

% Sample 3 is from the white paper background, in the upper right quadrant.
% This too is recognized as white, but a less good one than the previous
% sample.

sample?
Blob at (480,79): 223 253 249
{{white, 0.657369}}

% Sample 4 is again from the white paper background, but a slightly more
% shaded area near the middle. Again the answer is white, but a less good
% one still.

sample?
Blob at (240,96): 197 227 220
{{white, 0.557413}}

% Sample 5 is in the shadow of the bowl, and in these case a ‘‘null’’

% judgment is returned, meaning the sample does not belong to any basic

% color category. Here our visual system’s context-sensitive operation is

% clearly superior (but try looking at the sample through a hole in a piece
% of white paper, and see if it still looks white).

sample?
Blob at (200,95): 164 189 163
{3

% Sample 6 is from the left middle piece of desktop showing underneath the
% white paper, and it is reported as a pretty good gray. The human visual
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% system would connect this sample with the one from the upper left corner
% and not report them as different in color.

sample?
Blob at (7,236): 74 86 77
{{gray, 0.878559}}

% Sample 7 is from the upper right bottom of the bowl, and is
% reported as a not very good green (in fact barely above the threshold for
% category memberhip of 0.35)

sample?
Blob at (140,87): 183 225 33
{{green, 0.38532}}

% Sample 8 is from the shaded lower left inner wall of the bowl, but is
% nevertheless reported as a virtually equally good (or bad) green. The
% algorithm thus show some measure of robustness with respect to varying
% lighting.

sample?
Blob at (62,143): 134 164 11
{{green, 0.385104}}

% Sample 9 is from the lower region of the bowl where the wall and the

% bottom join, and is reported as a moderate yellow. The

% color seems to be in between yellow and green, according to the

% algorithm. And again there are no constraints on neighboring samples to
% be judged the same, so the category may suddenly switch due to small

% local variatioms.

sample?
Blob at (93,153): 135 162 16
{{yellow, 0.451289}}

% Sample 10 is from the upper middle part of the plate, and reported as a
% moderate blue

sample?
Blob at (280,202): 119 189 194
{{blue, 0.4184033}}

% Sample 11 is from the lower left part of the plate, and reported as a
% virtually identical blue.

sample?
Blob at (236,280): 112 179 178
{{blue, 0.4136343}}

% Sample 12 is from the left part of the plate, and contains a rather

% bright highlight, but the reported color and goodness are almost the same
% anyway.
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sample?
Blob at (202,247): 127 190 193
{{blue, 0.403172}}

% Sample 13 is from the spoon handle, and reported as a moderate blue too.
% This is not entirely satisfactory, but see below.

sample?
Blob at (142,299): 115 99 162
{{blue, 0.420509}}

% Samples 14 and 15 are from the fork and knife handles, and reported the
% practically the same color as the spoon, notwithstanding the difference
% in lighting.

sample?
Blob at (463,301): 147 125 219
{{blue, 0.423843}}

sample?
Blob at (413,260): 146 127 201
{{blue, 0.412522}}

% Sample 16 is from the upper right of the inner wall of the cup, and
% reported as a moderately good gray. This is again not satisfactory.

sample?
Blob at (393,57): 118 77 73
{{gray, 0.446365}}

% Sample 17 is from a different part of the cup, containing a highlight,
% but it also reported as gray.

sample?
Blob at (347,73): 191 139 140
{{gray, 0.415984}}

% A null sample signals the end of the current naming mode, and the next

% function called is again the naming function, but this time in complex
% name mode. The samples are the same as the first 17 (plus or minus a few
% pixels, because they were entered anew with the mouse).

sample?
*** Color Naming, complex names ***

% Sample 18. The earlier ‘‘black’’ judgment is now refined to a somewhat

% greenish-black. The modifier (secondary category) is named first, and the
% goodness values are given in the same order. The algorithm currently does
% not provide a single goodness value for the compound name.

sample?

Blob at (7,9): 51 54 46
{somewhat green-ish black, {0.343353, 0.573432}}
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% Sample 19. The white highlight is now reported as somewhat pinkish white,
% probably due to the colored substrate of the knife (pink is relatively
% close to purple in the color space).

sample?
Blob at (417,193): 252 253 255
{somewhat pink-ish white, {0.324792, 0.884955}}

% Samples 20 and 21. The background becomes blue-ish white, whish is rather
% accurate (compare to the white of the paper surrounding the figure). Note
% that the white goodness goes down, and the blue goodness up a bit as we

% move into the more shaded regions of the white paper.

sample?
Blob at (488,79): 223 253 249
{somewhat blue-ish white, {0.303342, 0.657369}}

sample?
Blob at (241,95): 196 227 219
{somewhat blue-ish white, {0.315056, 0.530577}}

% Sample 22. The heavily shaded region is still not in any basic category.

sample?
Blob at (200,94): 164 189 163
none

% Sample 23. The gray of the desk top is now reported as bluish, which is
% odd.

sample?
Blob at (7,237): 74 86 77
{blue-ish gray, {0.355959, 0.878559}}

% Sample 24. The green of the bowl bottom is still unqualified green,
% albeit not a very good one.

sample?

Blob at (138,85): 181 222 33

{green, 0.386859}

% Sample 25. Elswhere in the bowl, yellow creeps in.

sample?

Blob at (56,140): 135 161 11

{somewhat yellow-ish green, {0.340837, 0.379807}}

% Sample 26. When the top candidate changes, the previous top candidate now
% becomes the modifier, indicating some waffling on the part of the naming

% algorithm.

sample?
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Blob at (89,150): 135 164 16
{green-ish yellow, {0.426267, 0.442337}}

%
%

Samples 27-29. The plate is now reported as grayish blue, which is quite
acceptable.

sample?
Blob at (275,197): 120 188 192
{somewhat gray-ish blue, {0.263667, 0.414681}}

sample?
Blob at (232,279): 112 178 178
{somewhat gray-ish blue, {0.301262, 0.415194}}

sample?
Blob at (203,247): 127 190 193
{somewhat gray-ish blue, {0.269991, 0.403172}}

A

Samples 30-32. The cutlery is now reported as either blue or pinkish

% blue, which is not bad, but purple or purplish blue would be more

A

appropriate.

sample?
Blob at (141,301): 116 100 163
{blue, 0.420315}

sample?
Blob at (464,294): 148 125 218
{somewhat pink-ish blue, {0.273953, 0.420837}+}

sample?
Blob at (414,259): 151 134 206
{somewhat pink-ish blue, {0.293498, 0.410624}3}

%
%

Samples 33-34. The cup color is now modified to pinkish gray, which is
reasonable given the highlights, but not great.

sample?
Blob at (392,58): 119 77 73
{somewhat pink-ish gray, {0.289888, 0.434842}}

sample?
Blob at (346,73): 186 135 135
{pink-ish gray, {0.372527, 0.440735}}

After a null sample, the next function called is the pointing-out
function. It is asked to report the best 3 examples of every color given
to it by name, but only the top choice is shown in the figure, to reduce
clutter. The threshold used is now much lower at 0.01, to encourage the
algorithm to be maximally cooperative and broad-minded (broad-categoried,
actually). Before it can point anything out, it needs to (sub)sample the
image, which is effectively its domain of discourse, or its environment,
for this task.

166



sample?

*** Pointing Out Colors, simple or complex names ***

Please sample the image

Wrote 43 x 23 subsampled file /projects/lammens/pix/subsampled.ppm
working. ..

Enter color names as quoted [list of] string[s], or "" to stop

% First we enter only simple color names. The returned result is a list of
% the top three candidate referents in the image, specified as triplets of
% internal color space coordinates, goodness value, and linearized index.

% The index is converted back to (x,y) image coordinates and passed to the
% pointing/display program, which draws boxes of varying width around the

% corresponding image blobs. The first one of these is shown as a thick

% rectangle in the figure, with the corresponding abbreviated color name.

% The ¢‘>’’ signs in the margin are Mathematica’s continuation sign for

% multi-line outputs.

% The best example of black in the image is the blob in the upper left
% corner, but it’s not a very good one.

Color: "black"
{{{-0.949934, -8.93606, 8.94645}, 0.573432, 0}, {{0., 0., 0.}, 0.499995, 43},

> {{-8.80682, -0.988521, 16.7996}, 0.434245, 1}}
% The best example of white is the highlight on the knife blade.

Color: "white"

{{{0., 0., 100.}, 0.994671, 5507},

>  {{1.19341, -2.5512, 97.4658}, 0.925709, 507},
> {{-3.30085, 1.8013, 98.0898}, 0.896158, 334}}

% The best example of gray is the blob halfway down the left edge. This is
% probably the only one that does not contain part of the paper edge, other
% than the ones in the upper left cormer.

Color: '"gray"

{{{-7.9972, 3.37291, 52.6723}, 0.912785, 645},

>  {{-9.15905, 2.19436, 54.5701}, 0.906193, 688},
>  {{3.36029, -6.16337, 62.3559}, 0.898141, 484}}

% The best example of red is on the inner wall of the cup, but its goodness
% value is very low. The redness does not escape the program’s attention,

% so to speak, but the goodness is not high enough to label the object as

% red in the naming mode.

Color: "red"

{{{26.9112, 14.3771, 40.8237}, 0.0651646, 290},

>  {{24.6857, 10.9119, 46.7973}, 0.0347762, 248},
> {{24.8426, 10.6163, 53.0361}, 0.0235578, 160}}

% As expected, the best exmamples of both green and yellow are from the bowl.
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Color: 'green'"

{{{-33.8928, 119.015, 78.373}, 0.443789, 91},

> {{-33.0592, 128.975, 77.1126}, 0.442608, 175},
> {{-29.7397, 128.662, 75.3204}, 0.441054, 437}}

Color: '"yellow"

{{{-30.7869, 148.075, 74.873}, 0.471412, 438},

>  {{-29.7397, 128.662, 75.3204}, 0.4484, 437},

> {{-32.0185, 149.603, 76.4553}, 0.446844, 394}}

% The best blue is from the plate

Color: "blue"

{{{-20.6264, -5.98904, T77.6899}, 0.428033, 532},

>  {{-21.6781, -5.23694, 76.3669}, 0.426202, 926},
>  {{12.1377, -21.1522, 62.9835}, 0.425152, 829}}

% The best brown is in the upper left cormer, from the desk top, but the
% second best canidate (not shown in the figure) is actually on the cup,

% which is good (brown is a kind of dark red, in an artist’s conception of
% color).

Color: "brown"
{{{o0., 0., 0.3}, 0.371792, 43}, {{26.9112, 14.3771, 40.8237}, 0.318304, 290},
> {{-0.949934, -8.93606, 8.94645}, 0.269128, 0}}

% The best purple is appropriately on the fork. So again, even if a
% different category is chosen in the naming mode, the purpleness is noted
% nevertheless.

Color: '"purple"

{{{22.1124, -29.2723, 68.7999}, 0.0935326, 640},

>  {{26.9112, 14.3771, 40.8237}, 0.09335, 290},

>  {{22.4642, -30.4113, 71.309}, 0.0923015, 894}}

% The best pink is appropriately from the cup highlight

Color: '"pink"

{{{16.3689, 3.61084, 78.632}, 0.385165, 201},

> {{17.8138, 5.53527, 70.6242}, 0.354974, 243},
>  {{20.2324, 4.45821, 66.0619}, 0.348803, 202}}

% The best orange is also on the cup, but the goodness is extremely low,
% almost below the already very low threshold. Only one above-threshold
% example is found in this case.

Color: '"orange'
{{{26.9112, 14.3771, 40.8237}, 0.0126883, 290}}

% Interestingly, the best example of grayish blue is on the plate, but the

% best example of bluish gray is on the desk top, demonstrating that
% compound category names do not simply represent a conjunction of the two
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% categories.

Color: {"gray", "blue"}

{{{-20.6264, -5.98904, 77.6899}, {0.428033, 0.348169}, 532},

> {{-21.6781, -5.23694, 76.3669}, {0.426202, 0.356378}, 9263},
> {{18.9681, -27.0463, 63.0806}, {0.424739, 0.281654}, 742}}

Color: {"blue", "gray"}

{{{-7.9972, 3.37291, 52.6723}, {0.912785, 0.337975}, 645},

> {{-9.15905, 2.19436, 54.5701}, {0.906193, 0.349694}, 688},
> {{3.36029, -6.16337, 62.3559}, {0.898141, 0.36831}, 484}}

% The best examples of yellowish green and greenish yellow are both on the
% bowl however, again indicating the ambiguity of the color in the
% algorithm’s ‘‘mind’’.

Color: {"yellow", "green"}

{{{-33.8928, 119.015, 78.373}, {0.443789, 0.358894}, 91},

> {{-33.0592, 128.975, 77.1126}, {0.442608, 0.409575}, 175},
> {{-32.3242, 110.273, 78.338}, {0.441002, 0.329341}, 306}}

Color: {"green", "yellow"}

{{{-30.7869, 148.075, 74.873}, {0.471412, 0.429748}, 438},

> {{-29.7397, 128.662, 75.3204}, {0.4484, 0.441054}, 437},

> {{-32.0185, 149.603, 76.4553}, {0.446844, 0.425336}, 394}}

% After a null name, the next function activated is the one to select

% objects by (simple) color names. A number of object samples are collected
% first, representing each of the objects in the image as well as the

% paper background and the desk top.

Color: ""

*** Choosing Objects by Color, simple names ***
object sample?

Blob at (109,104): 165 205 25

object sample?

Blob at (137,205): 130 114 176

object sample?

Blob at (276,251): 119 186 189

object sample?

Blob at (417,294): 147 125 214

object sample?

Blob at (465,274): 148 127 213

object sample?

Blob at (376,46): 120 77 75

object sample?

Blob at (389,153): 228 254 251

object sample?

Blob at (9,11): 50 54 45

object sample?

Enter color names as quoted string[s], or "" to stop

% The circles in the figure represent the object samples, and the
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% abbreviated color names next to them represent the choice the algorithm
% makes if given the corresponding color name. The same cooperative

% threshold of 0.01 is used.

% Black and white lead to the expected choices.

Color: "black"
{{{-7.88055, -6.83839, 7.5829}, 0.458093, T7}}

Color: "white"
{{{-6.21646, 2.01139, 101.314}, 0.710922, 6}}
% When given a limited number of ojbects to choose from, gray, red, purple,

% and pink all refer to the same object, viz. the cup.

Color: '"gray"
{{{26.7022, 6.30509, 50.5676}, 0.425217, 5}}

Color: "red"
{{{26.7022, 6.30509, 50.5676}, 0.0226092, 5}}

Color: '"purple"
{{{26.7022, 6.30509, 50.5676}, 0.0974246, 5}}

Color: '"pink"
{{{26.7022, 6.30509, 50.5676}, 0.297329, 5}}

% As expected, yellow and green both refer to the bowl

Color: 'green'"
{{{-33.6247, 99.8405, 87.0685}, 0.408762, 0}}

Color: '"yellow"
{{{-33.6247, 99.8405, 87.0685}, 0.222119, 0}}

% Blue refers to the knife, with the fork and spoon probably close
% runners-up

Color: "blue"
{{{21.2171, -29.1064, 72.5961}, 0.420029, 3}}

% brown refers to the desk top

Color: "brown"
{{{-7.88055, -6.83839, 7.5829}, 0.25868, 7}}

% orange does not refer to anything

Color: '"orange'
huh?

% None of the simple color names refers to the plate. Probably that would
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% need a complex color name, but this has not been implemented for the
% selection task.

Color: ""

% To get an idea of the effectiveness of the adaptation algorithm, we now

% run the some of the same tests without it, using the default absolute

% black and white values. For brevity, only the results that differ from

% the previous ones are commented. These results are not shown in the figure.

In[4]:= demo2[]
520 x 381 pixels, max value 255
Color Naming

Mouse commands:

left - sample blob around point

middle - stop sampling

right - toggle examples display

Keyboard commands (in the Color Naming window):
S — Subsample and save

Q - Quit program

***k Without Adaptation ***
{BlackRGB, WhiteRGB} = {{0, 0, 0}, {1, 1, 1}}
*** Color Naming, simple names ***

% Sample 1 (desk) was black before, but is now gray.

sample?

Blob at (9,9): 51 55 46
{{gray, 0.95517}}

sample?

Blob at (417,192): 252 253 254
{{white, 0.997448}}

sample?

Blob at (477,84): 222 252 248
{{white, 0.827816}}

sample?

Blob at (242,93): 195 226 217
{{white, 0.643781}}

sample?

Blob at (200,93): 164 188 163
{3

sample?

Blob at (6,237): 75 86 76
{{gray, 0.890602}}

% Sample 7 (bowl) was green before, and is now nothing.
sample?

Blob at (138,84): 180 222 33

{3

sample?
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Blob at (59,142): 134 163 11
{{green, 0.382396}}

% Sample 9 (bowl) was yellow before, and is now green

sample?

Blob at (92,151): 135 163 16
{{green, 0.375072}}

sample?

Blob at (277,198): 120 189 193
{{blue, 0.3964113}}

sample?

Blob at (236,284): 112 179 177
{{blue, 0.391728}}

sample?

Blob at (202,249): 127 189 192
{{blue, 0.387349}}

% Sample 13 (spoon handle) was blue before, and is now gray.

sample?

Blob at (141,304): 116 100 163
{{gray, 0.443478}}

sample?

Blob at (465,296): 148 126 219
{{blue, 0.4131243}}

sample?

Blob at (413,258): 150 134 203
{{blue, 0.397054}}

sample?

Blob at (392,59): 119 77 72
{{gray, 0.734896}}

sample?

Blob at (347,71): 186 134 135
{{gray, 0.432342}}

sample?

*** Color Naming, complex names ***

% sample 18 (desk) was somewhat greenish black before, and is now somewhat
% blueish gray

sample?

Blob at (9,9): 51 55 46

{somewhat blue-ish gray, {0.318699, 0.95517}}
sample?

Blob at (417,191): 252 252 254

{somewhat pink-ish white, {0.32611, 0.997364}}
sample?

Blob at (483,77): 223 254 250

{somewhat blue-ish white, {0.319529, 0.821147}}
sample?

Blob at (237,94): 198 228 219

{somewhat blue-ish white, {0.323538, 0.672593}}
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sample?
Blob at (199,94): 164 189 162
none

% Sample 23 (desk) was blueish gray before, and somewhat blueish gray now

sample?
Blob at (8,237): 74 86 77
{somewhat blue-ish gray, {0.34003, 0.892704}}

% Sample 24 (bowl) was green before, none now

sample?
Blob at (136,86): 179 221 32
none

% Sample 25 was somewhat yellow-ish green before, green now

sample?
Blob at (61,140): 136 165 11
{green, 0.381509}

% Sample 26 was green-ish yellow before, green now.

sample?

Blob at (89,148): 135 164 16

{green, 0.375411}

sample?

Blob at (282,199): 120 190 194

{somewhat gray-ish blue, {0.277526, 0.396891}}
sample?

Blob at (233,277): 112 178 178

{somewhat gray-ish blue, {0.323495, 0.394109}}
sample?

Blob at (202,246): 127 190 193

{somewhat gray-ish blue, {0.285553, 0.387858}}

% Sample 30 was blue before, blue-ish gray now

sample?

Blob at (141,302): 116 100 163

{blue-ish gray, {0.406485, 0.443478}}

sample?

Blob at (463,299): 147 125 219

{somewhat pink-ish blue, {0.297212, 0.414387}}

% Sample 32 was somewhat pink-ish blue before, gray-ish blue now

sample?

Blob at (412,260): 142 125 195
{gray-ish blue, {0.350279, 0.400874}}
sample?

Blob at (388,52): 119 77 75
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{somewhat pink-ish gray, {0.291203, 0.739966}}

sample?

Blob at (347,72): 188 137 138

{pink-ish gray, {0.352761, 0.421948}}

sample?

*** Pointing Out Colors, simple or complex names ***

Please sample the image

Wrote 43 x 23 subsampled file /projects/lammens/pix/subsampled.ppm
working. ..

Enter color names as quoted [list of] string[s], or "" to stop

% The previous best example of black was on the desk, now there is none.

Color: "black"

{

Color: "white"

{{{0.532836, -2.37186, 97.8842}, 0.947593, 550},

>  {{-2.09951, -0.735345, 96.4016}, 0.914406, 334},
> {{-2.68196, -2.32448, 97.9623}, 0.904322, 552}}

% The previous best example of gray was half way down the left edge, now it
% is in the upper left.

Color: '"gray"

{{{-3.02248, 4.28535, 52.6059}, 0.961785, 0},

> {{-4.55361, 3.84577, 55.9149}, 0.961349, 44},
> {{-4.38929, 4.59856, 55.5826}, 0.956423, 861}}

% now no best example of red is found

Color: "red"

{3

% the best examples of yellow and green are still from the bowl, but in
% different places than before

Color: 'green'"

{{{-23.5407, 62.7201, 80.1716}, 0.381321, 348},

> {{-23.3872, 61.536, 79.7746}, 0.380848, 392},
> {{-24.859, 61.5938, 81.5351}, 0.378426, 305}}
Color: '"yellow"

{{{-23.5407, 62.7201, 80.1716}, 0.110165, 348},

> {{-23.3872, 61.536, 79.7746}, 0.106706, 392},
> {{-25.7179, 63.496, 83.541}, 0.102021, 398}}

% The best blue was on the knife handle before, now on the plate

Color: "blue"

{{{14.5833, -22.6702, 77.6263}, 0.413639, 851},

>  {{14.9457, -23.0869, 78.1905}, 0.413597, 812},
> {{15.2259, -22.919, 77.2831}, 0.41233, 894}}
Color: "brown"

{{{-3.09103, 5.85521, 51.7689}, 0.147524, 43},
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> {{-3.02248, 4.28535, 52.6059}, 0.138768, 0},

>  {{9.80109, 9.4391, 60.507}, 0.138071, 290}}
Color: '"purple"

{{{15.2259, -22.919, 77.2831}, 0.0661223, 894},

>  {{14.5268, -21.4402, 75.6475}, 0.0654806, 640},
>  {{14.9457, -23.0869, 78.1905}, 0.0647991, 812}}
Color: '"pink"

{{{11.0969, 2.14573, 82.0917}, 0.360105, 201},

>  {{11.043, 4.11308, 76.6872}, 0.336285, 243},

> {{11.9717, 3.68921, 73.7798}, 0.330684, 202}}

% the best orange was on the cup before, now none is found

Color: '"orange'

{3

Color: ""

Some tests on rather different images, for instance color cartoons acquired with a scan-
ner, show very comparable results. Although the application presented in this chapter is
an interesting demonstration of what can be accomplished with the color perception and
naming model, it is certainly open for improvement. For instance, it would be interesting to
explore an active version of the adaptation algorithm that could move the camera around

searching for appropriate lighting conditions.
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Chapter 9

Discussion and Conclusion

The goal for the research presented in this dissertation, as set forth in Chapter 1, was
twofold: firstly to contribute to theories of autonomous agency, in particular to the study of
symbol grounding or embodiment, and secondly to do this by modeling a particular aspect of
perception and natural language semantics, viz. the domain of color perception and color
naming. From a methodological point of view, the approach chosen was to study these
phenomena from a “vertically integrated” perspective, resulting in an experimental imple-
mentation of a complete (albeit narrow-minded) color-naming and color-pointing agent,
ranging all the way from real visual stimuli captured by a camera to symbolic descriptions
using natural language terms, and back.

With respect to color perception, the goal was to model (an aspect of) human color
perception by modeling known neurophysiological data on the responses of a certain class
of color-sensitive neurons found in the human (and primate) visual system, relating these
responses to existing color perception models of a psychological or psychophysical nature.
The attempted explanation is of course only partial, as it does not deal with phenomena
such as color constancy and the influence of context on color perception. In this respect
the research presented was partly successful, in that it showed how one can derive a psy-
chophysical color space (the NPP space) from neurophysiological data, and the resulting
color space shows some remarkable similarities to existing psychological and psychophysi-
cal color spaces that have been derived independently, and using entirely different means.

Various features of the derived color space, and the method used to derive it, are worthy
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of further investigation in and of themselves. The success in this area was only partial
because the derived color space does not perform better for the purpose of color naming
and color pointing than other psychophysical color spaces, in particular the CIE L*a*b*
space. I believe this is mainly due to the fact that the NPP space is not fully perceptually
equidistant, something which the L*a*b* space is explicitly constructed to be. In addition,
the NPP space is based on measured responses from a single Macaque monkey only, and
the CIE spaces are based on average experimental data from large populations of human
subjects.

The category model that was developed, representing a perceptual color category as a
normalized Gaussian function in three-dimensional color space (described by a focus location
and a parameter determining the “width” of the function) performs well for our purpose.
The model itself is not an arbitrary construct, but is based on independent psychological
research in categorization, and presumably has a wider applicability to categorization in
general. Since it assumes an underlying perceptually equidistant (Euclidean) space, it is not
surprising that it works best in conjunction with the CIE L*a*b* space. The category model
may also offer a tool to study bias in learning or development of visual (and perceptual)
categories, but this connection is very tentative. The learning dimension of the color naming
problem has only been touched on very briefly, and there certainly remains more work to
be done in this area.

The color perception and naming model as implemented is of course limited. For in-
stance, it does not deal with dynamically changing visual input, and for the most part
assumes a constant adaptation state of the visual system. The computational approach
adopted to deal to some extent with color constancy seems adequate for our purpose, but
it is not clear whether it has any wider applicability. The more general question of how a
color perception system comes about, with precisely this set of basic color categories, is not
really addressed by the work presented. There are probably evolutionary reasons for why
our color perception system works the way it does, but that is outside of the scope of the
current research.

With respect to the larger goal of making a contribution to theories of cognitive agent
architecture, I believe the research is successful. It shows how a particular set of terms
(either terms from a natural language or terms from a knowledge representation and rea-

soning system) can be grounded or embodied in a perceptual categorization model, and
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presents a working implementation of such a model. Of course the scope of the model is
limited, dealing only with Basic Color Terms, but it nevertheless represents a step in the
direction of a general theory of (artificial) agency. The autonomous agent architecture my
colleagues and I have developed as a tangent to the work presented in this dissertation
hopefully contributes a little to this larger goal. One of the most important features of the
color model in this respect is that it has a large bottom-up component (everything leading
up to the color space representation of visual stimuli), causally connected to the outside
world (the agent’s environment), in addition to a top-down component (the categorization
and naming model). These two components interact in a well-defined way, and while we
can describe and study them separately to some extent, neither is eventually of any use
without the other. I believe that the knowledge representation and reasoning community
would do better to work on the problem of grounding some fundamental set of terms in this
way than to worry about unicorns, round squares, possible worlds, and modeling logical
inference (at least for the foreseeable future). The latter subjects may be interesting as an
aid in modeling and understanding some of our own thought processes, but it is of no use
to an artificial cognitive agent as long as it cannot relate to its environment in even the
most basic of ways. In this respect I subscribe to the methodology of what has come to
be known as “nouvelle AI” in some circles, emphasizing complete (albeit simple) artificial
organisms that can function in a real world environment, before moving on to more “high
level” problems. I believe Al can no longer afford to live in an ivory symbolic tower, and
needs to deal with the “low level” grunge of the real world, and how an agent can relate to

and interact with it.
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Appendix A

An Architecture for Autonomous

Agents

My work in color perception and color naming can be seen as an instance of symbol ground-
ing [Harnad 1990], which is a methodology for providing artificial agents with an “under-
standing” of the world around them, and an inherent meaningfulness for the symbols they
use. This appendix describes joint work with Henry H. Hexmoor and Stuart C. Shapiro
in architectures for intelligent autonomous agents, which is to appear as [Lammens et al.
1994]. The text below is reproduced verbatim from the text submitted for the proceed-
ings of the “NATO Advanced Study Institute on the Biology and Technology of Intelligent
Autonomous Agents”, held in Trento, Italy, March 1-12, 1993, which is referred to as “the

current workshop” below.

A.1 Introduction and Overview

In the elephant paper [Brooks 1990] appearing in the proceedings of the predecessor of the
current workshop, Brooks criticizes the ungroundedness of traditional symbolic Al systems,
and proposes physically grounded systems as an alternative, particularly the subsumption
architecture. Subsumption has been highly successful in generating a variety of interesting

and seemingly intelligent behaviors in a variety of mobile robots. As such it has established
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itself as an influential approach to generating complex physical behavior in autonomous
agents. In the current paper we explore the possibilities for integrating the old with the
new, in an autonomous agent architecture that ranges from physical behavior generation
inspired by subsumption to classical knowledge representation and reasoning, and a new
proposed level in between the two. Although we are still struggling with many of the
issues involved, we believe we can contribute to a solution for some of the problems for both

classical systems and physically grounded systems mentioned in [Brooks 1990], in particular:

¢ The ungroundedness of symbolic systems (referred to as “the symbol grounding prob-
lem” by [Harnad 1990]): our architecture attempts to ground high level symbols in

perception and action, through a process of embodiment.

¢ The potential mismatch between symbolic representations and the agent’s sensors and

actuators: the embodied semantics of our symbols makes sure that this match exists.

e Our symbolic representations do not have to be named entities. The knowledge rep-
resentation and reasoning system we use in our implementations allows the use of

unnamed intensional concepts.

¢ We have some ideas about how to automate the construction of behavior generating

modules through learning, but much remains to be done.

We agree with the requirement of physically implemented systems as the true test for
any autonomous agent architecture, and to this end we are working on several different
implementations. We will present both our general multi-level architecture for intelligent
autonomous agents with integrated sensory and motor capabilities, GLAIR!, and a physical
implementation and two simulation studies of GLAIR-agents.

By an architecture we mean an organization of components of a system, what is in-
tegral to the system, and how the various components interact.? Which components go
into an architecture for an autonomous agent has traditionally depended to a large extent
on whether we are building a physical system, understanding/modeling behaviors of an an-

thropomorphic agent, or integrating a select number of behaviors. The organization of an

!Grounded Layered Architecture with Integrated Reasoning
2Qur discussion of architecture in this paper extends beyond any particular physical or software
implementation.
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architecture may also be influenced by whether or not one adopts the modularity assump-
tion of Fodor [Fodor 1983], or a connectionist point of view, e.g. [McClelland et al. 1986],
or an anti-modularity assumption as in Brooks’s subsumption architecture [Brooks 1985].
The modularity assumption supports (among other things) a division of the mind into a
central system, i.e., cognitive processes such as learning, planning, and reasoning, and a
peripheral system, i.e., sensory and motor processing [Chapman 1990]. Our architecture is
characterized by a three-level organization into a Knowledge level (KL), a Perceptuo-Motor
level (PML), and a Sensory-Actuator level (SAL). This organization is neither modular,
anti-modular, hierarchical, anti-hierarchical, nor connectionist in the conventional sense. It
integrates a traditional symbol system with a physically grounded system, i.e., a behavior-
based architecture. The most important difference with a behavior-based architecture like
Brooks’s subsumption is the presence of three distinct levels with different representations
and implementation mechanisms for each, particularly the presence of an explicit Knowl-
edge level. Representation, reasoning (including planning), perception, and generation of
behavior are distributed through all three levels. Qur architecture is best described using
a resolution pyramid metaphor as used in computer vision work [Ballard & Brown 1982],
rather than a central vs. peripheral metaphor.

Architectures for building physical systems, e.g., robotic architectures [Albus et al.
1981], tend to address the relationship between a physical entity, (e.g., a robot), sensors,
effectors, and tasks to be accomplished. Since these physical systems are performance cen-
tered, they often lack general knowledge representation and reasoning techniques. These
architectures tend to be primarily concerned with the body, that is, how to get the physical
system to exhibit intelligent behavior through its physical activity. We say these systems
are not concerned with consciousness. These architectures address what John Pollock calls
Quick and Inflexible (Q&1) processes [Pollock 1989]. We define consciousness for a robotic
agent operationally as being aware of one’s environment, as evidenced by (1) having some
internal states or representations that are causally connected to the environment through
perception, (2) being able to reason explicitly about the environment, and (3) being able

to communicate with an external agent about the environment.?

®A machine like a vending machine or an industrial robot has responses, but it is unconscious. See
[Culbertson 1963] for a discussion of independence of consciousness from having a response. Also, intelligent
behavior is independent of consciousness in our opinion.
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Architectures for understanding/modeling behaviors of an anthropomorphic agent, e.g.,
cognitive architectures [Anderson 1983, Pollock 1989, Langley et al. 1991], tend to address
the relationships that exist among the structure of memory, reasoning abilities, intelligent
behavior, and mental states and experiences. These architectures often do not take the body
into account. Instead they primarily focus on the mind and consciousness. Qur architecture
ranges from general knowledge representation and reasoning to body-dependent physical
behavior, and the other way around.

We are interested in autonomous agents that are embedded? in a dynamic environment.
Such an agent needs to continually interact with and react to its environment and exhibit
intelligent behavior through its physical activity. To be successful, the agent needs to reason
about events and actions in the abstract as well as in concrete terms. This means combining
situated activity with acts based on reasoning about goal-accomplishment, i.e., deliberative
acting or planning. In the latter part of this paper, we will present a family of agents based
on our architecture. These agents are designed with a robot in mind, but their structure is
also akin to anthropomorphic agents. Figure A.1 schematically presents our architecture.

There are several features that contribute to the robustness of our architecture. We

highlight them below (an in-depth discussion follows later):

o We differentiate conscious reasoning from unconscious Perceptuo-Motor and Sensori-

Actuator processing.’
o The levels of our architecture are semi-autonomous and processed in parallel.®

e Conscious reasoning takes place through explicit knowledge representation and rea-

soning. Unconscious behavior makes use of several different mechanisms.

*“Embedded agents are computer systems that sense and act on their environment, monitoring complex
dynamic conditions and affecting the environment in goal-oriented ways.” ([Kaelbling & Rosenschein 1990]
page 1).

®We consider body-related processes to be unconscious, but that is not meant to imply anything about
their complexity or importance to the architecture as a whole. Indeed, we believe that the unconscious levels
of our architecture (the Perceptuo-Motor level and the Sensori-Actuator level) are at least as important to
the architecture as the conscious one (the Knowledge level). We reserve the term sub-conscious for implicit
cognitive processes such as category subsumption in KRR systems. See [Shapiro 1990] for a discussion of
sub-conscious reasoning.

®This autonomy is similar to Brooks’s subsumption architecture [Brooks 1985], but at a more macroscopic
level. Brooks does not distinguish between the three levels we describe, as his work is solely concerned with
behaviors whose controlling mechanism we would situate at the Perceptuo-Motor level.
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Figure A.1: Schematic representation of the agent architecture. Width of
control and data paths suggests the amount of information passing through
(bandwidth). Sensors include both world-sensors and proprio-sensors.

e Conscious reasoning guides the unconscious behavior, and the unconscious levels,
which are constantly engaged in perceptual and motor processing, can alarm the
conscious level of important events, taking control if necessary. Control and generation

of behavior are layered and not exclusively top-down.

o Lower level mechanisms can pre-empt higher level ones. This is kind of subsumption
on its head, but everything depends on the placement of behaviors in the hierarchy of
course. We haven’t quite decided yet whether inhibition should work the other way

around as well.

e There is a correspondence between terms in the Knowledge Representation and Rea-
soning (KRR) system on one hand, and sensory perceived objects, properties, events,
and states of affairs in the world and motor capabilities on the other hand. We call

this correspondence alignment.
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e Our architecture may be appropriate both for modeling elephants and for modeling

chess-playing agents.

A.2 The GLAIR Architecture

In this section we discuss in detail our autonomous agent architecture for integrating per-

ception and acting with grounded, embodied, symbolic reasoning.

A.2.1 Related work

Architectures proposed in the literature do not fall into neatly separable classes, mainly
because the scope of the models and the motivations vary widely. However, we can divide
a review of related work into theoretical issues of agent architectures, on the one hand, and

implemented architectures, on the other.

A.2.1.1 Theoretical Issues

We believe that behavior-based Al has adopted the right treatment of every day behavior
for agents that function in the world. However, this has been done at the expense of
ignoring cognitive processing such as planning and reasoning. Clearly, what is needed is
an approach that allows for both. We believe that our architecture meets this need. As
in behavior-based AI, GLAIR gains validity from its being grounded in its interaction with
the environment, while it benefits from a knowledge level that, independent of reacting to
a changing environment, performs reasoning and planning.

The Model Human Processor (MHP) is a cognitive model [Card et al. 1983] that suggests
the three components of perception, cognition, and motor. Cognition consists of working
memory, long-term memory, and the cognitive processor. Perception is a hierarchy of sen-
sory processing. Motor executes the actions in the working memory. This is a traditional
symbol-system decomposition of human information processing. This type of decomposi-
tion has shown only limited success in building physical systems. Despite this, systems like
SOAR adhere to this model. In our architecture, we purposively avoid this kind of top-down
problem decomposition by allowing independent control mechanisms at different levels to

take control of the agent’s behavior, and pre-empt higher level control while doing so. It
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may be necessary to allow higher level mechanisms to selectively inhibit lower-level ones as
well, but we have found no good reason to do so yet.

A situated agent, at any moment, attends to only a handful of entities and relationships
in its immediate surroundings. In this type of setting, the agent often does not care to
uniquely identify objects. It is sufficient to know the current relationship of the relevant
objects to the agent, and what roles the objects play in the agent’s activities. Agre and
Chapman in [Agre & Chapman 1987] proposed indexical-functional representations (which
[Agre 1988] refers to as deictic representations) to be the more natural way agents refer to
objects in common everyday environments. They called entities and relationships of interest
entities and aspects, respectively. With respect to its current activities, the agent needs
only to focus on representing those entities and relationships. Although the objects in the
environment come and go, the representations of entities and relationships remains the same.
For example, the-cup-that-I-am-holding” is an indexical-functional notation that abstracts
the essentials of what the agent needs to know in its interaction. These representations serve
to limit the scope of focus on entities. For example, if the agent wants to pick up a cup,
it does not need to know who owns the cup or how much coffee the cup can hold; only the
relevant attributes of the cup apply. We believe that systems endowed with general KRR
abilities can and should generate deictic representations to create and maintain a focus on

entities in the world, but we have not yet designed an implementation strategy.

A.2.1.2 Implemented Architectures

Brooks’s subsumption architecture, [Brooks 1985, Brooks 1987, Brooks 1990], clusters be-
haviors into layers. Low-level behaviors, like deciding the direction of motion and speed,
can be inhibited (subsumed) by behaviors determined at higher levels, such as avoiding ob-
stacles. Subsumption behaviors are written as finite state machines augmented with timing
elements. A compiler is used to simulate the operation of finite state machines and par-
allelism. This architecture is implemented on a variety of mobile robots. Frequently used
behaviors are placed at a lower level than less frequently-used behaviors. This organization

of behaviors gives the system fast response time and high reactivity. Qur architecture is sim-

"This kind of designation is merely a mnemonic representation intended to suggest the entity and aspect
under consideration, for the purpose of our exposition. It is not the actual representation that would be
used by an agent.
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ilar to Brooks’s in our intra-level implementations of behaviors. However, the subsumption
architecture lacks the separation we have made into conscious and non-conscious spheres.
In anthropomorphic terms, Brooks’s agents are all non-conscious. We believe that the
off-line specification and compilation of behavior modules is too inflexible for autonomous
agents that can adapt to a wide range of circumstances, especially if they have to learn from
their interactions with the environment. Pattie Maes has experimented with a version of a
behavior-based architecture, which she calls ANA [Maes 1991]. This architecture consists
of competence modules for action and a belief set in a network relating modules through
links denoting successors, predecessors, and conflicts. Competence modules have activation
levels. Activations are propagated and the competence module with the highest activation
level is given control. Maes has explored learning and has applied her architecture to robotic
systems.

In the subsumption architecture, sensations and actions are abstracted by giving them
names like “straightening behavior” in order to make things easier to understand for human
observers. Much in the spirit of [Agre 1988], we believe that behavior modules should more
naturally emerge from the interaction of the agent with its environment. In contrast to hand
coding behaviors and in order to facilitate embodiment, in GLAIR we are experimenting
with (unnamed) emergent behavior modules that are learned by a robot from scratch. An
(unnamed) behavior module can be thought of as a set of tuples (P,A) where P is a set of
grounded sensations and A is an instance of an act. For instance, reaching for an object
might be a set of tuples (vision/sonar data, wheel motor actuation). After learning, this
new behavior module will become active only if the grounded sensations match any of the
grounded sensations experienced before. As a measure of abstraction and generalization,
we may allow near matches for sensations. To bootstrap the learning process, we need a set
of primary or first-order (“innate”, for the philosophically inclined) sensations and actions.
We will return to this point briefly in section A.3.3.1.

The Servo, Subsumption, Symbolic (SSS) architecture [Connell 1992] is a hybrid ar-
chitecture for mobile robots that integrates the three independent layers of servo control,
Brooksian behavior based modules, and a symbolic layer. Our architecture is similar to this
in its general spirit of identification and integration of three distinct levels corresponding
to levels of affinity-of-interaction (i.e., the rate at which it is in real-time contact with the

world) with the outside world. This similarity also constitutes a point of departure, however,
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in that SSS is defined with respect to specific (and different) implementation techniques.
For example, the symbolic layer in S55 seems to be a decision table versus a general KRR
as intended in GLAIR. Unlike GLAIR, SSS assigns particular tasks for each layer and uses
a hard-wired interconnection channel among layers.

Albus et al’s hierarchical control architecture [Albus et al. 1981] is an example of a
robotic architecture; we would say it is body centered. This architecture proposes abstraction
levels for behavior generation, sensory processing, and world modeling. By descending
down the hierarchy, tasks are decomposed into robot-motion primitives. This differs from
our architecture, which is not strictly top-down controlled. Concurrently, at each level
of the hierarchy, feedback processing modules extract the information needed for control
decisions at that level from the sensory data stream and from the lower level control modules.
Extracted environmental information is compared with the expected internal states to find
differences. The differences are used for planning at higher levels.

Payton in [Payton 1986] introduced an architecture for controlling an autonomous
land vehicle. This architecture has four levels: mission planning, map-based planning,
local planning, and reflexive planning. All levels operate in parallel. Higher levels are
charged with tasks requiring high assimilation and low immediacy. The lower levels op-
erate on tasks requiring high immediacy and low assimilation. Owur architecture is sim-
ilar in this respect. The reflexive planning is designed to consist of pairs of the form
(virtualsensor, re flexivebehavior). Each reflexive behavior has an associated priority, and
a central blackboard style manager arbitrates among the reflex behaviors. Some of the
problems with the earlier implementation due to using the blackboard model were solved
in [Rosenblatt & Payton 1989].

Rosenschein and Kaelbling’s work [Kaelbling 1988, Kaelbling & Rosenschein 1990] de-
scribes tools (REX, GAPP, RULER) that, given task descriptions of the world, construct
reactive control mechanisms termed situated automata. Their architecture consists of per-
ception and action components. The robot’s sensory input and its feedback are inputs to
the perception component. The action component computes actions that suit the percep-
tual situation. We should note that unlike Brooks’s behavior modules, situated automata
use internal states, so their decisions are not Markovian (i.e., they are not ahistoric). They
are mainly intended to produce circuits that operate in real-time, and some properties of

their operation are provable. The mechanism for generating situated automata, although
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impressive, seems to inflexible for autonomous agents that have to operate in a wide variety
of (possibly unknown) circumstances . Perhaps the operation of our Perceptuo-motor level
could be modeled by a situated automaton, but we are not convinced that this is the right
formalism to use, due to its inflexibility.

Gat in [Gat 1991] describes ATLANTIS, an architecture for the control of mobile robots.
This architecture has three components: control, sequencing, and deliberation. The control
layer is designed as a set of circuit-like functions using Gat’s language for circuits, ALPHA.
The sequencing is a variation of Jim Firby’s RAP system [Firby 1987]. The deliberation
layer is the least described layer. As with situated automata, we are not convinced that
this is the right kind of formalism to use, for the same reasons.

An architecture for low-level and high-level reactivity is suggested in [Hexmoor 1989].
High-level reactivity is reactivity at the conceptual level. This architecture suggests that
an autonomous agent maintains several different types of goals. High-level reactivity is
charged with noticing impacts of events and actions in the environment on the agent’s
goals. Subsequently, high-level reactivity needs to guide the agent’s low-level reactivity.
Low-level reactivity is at the sensory, perceptual, and motor level. The mechanism for
low-level reactivity is similar to other reactive systems that have components for perception
and action arbitration. The novelty of this architecture is the incorporation of high-level
reactivity and a supervisory level of planning and reasoning, which guides the choice of
low-level reactive behaviors. In our present conception of agent architecture, we avoid a
sharp separation between the two types of reactivity. We also relax the top-down nature
of interaction between levels. Reactivity may be initiated at any level of our architecture
either due to interaction with other levels or in direct response to external stimuli.

SOAR [Laird et al. 1987] was designed to be a general problem solving architecture.
SOAR integrates a type of learning known as chunking in its production system. Recently,
SOAR has been applied to robotic tasks [Laird et al. 1991]. In this framework, planning
and acting is uniformly represented and controlled in SOAR. This approach lacks the ability
of our architecture for generating behavior at non-conscious levels as well as the conscious
level (or at different levels in general), and for having different-level behaviors interact in
an asynchronous fashion. It also lacks our multi-level representations.

Simmons’s Task Control Architecture (TCA) [Simmons 1990] interleaves planning and

acting by adding delay-planning constraints to postpone refinement of planning until exe-
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cution. For example, a plan for a robot to collect used cups for trash is decomposed into:
navigate to the cup; pick it up; navigate to trash bin; deposit the cup. Since the robot
does not have sensory information about the cup yet, the plan to pick it up is delayed until
the robot gets close enough. Selectively delaying refinement of plans allows for reactivity.
This type of “stepwise refinement” follows effortlessly from our architecture, without the
need to explicitly implement it. Since conscious planning which goes on at the Knowl-
edge level uses a more coarse-grained world model, there is simply no possibility to express
fine details of planning and execution. These can only be represented and/or computed
at the lower Perceptuo-Motor level and Sensori-Actuator level. Planning and execution in
our architecture may proceed in a lock-step fashion, but they need not be. TCA uses a
message-passing scheme among modules that allows concurrent execution of tasks. It has

been used to control the six-legged walking robot Ambler and a cup-collecting robot.

A.2.2 Architecture levels

We now proceed to discuss one of the distinguishing characteristics of GLAIR: its three

levels.

A.2.2.1 Motivation

The three levels of our architecture are of organizational as well as theoretical importance.
Organizationally, the layered architecture allows us to work on individual levels in a rela-
tively independent manner, although all levels are constrained by the nature of their inter-
actions with the adjoining level(s). The architecture is hierarchical, in that level ¢ can only
communicate with levels ¢ — 1 and 7 + 1, if any.

The levels of our architecture are semi-independent. While control flows mainly top-
down and data mainly bottom-up, local control mechanisms at any level can preempt higher-
level control, and these local mechanisms filter the data stream for their own purpose, in
parallel with higher-level ones. Representations become coarser-grained from bottom to top,
while control data becomes more fine-grained from top to bottom. The terms in the Knowl-
edge Level’s KRR system model conscious awareness of the world (and the body), and the
perception and motor capabilities in the other levels provide the grounding for an embodied

semantics of the former. Routine, reflex-like activities are controlled by close coupling of
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perception with motor actions at the (unconscious) Perceptuo-Motor and Sensori-Actuator
levels. This close coupling avoids having to exert control over these activities from the con-
scious level, as in purely top-down structured architectures with a symbol level at the top of
the hierarchy. In the latter kind of system, signals must first be transformed to symbols and
vice versa. The low-level coupling provides for better real-time performance capabilities,
and relieves the Knowledge level of unnecessary work.

In general, we have multi-level layered representations of objects, properties, events,
states of affairs, and motor capabilities, and the various levels are aligned. By alignment
we mean a correspondence between representations of an entity at different levels. This or-
ganization contributes to the robustness and computational efficiency of implementations.
The semi-autonomous nature of the levels allows for graceful degradation of system perfor-
mance in case of component failure or situation-dependent incapacitatedness. Lower levels
can function to some extent without higher-level control, and higher levels can function to
some extent without lower-level input.®

Our architecture allows us to elegantly model a wide range of behaviors: from mindless,
spontaneous, reflex-like, and automatic behavior, e.g., “stop if you hit an obstacle”, to plan-
following, rational, incremental, and monitored behavior, e.g., “Get in the car now, if you
want to go to LA on Friday”.?

In anthropomorphic terms, we identify the Knowledge level with consciously accessible
data and processing; the Perceptuo-Motor level with “hardwired”, not consciously acces-
sible processing and data involved with motor control and perceptual processing; and the
Sensori-Actuator level with the lowest-level muscular and sensor control, also not consciously
accessible. The substrate of grounding and embodiment [Harnad 1990, Lakoff 1987, Such-
man 1988] of actions, concepts, and reasoning is mainly the Perceptuo-Motor level and to
some extent the Sensori-Actuator level.

We will now explore representation and computation at the individual levels in more

detail.

8TFor instance, in the context of autonomous vehicles, if obstacle avoidance or returning to the base is a
lower-level behavior than planning exploration strategies, then a failure of the hardware implementing the
latter does not necessarily prevent the former.

°The plan is to get in the car to go to the travel agency to get a ticket to fly to LA on Friday. Today is
Thursday and it is near the end of the business day. Also, the agency won’t accept telephone reservations.
This example is suggested in [Pollock 1992].
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A.2.2.2 The Knowledge Level

The Knowledge level contains a traditional KRR and/or planning system, using a relatively
course-grained representation of objects, events (including actions), and states of affairs. For
instance, objects are represented at this level as unique identifiers, typically without further
detail about their physical characteristics or precise locations. It is possible to represent
such detail explicitly at this level, but not required. Only if the detail becomes important
to will it be represented, though not necessarily in the same way as at a lower level. For
example, knowledge about the physical size and weight of an object might become available
at the Knowledge Level through the agent’s actively using measuring devices like a ruler or
a scale, but this knowledge is not the same as the embodied knowledge about dimensions
and weight represented at the Perceptuo-Motor level for the particular object or its object
class. As a rule of thumb, representations at this level are limited to objects, events, and
states of affairs that the agent needs to be consciously aware of in order to reason and plan,
and in order to communicate with other agents at the grain size of natural language. The
Knowledge level can be implemented using different KRR and/or planning systems.
Traditional use of the concept of world modeling refers to building models of interactions
between the agent and its environment at the conscious level. These models maintain
internal states for the agent. The difference in our use of the term “world model” is that
we do not intend to have a precise model of all objects in the environment. Instead, we
want to model only the entities relevant to the agent’s interaction with its world. This
requires filtering out some details accessible at the Perceptuo-motor level as the entities
are aligned with their counterparts on the Knowledge level. This is known as “perceptual
reduction”. Physical details of interaction with entities are handled at the Perceptuo-motor
level. Representations at the Knowledge level are needed only for explicit reasoning about
entities, and contain only the information necessary for doing so. That might include
details about physical characteristics in some cases, but it need not. In other cases, it may
be limited to a nondescript intensional representation of an object.!® Conversely, some
entities may be represented at the Knowledge level but not at the Perceptuo-Motor level
(abstract concepts, for instance). Knowledge level representations are needed for reasoning

about entities; Perceptuo-Motor level representations are needed for physically interacting

19See [Shapiro & Rapaport 1987] for our use of “intensional representation”.

191



with entities.

A.2.2.3 The Perceptuo-Motor Level

The Perceptuo-Motor level uses a more fine-grained representation of events, objects, and
states of affairs. For instance, they specify such things as size, weight, and location of
objects on the kinematic side, and shape, texture, color, distance, pitch, loudness, smell,
taste, weight, and tactile features on the perceptual side. At this level, enough detail must
be provided to enable the precise control of actuators, and sensors or motor memory must be
able to provide some or all of this detail for particular objects and situations. The Perceptuo-
Motor level is partly aligned with the Knowledge level, in that there is a correspondence
between object identifiers at the Knowledge level and objects at the Perceptuo-motor level.

Kinematic and perceptual representations of particular objects or typical object class
instances may be unified or separate, and both kinds of representations may be incomplete.
Also at this level are elementary categorial representations; the kinds of representations that
function as the grounding for elementary grounded symbols at the Knowledge level, i.e.,
sensory-invariant representations constructed from sensory data by the perceptual processor
[Harnad 1990].

The representations at this level are embodied (cf. [Lakoff 1987]), meaning that they
depend on the body of the agent, its particular dimensions and characteristics. Robots
will therefore have different representations at this level than people would, and different
robots will have different representations as well. These representations are agent-centered
and agent-specific. For instance, they would not be in terms of grams and meters, but
in terms of how much torque to apply to an object to lift it,!! or what percentage of
the maximum to open the hand to grasp an object. Weights of things in this kind of
representation are relative to the agent’s lifting capacity, which is effectively the maximum
weight representable. An agent may have a conscious (Knowledge level) understanding and

representation of weights far exceeding its own lifting capacity, but that is irrelevant to the

1 Of course this also depends on how far the object is removed from the body, or how far the arm is
stretched out, but that can be taken into account (also in body-specific terms). People’s Perceptuo-Motor
level idea of how heavy something is is most likely not in terms of grams, either (in fact, a conscious estimate
in grams can be far off), but in terms of how much effort to apply to something to lift it. That estimate can
be off, too, which results in either throwing the object up in the air or not being able to Lift it at the first
attempt, something we have all experienced. On the other hand, having a wrong conscious estimate of the
weight of an object in grams does not necessarily influence one’s manipulation of the object.
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Perceptuo-Motor level. When it comes to lifting it, a thousand-pound object is as heavy as a
ten-thousand-pound one, if the capacity is only a hundred or so. Similarly, sizes are relative
to the agent’s own size. Manipulating small things is not the same as manipulating large
things, even if they are just scaled versions of each other. A consequence of using embodied
representations is that using different “body parts” (actuators or sensors) requires different
representations to be programmed or (preferably) learned. While that may be a drawback
at first, once the representations are learned they make for faster processing and reactive
potential. Representations are direct; there is no need to convert from an object-centered
model to agent-centered specifications. This makes the computations at this level more like
table lookup than like traditional kinematics computations, which can be quite involved.
Learning new representations for new objects is also much simpler; it is almost as easy as
trying to grasp or manipulate an object, and merely recording one’s efforts in one’s own
terms. The same holds, mutatis mutandis, for perceptual representations.

There are a number of behaviors that originate at this level: some are performed in
service of other levels (particularly deliberative behaviors), some are performed in service of
other behaviors at this level, a few are ongoing, and some others yet are in direct response
to external stimuli. An agent may consciously decide to perform Perceptuo-motor actions
such as looking, as in look for all red objects, or to perform a motor action, such as grasp
a cup. These actions originate at the Knowledge level and are propagated to this level for
realization. An agent has to perform special perceptual tasks to serve other behaviors, such
as to find the grasp point of a cup in order to grasp a cup. These perceptual tasks may
originate at this or another level.

At the Perceptuo-Motor level, an agent has a close coupling between its behaviors, i.e.,
responses, and stimuli, i.e., significant world states. We observe that, for a typical agent,
there are a finite (manageably small) number of primitive (“innate”) behaviors available.
As the agent interacts with its environment, it may learn sophisticated ways of combining
its behaviors and add these to its repertoire of primitive behaviors. We will consider only
an agent’s primitive abilities for now. We further assume that the agent starts out with
a finite number of ways of connecting world states to behaviors, i.e., reflex/reactive rules.
Following these observations, we suggest that at this level, the agent’s behavior-generating
mechanism is much like a finite state automaton. As we noted earlier, learning will change

this automaton. The agent starts with an automaton with limited acuity, and uses its
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conscious level to deal with world states not recognizable at the Perceptuo-Motor level.
For instance, the Perceptuo-Motor level of a person beginning to learn how to drive, is not
sophisticated enough to respond to driving conditions automatically. As the agent becomes
a better driver, the conscious level is freed to attend to other things while driving. This
is called automaticity in psychology. We discuss an implementation mechanism for these

automated behaviors later in this paper.

A.2.2.4 The Sensori-Actuator Level

The Sensori-Actuator level is the level of primitive motor and sensory actions, for instance
“move from (x,y,z) to (2’,y',2") or “look at {(x,y,z)”". At this level, there are no object
representations as there are at the Knowledge level and the Perceptuo-Motor level. There
are no explicit declarative representations of any kind, only procedural representations
(on the actuator side) and sensor data (on the sensory side). Primitive motor actions
may typically be implemented in a robot control language like VAL, and some elementary
data processing routines may be implemented in a sensory sub-system, like dedicated vision
hardware. At this level, we also situate reflexes, which we consider to be low-level loops from
sensors to actuators, controlled by simple thresholding devices, operating independently of
higher-level mechanisms, and able to pre-empt the latter. We see reflexes as primitive
mechanisms whose main purpose is prevention of damage to the hardware, or to put it in
anthropomorphic terms, survival of the organism. As such they take precedence over any
other behavior. When reflexes are triggered, the higher levels are made “aware” of this by
the propagation of a signal, but they have no control over the reflex’s execution, which is
brief and simple (like a withdrawal reflex seen in people when they unintentionally stick
their hand into a fire).1213 After the completion of a reflex, the higher levels regain control
and must decide on how to continue or discontinue the activity that was interrupted by
the reflex. Reflex-like processes may also be used to shift the focus of attention of the

Knowledge level.

12 An appropriate reflex for a robot (arm) might be to withdraw or stop when it meets too much mechanical
resistance to its movement, as evidenced for instance by a sharp rise in motor current draw. Such a reflex
could supplant the more primitive fuse protection of motors, and make an appropriate response by the
system possible. Needless to say, a robot that can detect and correct problems is much more useful than
one that merely blows a fuse and stops working altogether.

13The fact that the withdrawal reflex may not be as strong, or not present at all, when doing this inten-
tionally may point to the need for top-down inhibition as well.
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A.2.3 Symbol grounding: A non-Tarskian semantics

Tarskian Semantics has nothing to say about how descriptions of objects in plans

relate to the objects in the world [McDermott 1991, p. 13].

Let’s digress for a moment to some esoteric matters of semantics and reference. One
problem an agent has to solve is how to find and maintain a correspondence between a refer-
ent in the world and a symbol in an agent’s world model. As noted above, the referent in the
world is (by necessity) only indirectly considered via its embodied Perceptuo-Motor level
representation, hence the problem becomes one of aligning the Knowledge level represen-
tations with the Perceptuo-Motor level representations. From the perspective of cognitive
science, the problem has been labeled the symbol grounding problem [Harnad 1990]. The
question is how to make the semantics of a robot’s systematically interpretable Knowledge
level symbols cohere equally systematically with the robot’s interactions with the world,
such that the symbols refer to the world on their own, rather than merely because of an
external interpretation we place on them. This requires that the robot be able to discrim-
inate, identify, and manipulate the objects, events, and states of affairs that its symbols
refer to [Harnad 1992]. Grounding is accomplished in our architecture in part through
the alignment of the Knowledge and Perceptuo-Motor levels. Elementary symbols at the
Knowledge level are grounded in the sense that they only attach to “the right kind” of
representations at the Perceptuo-Motor level. If we think of the Perceptuo-Motor level as
implementing categorial perception (and perhaps “categorial action”), then the elementary
symbols of the Knowledge level are the names attached to the categories. In other words,
the alignment of the Knowledge and Perceptuo-Motor level constitutes an internal refer-
ential semantic model of elementary symbols. Note that, like McDermott, we do not take
the Tarskian stance which requires the referents of symbols to be in the world; rather, they
are system-internal, similar to what Hausser proposes [Hausser 1989], or what Harnad calls
iconic representations: “proximal sensory projections of distal objects, events, and states of
affairs in the world” [Harnad 1990]. The Knowledge level is the only level that is accessible
for conscious reasoning, and also the only level that is accessible for inter-agent commu-
nication. Access to the Perceptuo-Motor level and the Sensori-Actuator level would not
be useful for communication, as the representations and processing at these levels are too

agent-centered and too agent-specific to be informative to other agents.

195



Since the Perceptuo-Motor level representations serving as the grounding for symbols of
the Knowledge level are embodied (section A.2.4), equivalent symbols may have somewhat
different semantics for different agents having different bodies. We don’t see that as a
problem, as long as the differences are not too large.!? Indeed, we believe that this is quite
realistic in human terms as well; no two persons are likely to have exactly the same semantics
for their concepts, which nevertheless does not prevent them from understanding each other,
grosso modo at least (cf. [Rapaport 1988]). The problems of translation and communication
in general consist at least in part of establishing a correspondence between concepts (and
symbols) used by the participants. It is helpful to be able to use referents in the external
world as landmarks in the semantic landscape, but one consequence of embodied semantics
is that even if it is possible to establish these common external referents for symbols, there
is still no guarantee that the symbols will actually mean exactly the same thing, because in
effect the same referent in the world is not the same thing to different agents. If we accept
this view, it is clear that approaches to semantics based on traditional logical model theory
are doomed to fail, because they presuppose “identity of referents” and an unambiguous
mapping from symbols to referents, the same one for all agents. Another problem is of
course the presupposition that all objects are uniquely identifiable. The use of deictic
representations does not impose such a condition; as far as our agents are concerned, if it
looks and feels the same, it is the same.'® Nothing hinges on whether or not the objects
in the agent’s surroundings are really extensionally the same as the identical-looking ones

that were there a moment ago or will be there a moment later.

A.2.4 Embodied representation

In section A.2.2.3 we already mentioned the use of embodied representations at the Perceptuo-
Motor level. We now look at the principle of embodiment from a more abstract point of
view.

One of the most general motivations behind our work is the desire to be able to “pro-
gram” a robotic autonomous agent by requesting it to do something and have it “under-

stand”, rather than telling it how to do something in terms of primitive motions with little

1*14 is never a problem as long as agents need not communicate with the outside world (other agents), of
course, cf. [Winston 1975].
1This is of course the “duck test”, made famous by a former US president.
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or no “understanding”. For instance, we want to tell it to go find a red pen, pick it up,
and bring it to us, and not have to program it at a low level to do these things.!® One
might say that we want to communicate with the robot at the speech act level. To do this,
the agent needs a set of general-purpose perceptual and motor capabilities along with an
“understanding” of these capabilities. The agent also needs a set of concepts which are
similar enough to ours to enable easy communication. The best way to accomplish this is
to endow the agent with embodied concepts, grounded in perception and action.

We define embodiment as the notion that the representation and extension of high level
concepts is in part determined by the physiology (the bodily functions) of an agent, and
in part by the interaction of the agent with the world. For instance, the extension of color
concepts is in part determined by the physiology of our color perception mechanism, and in
part by the visual stimuli we look at. The result is the establishment of a mapping between
color concepts and certain properties of both the color perception mechanism and objects in
the world. Another example is the extension of concepts of action: it is partly determined
by the physiology of the agent’s motor mechanisms, and partly by the interaction with
objects in the world. The result is the establishment of a mapping between concepts of
action and certain properties of both the motor mechanisms and objects in the world (what
we might call “the shapes of acts”).

At an abstract level, the way to provide an autonomous agent with human-like embodied
concepts is to intersect the set of human physiological capabilities with the set of the agent’s
potential physiological capabilities, and endow the agent with what is in this intersection.
To determine an agent’s potential physiological capabilities, we consider it to be made up
of a set of primitive actuators and sensors, combined with a general purpose computational
mechanism. The physical limitations of the sensors, actuators, and computational mecha-
nism bound the set of potential capabilities. For instance with respect to color perception,
if the agent uses a CCD color camera (whose spectral sensitivity is usually wider than that
of the human eye), combined with a powerful computational mechanism, we consider its
potential capabilities wider than the human ones, and thus restrict the implemented capa-
bilities to the human ones. We endow the agent with a color perception mechanism whose

functional properties reflect the physiology of human color perception. That results in color

'$Retrieving “canned” parameterized routines is still a low-level programming style that we want to avoid.
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concepts that are similar to human color concepts. With respect to the manipulation of
objects, most robot manipulators are inferior to human arms and hands, hence we restrict
the implemented capabilities to the ones that are allowed by the robot’s physiology. The
robot’s motor mechanism then reflects the properties of its own physiology, rather than
those of the human physiology. This results in a set of motor concepts that is a subset of
the human one. Embodiment also calls for body-centered and body-measured representa-

tions, relative to the agent’s own physiology. We provide more details on embodiment in

GLAIR in [Hexmoor et al. 1993c].

A.2.5 Alignment

When a GLAIR-agent notices something in its environment, it registers that it has come
to know of an object. Regardless of whether the agent recognizes the type of the object,
we want it to explicitly represent the existence of the object in the Knowledge level while
processing sensory information about the object in the Perceptuo-Motor level. Similar to
sensing objects, when properties of objects or relationships among objects are sensed by the
GLAIR-agent, we want it to explicitly represent these properties and relationships, even if
no more is known about them than the fact that they exist. We use unnamed intensional
concepts for this purpose [Shapiro & Rapaport 1987].

Having sensed an object, an assertion is made about the object being sensed in the
GLAIR Knowledge level. Once the object is no longer in the “field of perception”, the
assertion about its being sensed is removed. This is tantamount to disconnecting the re-
lationship between the symbolic representation and the world. If at the Perceptuo-Motor
level a previously sensed object is again being sensed, we reassert the fact that the object,
the same one represented before in the Knowledge level, is being sensed. An example of this
type of (unconscious) perception is when we look at an object, look away, and then look
back at the same object. The unconscious level can provide a short term sensory memory
in which memories of objects are stored, and when we see them from time to time, the con-
scious layer is alerted to that fact. We can think of this phenomenon as a type of continuity
in perception at the unconscious level. We believe that if we assume this continuity, we
should re-use previously constructed representations to represent again-sensed objects. In

order for a GLAIR-agent to re-use its previously established representations about objects
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for again-sensed objects, we either have to assume that the agent has a continuity of per-
ception at the unconscious layer or that a conscious matching of existing representations to

sensed objects is performed.

A.2.6 Consclousness

As we pointed out above, we identify the Knowledge level with consciously accessible data
and processing; the Perceptuo-Motor level with “hard-wired”, not consciously accessible
processing and data involved with motor control and perceptual processing; and the Sensori-
Actuator level with the lowest-level muscular and sensor control, also not consciously ac-
cessible. The distinction of conscious (Knowledge) levels vs. unconscious (Perceptuo-Motor
and Sensori-Actuator) levels is convenient as an anthropomorphic metaphor, as it allows
us to separate explicitly represented and reasoned about knowledge from implicitly repre-
sented and processed knowledge. This corresponds grosso modo to consciously accessible
and not consciously accessible knowledge for people.!” Although we are aware of the pitfalls
of introspection, this provides us with a rule of thumb for assigning knowledge (and skills,
behaviors, etc.) to the various levels of the architecture. We believe that our organization
is to some extent psychologically relevant, although we have not yet undertaken any exper-
imental investigations in this respect. The real test for our architecture is its usefulness in
applications to physical (robotic) autonomous agents (section A.3).

Knowledge in GLAIR can migrate from conscious to unconscious levels. In [Hexmoor
et al. 1993a] we show how a video-game playing agent learns how to dynamically “com-
pile” a game playing strategy that is initially formulated as explicit reasoning rules at
the Knowledge level into an implicit form of knowledge at the Perceptuo-Motor level, a
Perceptuo-Motor Automaton (PMA).

There are also clear computational advantages to our architectural organization. A
Knowledge Representation and Reasoning system as used for the conscious Knowledge level
is by its very nature slow and requires lots of computational resources.'® The implemen-

tation mechanisms we use for the unconscious levels, such as PMAs, are much faster and

17The term “knowledge” should be taken in a very broad sense here.

'®Many reasoning problems are NP-complete, meaning there are no polynomial-time deterministic algo-
rithms known for solving them, or in plain English: they are very hard to solve in a reasonable amount of
time (see e.g. [Levesque 1988]). Elephants don’t stand a chance.
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require much less resources. Since the three levels of our architecture are semi-independent,
they can be implemented in a (coarse-grained) parallel distributed fashion; at least each
level may be implemented on distinct hardware, and even separate mechanisms within the
levels (such as individual reflex behaviors) may be. Our Robot Waiter agent, for instance,

uses distinct hardware for the three levels (section A.3.1).

A.3 Applications

Our architecture as described in section A.2 can be populated with components that make
up the machinery for mapping sensory inputs to response actions, as does Russell in [Russell
1991]. We now discuss some applications of GLAIR that we are currently developing.

Some important general features of GLAIR-agent are the following:

o Varieties of behaviors are integrated: We distinguish between deliberative, reactive,
and reflexive behaviors. At the unconscious level, behavior is generated by mecha-
nisms with the computational power of a finite state machine (or less), whereas, at
the conscious level, behavior is generated via reasoning (of Turing Machine capabili-
ties). As we move down the architectural levels, computational and representational
power (and generality) is traded off for better response time and simplicity of control.

Embodied representations aid in this respect (section A.2.4).

o We assume agents to possess a set of primitive motor capabilities. The motor capa-
bilities are primitive in the sense that (a) they cannot be further decomposed, (b)
they are described in terms of the agent’s physiology, and (c) no reference is made to
external objects. The second property of motor capabilities is so that the success of
performing an action should depend only on the agent’s bodily functions and propri-
oceptive sensing. For example, for a robot arm, we might have the following as its

motor abilities: calibrate, close-hand, raise-hand, lower-hand, move.

e Our architecture provides a natural framework for modeling four distinct types of
behavior, which we call reflexive, reactive, situated, and deliberative. Reflexive and
reactive behaviors are predominantly unconscious behaviors, whereas situated and

deliberative actions are conscious behaviors.
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19 occurs when sensed data produces a response, with little or no

Reflexive behavior
processing of the data. A reflex is immediate. The agent has no expectations about the
outcome of its reflex. The reflexive response is not generated based on a history of prior
events or projections of changing events, e.g., a gradual temperature rise. Instead, reflexive
responses are generated based on spontaneous changes in the environment of the agent, e.g.
a sudden sharp rise in temperature. In anthropomorphic terms, this is innate behavior that
serves directly to protect the organism from damage in situations where there is no time
for conscious thought and decision making, e.g., the withdrawal reflex when inadvertently
touching something hot. Reflexive behavior does not require conscious reasoning or detailed
sensory processing, so our lowest level, the Sensori-Actuator level, is charged with producing
these behaviors. Qur initial mechanism for modeling reflexive behavior is to design processes
of the form T — A, where T is a trigger and A is an action. A trigger can be a simple
temporal-thresholding gate. The action A is limited to what can be expressed at the Sensori-
Actuator level, and is simple and fast.

Reactive behavior requires some processing of data and results in situated action [Such-
man 1988]. However, its generation is subconscious. Situated action refers to an action that
is appropriate in the environment of the agent. In anthropomorphic terms, this is learned
behavior. An example would be gripping harder when one feels an object is slipping from
one’s fingers, or driving a car and tracking the road. We use the term tracking to refer
to an action that requires continual adjustments, like steering while driving. Examples of
this type of reactive behavior are given in [Payton 1986, Anderson et al. 1991]. Situated
behavior requires assessment of the state the system finds itself in (in some state space)
and acting on the basis of that. It might be modeled by the workings of a finite state
automaton, for example, the Micronesian behavior described in [Suchman 1988]. Situated
action is used in reactive planning [Agre & Chapman 1987, Firby 1987, Schoppers 1987].

Deliberative behavior requires considerable processing of data and reasoning which re-
sults in action. In anthropomorphic terms, this is learned behavior that requires reasoning
that can be modeled by a Turing machine (or first order logic), for example explicit planning
and action.

We have developed an implementation mechanism for the Perceptuo-Motor-level which

1°F.g., visual reflexes in [Regan & Beverly 1978]: Here responses are generated to certain visual stimuli
that do not require detailed spatial analysis.
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we call Perceptuo-Motor-automata (PMA), [Hexmoor & Nute 1992]. A PMA is a finite
state machine in which each state is associated with an act and arcs are associated with
perceptions. In each PMA, a distinguished state is used to correspond to the no-op act.
Fach state also contains an auxiliary part we call Internal State (IS). An IS is used in
arbitrating among competing arcs. Arcs in a PMA are situations that the agent perceives
in the environment. When a PMA arc emanating from a state becomes active, it behaves
like an asynchronous interrupt to the act in execution in the state. This causes the PMA
to stop executing the act in the state and to start executing the act at the next state at the
end of the arc connecting the two states. This means that in our model the agent is never
idle, and it is always executing an act. The primary mode of acquiring PMAs in GLAIR
is by converting plans in the Knowledge level into PMAs through a process described in
[Hexmoor & Nute 1992]. A PMA may become active as the result of an intention to execute
an action at the Knowledge level. Once a PMA becomes active, sensory perception will be
used by the PMA to move along the arcs. The sensory perceptions that form the situations
on the arcs as well as subsequent actions on the PMA may be noticed at the Knowledge
level. In general, the sensory information is filtered into separate streams for PMAs and for

the Knowledge level.

A.3.1 A physical implementation: the Robot Waiter

We are developing an experimental setup in which a robot arm will set a dinner table
in various configurations, guided by input from a color camera and controlled by a host
computer.

The physical setup includes a dinner table, a supplies table containing kitchenware, a
Puma 260 robot arm, a CCD camera, a PC-based color frame grabber, and a Sun 4/260
workstation host computer. In a later phase of this project, we hope to replace the Puma
260 robot arm with a larger Puma 560 model. Figure A.2 represents the setup.

The human operator instructs the agent to set the table for dinner, breakfast, etc.,
specifying by named color which objects to choose from the supplies table (color is not a
sufficient feature to recognize objects, as each type of object is available in several colors).
The camera is mounted in a fixed position overlooking both tables and the robot. This

testbed provides a dynamic, yet controllable, environment in which an agent is placed so
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Figure A.2: The Robot Waiter physical setup.

as to facilitate empirical studies of its behavior. The places, number, kind, and color of
objects is not fixed, and unannounced human intervention in the domain is allowed while
the robot is carrying out its task.

We call the agent for this project the Robot Waiter (RW). RW is being developed
in accordance with the principles of the GLAIR architecture. Figure A.3 schematically
presents its structure. The categorizer uses domain constraints to determine what objects
are in the visual field. It can also be told to look for a certain object, e.g., a red cup. The
sensory memory acts as an attentional register, keeping track of the object that is being
manipulated or is to be inspected.

Actions are transmitted from Knowledge level to Perceptuo-Motor level, e.g., look for a
red apple and pick it up. Once the sensory memory contains an object matching the object
desired, actions involving that object can be understood at the Perceptuo-Motor level. For
instance, once a red apple is discovered and recorded in the sensory memory, an action like
pick it up is expanded by a PMA into robot arm tasks to reach for the apple, grasp it, and
liftt it. A PMA is a implementation mechanism for routine activities at an “unconscious”
level, [Hexmoor & Nute 1992, Hexmoor et al. 1992, Hexmoor et al. 1993a]. Each task
involving a robot motion is subsequently submitted to the path constructor. Some motions

may have to be decomposed to visit intermediate points in order to avoid fixtures in the
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Figure A.3: Schematic representation of the Robot Waiter GLAIR-agent.

environment. The path constructor generates path segments for each robot motion. Each
path segment generated by the path constructor is transmitted to the Sensori-Actuator level
for execution.

RW incorporates an embodied model of color perception and color naming, modeled
after the physiology of human color perception. This model allows the agent to (1) name
colors shown to it, and express a typicality judgment, (2) point out examples of named
colors in its environment, and (3) learn new names for colors. This model provides the
perceptual grounding for a set of basic color terms [Berlin & Kay 1969] represented at the
Knowledge level. The color domain was chosen as a case study for embodied perception
because of the relative abundance of psychological, psychophysical and neurophysiological
data in the literature [Lammens 1992]. It is a complex enough domain to allow the usefulness
of embodiment for computational models of perception to be demonstrated, yet feasible
enough to be implemented in actual autonomous agents.

The main components of the Robot Waiter system are listed below:

o A World model: In the general KRR system, we maintain a conscious world model.?"

This model explicitly represents the agent’s knowledge (or beliefs) about the entities in

20 Albus defines a world model as the agent’s best estimate of objective reality [Albus 1991].
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its world. Representations at this level may or may not correspond to representations
at the Perceptuo-Motor level, as explained in section A.2.2. As much as it might
be desirable to avoid building internal models of the world,?! having some modeling

capacity is necessary, we believe.

Specialized knowledge bases: for instance knowledge about action selection, planning,

learning, experimentation, and perception.

A Kinematic/Perceptual model: At the Perceptuo-Motor level, we maintain a model
of the simple agent-level physics of the objects of interest to the agent.?? The kine-
matic/perceptual model models motor capacities and motor memory that might be
implemented in different ways (e.g., purely procedurally or in a network of nodes
and weighted links), but we prefer the declarative approach for its ease of interpreta-
tion and debugging. It also contains perceptual representations of perceived objects.

Representations at this level are embodied and agent-centered (section A.2.4).

Reactive processes: Also at the Perceptuo-Motor level, a number of independent
processes monitor perceptual inputs, and control reactive behaviors of the agent. We
need a mechanism for arbitrating among various reactive and other processes at the

same level, which we have not worked out yet.

Primitive motor and sensory actions: At the Sensori-Actuator level, a number of these
primitive actions are implemented. A primitive motor action might be “move ahead”,

and a primitive sensory action might be “look at position (z,y,z)”

(which in turn
may involve primitive motor actions). Sensing as such is not considered a primitive

sensory action, and it goes on continuously.

Reflexes: Also at the Sensori-Actuator level, a number of reflexes are implemented
as low-level independent processes that monitor raw sensory data and can control

actuators directly, temporarily pre-empting higher level control.

2!Situated cognition and reactive planning are proponents of avoiding world modeling, e.g., [Brooks 1990,
Suchman 1988].
#2Fven the prominent advocators of doing away with world models actually use a variety of models, some

of which qualify as kinematic/perceptual models. For instance, see Chapman’s work on Sonja [Chapman
1990] where Sonja has to build a convex hull of obstacles and compute angles in order to decide the best
way to avoid them.
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As of this writing, the Robot Waiter project is partially implemented, but not opera-

tional yet.

A.3.2 A simulation study: Air Battle

We are interested in modeling behavior generation by agents that function in dynamic

environments. We make the following assumptions for the agent:
e The environment demands continual and rapid acting, e.g., playing a video-game.

e The impact of the agent’s actions depends on the situations under which actions are

applied and on other agents’ actions.
e Other agents’ actions are nondeterministic.

e The agent does not know about long term consequences (i.e., beyond the current

situation) of its actions.

e The agent is computationally resource bounded. We assume that the agent needs

time to think about the best action and in general there is not enough time.

To cope in dynamic environments, an agent which is resource bound needs to rely
on different types of behaviors, for instance, reflexive, reactive, situated, and deliberative
behaviors. Reflexive and reactive behaviors are predominantly “unconscious” behaviors,
situated action may be either “unconscious” or “conscious”, and deliberative actions are
predominantly “conscious” behaviors. We assume that in general “conscious” behavior
generation takes more time than “unconscious” behavior generation.

We have written a program, Air Battle Simulation (ABS), that simulates World War
I style airplane dog-fights. ABS is an interactive video-game where a human player plays
against a computer driven agent. The game runs on SparcStations and starts up by dis-
playing a game window and a control panel window (figure A.4). The human player’s plane
is always displayed in the center of the screen. The aerial two-dimensional position of the
enemy plane is displayed on the screen with the direction of flight relative to the human
player’s plane. The human player looks at the game screen to determine his airplane’s posi-
tion and orientation with respect to the enemy’s plane. (S)he then uses the control panel to

choose a move. A move is a combination of changing altitude, speed, and direction. When
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the human player presses the go button, the computer agent also selects a move. The
game simulator then considers the human player’s move and the computer agent’s move to
determine the outcome of moves, and updates the screen and the accumulated damage to
planes. ABS simulates simultaneous moves this way. If a player’s plane is close in altitude
and position to the enemy plane, and the enemy is in frontal sight, the latter is fired on
automatically (i.e., firing is not a separate action). The levels of damage are recorded in a

side panel, and the game ends when one or both of the two player’s planes are destroyed.

TURN

CuT l ASCEND Il

INORMALI‘ I KEEP l‘

l FAST m lDESCENDm

Oun Damage:
INTACT

Enemy’s Damage:
INTACT

Figure A.4: Air Battle Simulation game window and control panel (see text).

The agent is developed in accordance with the principles of the GLAIR architecture.
Figure A.5 schematically represents its structure. Initially, the agent has not acquired a
PMA, and uses conscious level reasoning to decide what move to make. Once transitions
are learned and cached in a PMA, the agent uses the PMA for deciding its next move
whenever possible. By adding learning strategies, a PMA can be developed that caches
moves decided at the Knowledge level for future use. Learning can be used to mark PMA
moves that prove unwise and to reinforce moves that turn out to be successful. We are
exploring these learning issues. We started ABS with an empty PMA and as the game was
played, transitions of the PMA were learned. Also as the transitions were learned, when
similar situations occurred and there was an appropriate PMA response, the PMA executed
that action. As the game was played, we observed that the agent became more reactive

since the PMA was increasingly used to generate behaviors instead of the Knowledge level.
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Figure A.5: Schematic representation of the Air Battle Simulation GLAIR-
agent.

A.3.2.1 Improving “Unconscious” Behaviors

The rules of a PMA are pairs of situation/action. As it turns out, a situation can be
paired up with multiple actions. The object of learning here is to learn which actions when
associated with a situation yield a better result, i.e., the pilot ends up in a more desirable
situation.

Some situations in ABS are more desirable for the pilot than others, e.g., being right
behind the enemy and in shooting range. Let’s assume that we can assign a goodness value
G(s) to each situation s between —1 and 1. As the pilot makes a move, it finds itself in a
new situation. This new situation is not known to the pilot since it also depends on the
other pilot’s move. Since the new situation is not uniquely determined by the pilot’s move,
the pilot’s view of the game is not Markovian.

Q(s,a) is the evaluation of how appropriate action a is in situation s. R(s,a) is the
goodness value of the state that the pilot finds itself after performing a in situation s.
R(s,a) is determined as the game is played and cannot be determined beforehand. This is
called the immediate reward. 7 is a parameter between 0 and 1 that we plan to vary that to

determine how important it is to be in the state that the pilot ends up in after his move. In
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reinforcement based learning this is known as the discount factor. We let Q(s,a) = R(s,a)
+ v max;Q(s’,k) where situation s’ results after the pilot performs a in s. At the start of
game, all Q(s,a) in the PMA are set to 1. As the game is played, Q is updated. As of this

writing we are experimenting with setting appropriate parameters for Q.

A.3.2.2 Observing Successful Patterns of Interaction in the World

We assumed that the agent does not know about long term consequences of its actions.
Furthermore, the reinforcement based learning we described in the previous section assumes
a Markovian environment. That is, the agent believes the world changes only due to its
own actions. This makes it necessary to observe interactions with the world in order to
learn sequences of actions. Over a finite number of actions, when the agent observes a
substantially improved situation, chances are he has found a successful Routine. We record
such detected Routines and as they re-occur, we increase our confidence in them. When our
confidence in a Routine reaches a certain level, a concept is created at the Knowledge level
of GLAIR for the routine and from then on, this routine can be treated as a single action
at that level.

We plan to explore other learning techniques such as experimentation as a form of
learning [Shen 1989]. We are also interested in developing experiments that will help in
psychological validation of GLAIR and the learning strategies used in ABS. As of the time
of writing ABS is fully operational, but several issues are still being investigated, as noted

above.

A.3.3 A simulation study: the Mobile Robot Lab

We now describe the Mobile Robot Lab (MRL), a simulation environment we are developing
for mobile robots that function as GLAIR-conformant autonomous agents. The simulation
is relatively simple, but nevertheless provides a rich and realistic enough environment to
function as a testbed for the development of physical GLAIR-agents. To make the simulation
more realistic and less predictable, some stochastic properties are built in. More than one
agent can be accommodated. A complete setup using MRL consists of a GLAIR-agent,
a simulator with an incorporated description of a physical environment, and a graphical

interface (figure A.6).
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Figure A.6: Overview of a complete setup using MRL. It consists of a GLAIR-
agent, a simulator with an incorporated model of a physical environment, and
a graphical interface. Arrows represent direction of data flow among the
components.

A.3.3.1 Emergent Behaviors

A major objective for this project is learning emergent behaviors. Like Agre with his
improvised actions [Agre & Chapman 1987] and Brooks with his subsumption architecture
[Brooks 1985] we believe complex behaviors emerge from interaction of the agent with its
environment without planning. However, previous work in this area hard-coded a lot of
primitive actions. Furthermore, it did not attempt to learn the improvised behavior. In
this simulation, we plan to start with a minimal number of primitive actions and sensations.
Our basis for this minimality and the choice of primitive actions is physiological. In other
words, in our modeling an agent, we will choose actions that are physically basic for the
agent’s body as primitive. We then instruct the agent to perform tasks and in the midst of
accomplishing this, we expect it to notice some types of behaviors emerge. An example of
an emergent behavior we will explore is moving toward an object. We expect the agent to
be learning to coordinate its wheel motions, starting from nothing more than the primitive

sensation of contact with an external object, and the primitive actions of turning its motors
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independently on or off.

A.3.3.2 The physical environment description

The simulator uses a description of the physical environment that the simulated robot
operates in. This description is easily modifiable (without reprogramming). It includes the
physical characteristics of the mobile robot and the space in which it moves. A 2D bird’s

eye view of a typical room setup with a robot inside is show in figure A.7.
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Figure A.7: A 2D bird’s eye view of a typical room setup with a mobile
robot inside (left), the Sensors and Actuators Display (upper right) and the
Movement Control Panel (lower right). See text.

The room the robot moves is has a polygonal floor plan and vertical walls, and contains
a number of solid objects with convex polygonal bases and vertical faces, each with an
associated user-defined spectral power distribution (SPD).

Any number of robots may inhabit the room. They have two independently driven
wheels on either side, and two small support wheels underneath in the front and the back.
Furthermore a bumper bar front and back, with contact and force sensors built in, and a
color camera on top, parallel to the direction of the driven wheels. The camera is fixed and

mounted horizontally. The robot also has a non-directional light with a user-defined SPD
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on top, which it can switch on and off or flash.

A.3.3.3 The simulator

The simulator interfaces with the agent and with the graphical interface. It takes care of
any I/O with the agent that would otherwise come from the sensors and go to the actuators
of a real mobile robot. It also takes care of any I/O with the graphical interface, needed to
keep the graphical display of the robot and its physical environment updated.

The simulator incorporates a simplified model of the physics of motion and sensing
for the mobile robot. It continually updates the position of the robot depending on the
rotation speed and direction of its wheels, and provides the agent with appropriate sensory
data about wheel rotation and contact with objects. It also prevents the robot from going
“through” walls or objects. It provides simulated camera input to the agent. Camera
input is simplified in that it consists of a 9x7 pixel array (square pixels), with each pixel
represented as an RGB triplet. This simplified camera view is computed and passed to the
simulator by the graphical interface, on the basis of the 3D perspective views (see below).

The simulator incorporates a simplified lighting model to determine the appearance
(color) of objects in the room. Light sources can either be point sources or homogeneous
diffuse sources. Fach light source has its own SPD. Each object has its own spectral re-
flectance function. All objects are assumed to be Lambertian reflectors.

To enhance the realism of the simulation and to introduce some uncertainty into the en-
vironment, all robot controls and sensors work stochastically. Sensor readings vary stochas-
tically over time around the “true” value, and the same is true for actuator output. We

assume normal distributions for all such variations, with variable standard deviations.

A.3.3.4 The graphical interface

The graphical interface provides a real-time view of the robot and the robot’s environment,
using data obtained from the simulator (figure A.7). It consists of a 2D display showing a
bird’s eye view of the room, the objects, and the robot in it, a sensors and actuators monitor
display, and a 3D perspective display that shows the environment from the robot’s point of
view (not shown in figure A.7). The graphical interface also contains a control panel display

which provides manual control over the robot’s movements and maneuvers. A movement
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command for a robot is composed by the user by selecting power levels and directions of
rotation for each of the two wheels. A maneuver is a higher-level instruction for the robot.
Initially, it can be one of 1) find a block, 2) approach a block, 3) touch a block, 4) push a
block, 5) unwedge a block, and 6) retrieve a block. Blocks can be referenced by color (not
necessarily unique) or by a numeric identifier. The control panel also allows the robot’s

signal light to be switched on or off.

A.3.3.5 The agent

The autonomous agent for this project, with its simulated mobile robot body, conforms to

the GLAIR architecture.

A.3.3.5.1 Primitive abilities. The agent has the following primitive sensations:

o Speed and direction of rotation for each of the left and right wheel motors are in-
dependently sensed. Sensed values for each motor range from 2 foot/sec of wheel

circumference to -2 foot/sec of wheel circumference (in increments of 0.1).

e The bumpers in the front and the back can sense initial contact between the bumper
and external object as well as reaction forces due to pushing. Sensor values range

from 0 to 2, in increments of 1.

e The camera inputs an 9x7 array of RGB triplets, each triplet representing an average

value over the corresponding portion of the camera’s field of view.

The agent has the following primitive actions:

e Speed and direction of rotation for each of the left and right wheel motors are indepen-
dently controlled. Actuation values for each motor increase/decrease by 1/10 foot/sec
of wheel circumference in forward and reverse direction. Brakes can be applied to
each wheel which can bring it to stop. We assume negligible acceleration/deceleration

times.

e The light on top of each robot is either on, off, or flashing with a frequency of 1-4 Hz

(in increments of 1 Hz).
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A.3.3.5.2 The Sensori-Actuator level. Sensing and acting are paired up at this level
to form reflex behaviors. The following reflex behaviors are implemented. Reflexes have
direct access to sensors and actuators, and each may use its own representations and im-

plementation strategies; we list the input and output domains.

o Stop reflex 1: bumpers — motor controls; if the robot bumps into anything, it

stops moving immediately.

o Force limit reflex: motor controls X motor sensors — motor controls; if the
sensed speed is significantly different from the speed control settings, the robot stops

moving. This may occur when something is holding the robot back, for instance.

o Attention reflex: camera input — motor controls; if anything moves in the robot’s

peripheral visual field, it stops and turns towards the location of movement.

e Stop reflex 2: camera input — motor controls; if anything comes close in the

robot’s field of view, it stops moving.

e Escape reflex: camera input — motor controls; if anything approaches the robot

fast, the robot runs away.??

A.3.3.5.3 The Perceptuo-Motor Level. At the Perceptuo-Motor level, primitive
sensations and actions are processed and combined to form more complex perceptions and
behaviors. We list some of these below. We are currently investigating the use of foveal
vision for the agent, which would alter some of the descriptions below.

A signal, object-seen, is generated to denote having seen an object. Signals will be
generated to denote that the object is in the right, center, or left field of view. If an object
in the field of view becomes larger (due to getting closer), a signal is generated that the
object is object-bigger. Similarly, the object in the field of view will get smaller when
departing from the object, signaled by object-smaller. If the object becomes an obstacle
for the robot, the vision system generates an object-too-close signal. If anything moves in
the robot’s peripheral visual field, it will generate the signal moving-object (together with a

position signal). Another complex perception is the trajectory of robot movement. As the

Z*Inhibiting this reflex might turn the agent from a chicken with a long life expectancy into an eagle with
short life expectancy.
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robot senses its wheel speed and direction of rotation combined with visual input, it builds
a trajectory of movement. This can be used in building a map of the domain.

When the robot is in motion, it will use cues from its environment to guide its behavior
selections and subsequent learning. In order for the robot to guide its behavior, we need to
associate rewards with actions that result in desirable sensations. For instance, if the robot
wants (at the Knowledge level) to touch an object and is taking actions to move towards
the object, and the object is in the left field of view and the robot moves left (increases
its right wheel motor speed) it will bring the object to the center of the field of view. The
action of turning left in this situation will be positively rewarded. The result of learning
(sequences of ) actions will be recorded as a PMA. For instance, touching an object will
evolve into a PMA. Even after the initial learning of a PMA for a complex action, learning
will continue to improve the PMA.

For each behavior, a triple of <A, S, R> will be defined. A is the set of primitive
actions, S is a set of sensations, and R is a set of rewards. For example, for the behavior of
touching, A = {left wheel forward increase speed, left wheel forward decrease speed, right
wheel forward increase speed, right wheel forward decrease speed}; S = {object is bigger,
object is smaller, object is in the left field of view, object is in the right field of view, object
is in the center of the field of view, object is too close, contact is made}; R = {object is
bigger 41, object is smaller —1, object is in the left field of view —1, object is in the right
field of view —1, object is in the center of field of view +1, object is too close +1, contact
is made +1} (numbers ranging from +1 to —1 are rewards with +1 denoting desirable and
—1 denoting undesirable).

Below is a list of behaviors and percepts we want the robot to learn. We will provide
the robot with appropriate rewards for these behaviors. Below we give a list of emergent

behaviors that the robot will learn completely on its own (no rewards).

Touch behavior: approach an object until contact is made.

Proximity percepts: proximity to an object, derived from camera data. (e.g., see all

the signals we listed above in the example of touching behavior).

Approach behavior: approach an object until it is in proximity.

Block percept: recognizing something in the field of view as a block.

215



e Push a block
e I'ind a block
¢ Unwedge a block

e Explore/map the room

When more than one agent is present, behaviors at this level may include finding or
hiding from other agents, following or running from other agents, playing games (hide and
seek, for instance).

Earlier we defined behaviors in terms of PMAs. We consider subsets?* of PMAs to also
be behaviors. Percepts and behaviors listed below are emergent, i.e., they are learned but
the agent did not intend to learn them. The robot is never told about these behaviors.

They are learned in PMAs, as in the PMA for touching objects.

e Proprioceptive movement percepts and movement behaviors: moving forward, back-
ward, turning left forward, turning right forward, turning left backward, turning right
backward, rotating left, and rotating right. Fach of these is a percept as well as a

behavior.

Some other percepts and behaviors situated at the Perceptuo-Motor level are listed be-
low. They are hard-wired in the initial implementation, but could conceivably be learned or
emergent as well. As a rule of thumb, we consider the perceptual representation required to
perform discrimination tasks to be hard-wired, and those required to perform identification

tasks to be learned (or learnable).

e Color percepts: in perceptual color space coordinates, derived from camera data.

o Color hallucination behavior: imagine the surroundings in different colors by warping

the perceptual color space.

e Shape percepts: simple object shapes like square, rectangle, tall, short, narrow, wide,

irregular, big, small, derived from camera data.

Also at this level, basic emotions like fear and curiosity may be implemented as particular

types of behaviors (aligned with symbolic labels at the Knowledge level).

2 TLet’s define a subset of a PMA to be a disjoint PMA, i.e., B is a subset of A iff all components of B are
subsets of components of A and no transitions exist between actions in B and those in A-B.
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A.3.3.5.4 The Knowledge Level. At the Knowledge level, all of the percepts and
behaviors of the Perceptuo-Motor level are represented, but in a more symbolic fashion.
For instance, colors and shapes have names. The representations at the two levels are
connected via the alignment mechanism discussed above. Also at this level is a symbolic
map of the room and the objects in it, and the current position of the agent. In general,
planning and some learning activities can originate at this level, and reasoning about the
environment and the agent’s actions, perceptions, goals, desires, states, etc. is confined to
this level only. Concepts of space and time would also be represented at this level, perhaps

as emergent concepts from the behavior of the agent in its environment.

A.4 Concluding Remarks

We have presented a general architecture for autonomous agents that integrates behavior-
based architectures with traditional architectures for symbolic systems. The architecture
specifies how an agent establishes and maintains a conscious connection with its environment
while mostly unconsciously processing sensory data, and filtering information for conscious
processing as well as for reflexive and reactive acting. We ended our paper by instantiating
the architecture with several (physical and simulated) agents embedded in their environ-
ment, in various stages of implementation. We believe our work can contribute towards
integrating traditional ungrounded symbol systems with the newer physically grounded
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systems. Combining an elephant’s body with a man’s*®> mind makes for an awesome com-

bination.
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Appendix B

Derivation of Color Spaces

This appendix lists some equations for deriving various color spaces from the CIE XYZ
standard, and from each other, in addition to some CIE chromaticity-related equations and
functions. The Mathematica code is listed verbatim below, I believe it is not too hard to
read.

These are color space transforms of various kinds.

(*# Transforms of fundamentals etc.
Includes both linear and non-linear transforms. The former are
represented as 3x3 matrices, the latter algorithmically. *)

BeginPackage["transforms ‘", {"common‘", "CIE‘", "chromaticity‘"}]

(* The symbols appearing below, before the start of the private part, will
be exported from the package defined above. The usage information will
be displayed by the help command. *)

XyzToRgbTV::usage = "Linear transform from XYZ to RGB TV coordinates"
RgbTVToXyz: :usage = "Linear transform from RGB TV to XYZ coordinates"
XyzToRgbCie: :usage = "Linear transform from XYZ to RGB CIE coordinates"
RgbCieToXyz::usage = "Linear transform from RGB CIE to XYZ coordinates"
RgbCieToLum: :usage = "Linear transform from RGB CIE to luminance"
ChromRgbCie::usage = "RGB CIE chromaticity coordinates"

XyzToRgbFCC: :usage = "Linear transform from XYZ to RGB FCC coordinates"
RgbFCCToXyz: :usage = "Linear transform from RGB FCC to XYZ coordinates"
RgbFCCToLum: :usage = "Linear transform from RGB FCC to luminance"
ChromRgbNTSC: :usage = "RGB NTSC chromaticity coordinates"

XyzToRgbNTSC: :usage = "Linear transform from XYZ to RGB NTSC coordinates'
RgbNTSCToXyz: :usage = "Linear transform from RGB NTSC to XYZ coordinates"
ChromRgbCRT: :usage = "RGB CRT chromaticity coordinates"

XyzToRgbCRT: :usage = "Linear transform from XYZ to RGB CRT coordinates"
RgbCRTToXyz: :usage = "Linear transform from RGB CRT to XYZ coordinates"
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RgbToI123::usage = "Linear transform from generic RGB to Ohta’s I123

coordinates"
I123ToRghb: :usage = "Linear transform from Ohta’s I123 to generic RGB
coordinates"
XyzToI123::usage = "Linear transform from XYZ to I123 coordinates, using
RGB CRT as the intermediate norm"
I123ToXyz: :usage = "Linear transform from I123 to XYZ coordinates, using
RGB CRT as the intermediate norm"
YiqToRgb::usage = "Linear transform from YIQ to generic RGB coordinates"
RgbToYiq::usage = "Linear transform from generic RGB to YIQ coordinates"
XyzToYiq::usage = "Linear transform from XYZ to YIQ coordinates, using RGB
NTSC as the intermediate norm"
YiqToXyz::usage = "Linear transform from YIQ to XYZ coordinates, using RGB
NTSC as the intermediate norm"
ChromRgbSony: :usage = "Typical Sony monitor RGB chromaticities"
ChromWSony: :usage = "Typical Sony monitor white chromaticities"
TriStimWSony::usage = "Typical Sony monitor while tristimulus values"
XyzToRgbSony: :usage = "Linear transform from XYZ to RGB Sony coordinates"
RgbSonyToXyz::usage = "Linear transform from RGB Sony to XYZ coordinates"

RgbCRTToRgbSony: :usage = '"Linear transform from RGB CRT to RGB Sony
coordinates"”

XyzToLmsVW: :usage = "Linear transform from XYZ to LMS Vos & Walraven
coordinates"
LmsVWToXyz: :usage = "Linear transform from LMS Vos & Walraven to XYZ
coordinates"
XyzToLmsE: :usage = "Linear transform from XYZ to LMS Estevez coordinates"
LmsEToXyz::usage = "Linear transform from LMS Estevez to XYZ coordinates"
XyzToLmsSP: :usage = "Linear transform from XYZ to LMS Smith & Pokorny
coordinates"
LmsSPToXyz: :usage = "Linear transform from LMS Smith & Pokorny to XYZ
coordinates"
XyzToH81::usage = "Linear transform from XYZ to Hurvich & Jameson opponent
coordinates"
H81ToXyz::usage = "Linear transform from Hurvich & Jameson opponent to XYZ
coordinates"

RgbCRTToH81: :usage = "Linear transform from RGB CRT to Hurvich & Jameson
opponent coordinates"

H81ToRgbCRT: :usage = "Linear transform from Hurvich & Jameson opponent to
RGB CRT coordinates"

LmsVWToH81: :usage = "Linear transform from LMS Vos & Walraven to Hurvich &
Jameson opponent coordinates'

H81ToLmsVW: :usage = "Linear transform from Hurvich & Jameson to LMS Vos &
Walraven coordinates"

LmsVWToWWAW: :usage = "Linear transform from LMS Vos & Walraven to Werner &
Wooten subject AW opponent coordinates"

WWAWToLmsVW: :usage = "Linear transform from Werner & Wooten subject AW

opponent to LMS Vos & Walraven coordinates"
RgbCRTTOWWAW: :usage = "Linear transform from RGB CRT to Werner & Wooten
subject AW opponent coordinates'
WWAWToRgbCRT: :usage = "Linear transform from Werner & Wooten subject AW
opponent to RGB CRT coordinates"
XyzToWWAW: :usage = "Linear transform from XYZ to Werner & Wooten subject AW
opponent coordinates"
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WWAWToXyz: :usage = "Linear transform from Werner & Wooten subject AW
opponent to XYZ coordinates"
RgbToHsi: :usage = "RgbToHsil[{r_,g_,b_}] returns {h,s,i} in {[0,2 Pi],
[0,1], [0,1]1} corresponding to {r_,g_,b_} in [0,1]."
XyzToUvl: :usage = "XyzToUvl[{{x_,y_,z_}, {xI_,yI_,zI_}}] returns {u,v,1} in
{R,R,[0,100]}, corresponding to {x_,y_,z_} in R+ and
{xI_,yI_,2zI_} in R+ (the latter representing illuminant
color). This is the CIE 1976 L*u*v* space (CIELUV)."
diffUvl::usage = "diffUvl[{ul_,v1_,11_3}, {u2_,v2_,12_}] returns the CIELUV
color difference between the colors given by
{ut_,v1_,11_} and {u2_,v2_,12_}, both in {R,R,[0,100]}.
This amounts to Eucidean distance in CIELUV space.'
UvlToHcl: :usage = "UvlToHcl[{u_,v_,1_}] returns {hue, chroma, lightness} in
{[0,2pPi], R+, [0,100]} corresponding to {u_,v_,1_} in
{R,R,[0,100]}, representing a color in CIELUV
coordinates. Chroma changes with changing lightness and
constant chromaticity."
UvlToHsl: :usage = "UvlToHsl[{u_,v_,1_}] returns {hue, saturation, lightness} in
{[0,2pPi], R+, [0,100]} corresponding to {u_,v_,1_} in
{R,R,[0,100]}, representing a color in CIELUV
coordinates. Saturation does not change with changing
lightness and constant chromaticity."
XyzTohbl: :usage = "XyzToAbl[{{x_,y_,z_}, {xI_,yI_,zI_}}] returns {a,b,1} in
{R,R,[0,100]}, corresponding to {x_,y_,z_} in R+ and
{xI_,yI_,2zI_} in R+ (the latter representing illuminant
color). This is the CIE 1976 L*a*b* space (CIELAB)."
diffAbl::usage = "diffAbl[{al_,b1_,11_3}, {a2_,b2_,12_}] returns the CIELAB
color difference between the colors given by
{a1_,b1_,11_} and {a2_,b2_,12_}, both in {R,R,[0,100]3}.
This amounts to Eucidean distance in CIELAB space.'
AblToHcl: :usage = "AblToHcl[{a_,b_,1_}] returns {hue, chroma, lightness} in
{[0,2pPi], R+, [0,100]} corresponding to {a_,b_,1_} in
{R,R,[0,100]}, representing a color in CIELAB
coordinates. Chroma changes with changing lightness and
constant chromaticity."
AblToHsl: :usage = "AblToHsl[{a_,b_,1_}] returns {hue, saturation, lightness} in
{[0,2pPi], R+, [0,100]} corresponding to {a_,b_,1_} in
{R,R,[0,100]}, representing a color in CIELAB
coordinates. Saturation does not change with changing
lightness and constant chromaticity."
XyzToSVF: :usage = "XyzToSVF[{{X_,Y_,Z_}, {XW_,YW_,ZW_}}] returns {F1,F2,VY}
in {R,R,R+} corresponding to {X_,Y_,Z_} in R+ and
{XW_,YW_,ZW_} in R+. The latter represents the XYZ
values of white. {F1,F2,VY} are the opponent coordinates
F1 and F2 and the lightness magnitude VY of the SVF
uniform color space.'
Rgb2Hls::usage = "Rgb2Hls[{r_,g_,b_}] returns {h,1,s} in {[0,2Pi], [0,1],
[0,1]} corresponding to {r_,g_,b_} in [0,1]."
Hls2Rgb::usage = "Hls2Rgb[{h_,1_,s_}] returns {r,g,b} in [0,1]
corresponding to {h_,1_,s_} in {[0,2Pi], [0,1], [0,1]1}."
Rgb2Hsv::usage = "Rgb2Hsv[{r_,g_,b_}] returns {h,s,v} in {[0,2Pi], [0,1],
[0,1]} corresponding to {r_,g_,b_} in [0,1]."
Hsv2Rgb::usage = "Hsv2Rgb[{h_,s_,v_}] returns {r,g,b} in [0,1]
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corresponding to {h_,s_,v_} in {[0,2Pil, [0,1]1, [0,11}."
Begin[" ‘Private‘"]

(* The symbols appearing below are private to this package, and will not be
exported. *)

(* LINEAR TRANSFORMS *)
(* Ency of AI *)

(* Note: EAI 1992 edition CV article says linear transforms should be
scaled s.t. each component has a max of 1; I don’t do this. May be
better for statistical feature counting, but not for my purpose. This
will distort the relative positions of colors in the space. *)

XyzToRgbTV := {rOTV, gOTV, bOTV} =*
{{0.587, -0.164, -0.089}, {-0.301, 0.611, -0.0087},
{0.0178, -0.0362, 0.274}}

RgbTVToXyz := Inverse[XyzToRgbTV]

(* Compute scaling factors to preserve E response relative to Cie XYZ
functions. This does not preserve absolute magnitudes of transformed
primaries, so they are renormalized afterwards. The
transforms are defined with delayed evaluation, so that the scaling
factors can be redefined at any time and the transforms will be modified
accordingly. Note that TV fundamentals are equalized on standard
illuminant C, not on equal-energy white as the XYZ functions are. *)

{r0TV, gOTV, bOTV} = {1,1,1}
{r0TV, gOTV, bOTV} = 1 / (XyzToRgbTV . TriStimC)
{r0TV, gOTV, bOTV} =
RgbNormFactorFromTxr [XyzToRgbTV, Cie31List] {rOTV, gOTV, bOTV}

(* relation Cie 1931 XYZ to Cie real primaries 700, 546.1, 435.8 nm, see
McIlwain & Dean 1956 Eq 4-4 p. 48 *)

RgbCieToXyz1 = {{2.7690, 1.7518, 1.1300}, {1.0000, 4.5907, 0.0601},
{0.0000, 0.0565, 5.5943}}

XyzToRgbCiel = Inverse[RgbCieToXyz1]
XyzToRgbCie := {r0Cie, gOCie, bOCie} * XyzToRgbCiel

RgbCieToXyz := Inverse[XyzToRgbCie]

{1,1,13}
1 / (XyzToRgbCie . TriStimE) (* note eq on E *)

{r0Cie, g0Cie, bOCie}
{r0Cie, g0Cie, bOCie}
{r0Cie, g0OCie, bOCie} =

RgbNormFactorFromTxr [XyzToRgbCie, Cie31List] {r0Cie, gOCie, bOCie}

RgbCieToLum = {1, 4.5907, 0.0601} (* luminance contributions *)
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ChromRgbCie = {{0.735, 0.265}, (* from rogers85 *)
{0.274, 0.717%},
{0.167, 0.009}}

(* I have used ChromRgbCie to compute matching functions from the
chromaticities, with TxrFromChrom[ChromRgbCie, ChromE], which gives the
same results as the transformation above. That means that, most likely,
TxrFromChrom is working ok, I can trust it to compute matching functions
based on chromaticities. *)

(* McIlwain & Dean conversions between Cie 1931 XYZ and FCC RGB used as the
primaries for color tv. These are equalized on standard illuminant C as

reference white, with luminance of this white taken as unity. Eqns 4-11
p. 62.

After scaling, RgbFCC is vitually identical to RgbTV. *)

RgbFCCToXyz1 = {{0.608, 0.174, 0.200}, {0.299, 0.587, 0.114},
{0.000, 0.0662, 1.112}}

(* compute inverse transform rather than using eq 4-12, which
is apparently wrong: 1.191X should read 1.907X, perhaps 1.911X *)

XyzToRgbFCC1 = Inverse[RgbFCCToXyz1]

XyzToRgbFCC := {rOFCC, gOFCC, bOFCC} * XyzToRgbFCC1

RgbFCCToXyz := Inverse[XyzToRgbFCC]

{r0FCC, gOFCC, bOFCC} = {1,1,1}
{rOFCC, gOFCC, BOFCC} = 1 / (XyzToRgbFCC . TriStimC)
{r0FCC, gOFCC, bOFCC} =
RgbNormFactorFromTxr [XyzToRgbFCC, Cie31List] {rOFCC, gOFCC, bOFCC}

(* luminance signal as used in color tv, eq 8-2 p. 121, without gamma
correction *)

RgbFCCToLum = {0.30, 0.59, 0.11}
(* Sun VideoPix doc: 0.299, 0.587, 0.114 for NTSC *)

(* NTSC from Xyz chromaticity coordinates, from Hill 1990, note 3 p. 574
After scaling, RgbNTSC is vitually identical to RgbTV. *)

ChromRgbNTSC = {{0.670, 0.330},
{0.210, 0.710},
{0.140, 0.080}}

XyzToRgbNTSC = TxrFromChrom[ChromRgbNTSC, ChromC]

RgbNTSCToXyz = Inverse[XyzToRgbNTSC]
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(* typical CRT color monitor from chromaticity coordinates, from Hill
1990, table 16.2 p. 574, and rest of the chapter. Note this is equalized
on CIE D65, not on C as the NTSC functions are.
These are slightly different from the values given in rogers85. *)

ChromRgbCRT = {{0.628, 0.330}, (* rogers85: 0.628 0.346 *)
{0.285, 0.590}, (* 0.268 0.588 %)
{0.1507, 0.060}} (* 0.150 0.070 *)

(* these are fairly close to chromaticities computed on positive parts only
of RgbFCC matching curves, using this kind of computation:
{Function[1, If[R[1] < 0, 0, R[1]]], Function[l, If[G[1] < 0, 0, G[1]11],
Function[l, I£[B[1] < 0, 0, B[1111} *)

(* used a transform computed from chromaticity coordinates rather than the
one given in Hill. The differences are considerable. *)

XyzToRgbCRT = TxrFromChrom[ChromRgbCRT, ChromDé5]
(* Hill has the following:
{rOCRT, gOCRT, bOCRT} *
{{2.739, -1.119, 0.138}, {-1.145, 2.2029, -0.333},
{-0.424, 0.033, 1.105}} *)

RgbCRTToXyz = Inverse[XyzToRgbCRT]

(* equalize on source D65 for white *)

{rOCRT, gOCRT, bOCRT} = {1,1,1}

{rOCRT, gOCRT, bOCRT} = 1 / (XyzToRgbCRT . TriStimD65)

{rOCRT, gOCRT, bOCRT} =
RgbNormFactorFromTxr [XyzToRgbCRT, Cie31List] {rOCRT, gOCRT, bOCRT}

* ta’s s s space. 1s 1s a linear transform o . Note the
(* EAI Ohta’s I1,I2,I3 sp This i 1i £ f RGB. N h
purpose of this trafo, described in the article. *)

RgbToIl23 = {{1/3, 1/3, 1/3}, {1, 0, -1}, {-1/2, 1, -1/2}}

I123ToRgb = Inverse[RgbToI123]

XyzToI123 = RgbToI123 . XyzToRgbCRT
XyzToI123 = NormFactorFromTxr[XyzToI123, 550, 610, 450, Cie31List] XyzToI123
I123ToXyz = Inverse[XyzToI123]
(* RGB<-->YIQ transforms from mma Packages/Graphics/Colors.m *)
YigToRgb = {{1, .95, .625}, {1, -.28, -.64}, {1, -1.11, 1.73}}
(* rogers85 has a typo omitting the 1 from the last number:

{{1, .956, .623}, {1, -.272, -.648}, {1, -1.105, .705}} *)

RgbToYiq = Inverse[YiqToRgb]
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(* rogers85:
{{.299, .887, .114}, {.596, -.274, -.322}, {.211, -.522, .311}} *)

XyzToYiq =

XyzToYiq =

YiqToXyz =

RgbToYiq . XyzToRgbNTSC
NormFactorFromTxr [XyzToYiq, 550, 610, 540, Cie31List] XyzToYiq

Inverse[XyzToYiq]

(* Sony CRT color monitor from Xyz chromaticity coordinates, from

twjowri.

com. These are the values used in Mathematics as '"approximations

to typical color monitors", i.e. the Sony tubes as used in Mac’s etc.

Typical

gamma for these tubes is 1.8.

Agrees with values gotten from Sun. *)

ChromRgbSony = {{0.625, 0.340},

{o.
{o.

ChromWSony

280, 0.595%},
155, 0.070}}

= {0.283, 0.298}

TriStimWSony = {0.283, 0.298, 0.419}

XyzToRgbSony = TxrFromChrom[ChromRgbSony, ChromWSony]

RgbSonyToXyz = Inverse[XyzToRgbSony]

(* use the following transform to display RgbCRT colors on a Sony monitor *)

RgbCRTToRgbSony = XyzToRgbSony . RgbCRTToXyz

(* Vos & Walraven 1978 fundamentals. W/o scaling factors, the resulting
functions are on luminance basis. From Wyszecki & Stiles 2nd ed, p. 612
ff. The transformation is relative to the Vos-Judd 1978 modified CIE
standard functions (Cie31VxBar, Cie31VyBar, Cie31VzBar). *)

XyzToLmsVW

:= {rovW, gOVW, bOVW} *

{{0.1551646, 0.5430763, -0.0370161},

{-o.

1551646, 0.4569237, 0.0296946%},

{0.0, 0.0, 0.0073215}}

LmsVWToXyz

:= Inverse[XyzToLmsVW]

(* equalized on E *)

{rovw, gOVW, bOVW}
{rovw, gOVW, bOVW}

{1,1,1}; {rovw, govW, bOVW} = 1 / (XyzToLmsVW . TriStimE)

RgbNormFactorFromTxr [XyzToLmsVW, Cie31VList] {rOVW, gOVW, bOVW}

(* Estevez

1979 fundamentals, according to Valberg et al 1986. The

transformation is relative to the CIE 1931
standard functions (Cie31VxBar, Cie31VyBar, Cie31VzBar). *)
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XyzTolLmsE := {rOE, gOE, bOE} *
{{0.3841, 0.7391, -0.0650%},
{-0.3471, 1.1463, 0.0870},
{0.0, 0.0, 0.5610}}

LmsEToXyz := Inverse[XyzToLmsE]
(* equalized on E *)
{rOE, gOE, bOE}

{rOE, gOE, bOE}
RgbNormFactorFromTxr [XyzToLmsE, Cie31VList] {rOE, gOE, bOE}

{1,1,1}; {rOE, gOE, bOE} = 1 / (XyzToLmsE . TriStimE)

(* Smith & Pokorny 1975 fundamentals. W/o scaling factors, the resulting
functions are on luminance basis. From Wyszecki & Stiles 2nd ed, p. 612
ff. The transformation is relative to the Judd 1951 modified CIE
standard functions (Cie31JxBar, Cie31JyBar, Cie31JzBar). *)

XyzToLmsSP := {rO0SP, gOSP, bOSP} =*
{{0.15514, 0.54312, -0.03286},
{-0.15514, 0.45684, 0.03286},
{0, 0, 0.00801}}
LmsSPToXyz := Inverse[XyzToLmsSP]
(* equalized on E *)
{r0SP, g0SP, b0OSP} = {1,1,1}; {rOSP, gOSP, bOSP} = 1 / (XyzToLmsSP . TriStimE)

{r0SP, gOSP, bOSP} =
RgbNormFactorFromTxr [XyzToLmsSP, Cie31JList] {rO0SP, gOSP, bOSP}

(* Hurvich 81 opponent responses *)

XyzToH81 := {grOH81, byOH81, wbOH81} {{1, -1, 0}, {0, 0.4, -0.4}, {0, 1, 0}}
H81ToXyz := Inverse[XyzToH81]

RgbCRTToH81 := XyzToH81 . RgbCRTToXyz

H81ToRgbCRT := XyzToRgbCRT . H81ToXyz

LmsVWToH81 := XyzToH81 . LmsVWToXyz

H81ToLmsVW := XyzToLmsVW . H81ToXy=z

{grOH81, byOH81, wbOH81} = {1,1,1}

{grOH81, byOH81, wbOH81} =

OppNormVectorFromTxr [XyzToH81] {grOH81, byOH81, wbOH81}

(* W&W 79, w.r.t. normalized V&W fundamentals, observer AW *)
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LmsVWToWwAWOrig = {{2.38, -2.87, 0.54}, {0.93, -0.36, -1.03}, {0.85, 0.15, 0.01}}

(* this is the normalizing matrix for VW fundamentals. The argument to
DiagonalMatrix is computed as 1 / {rBarVWMax, gBarVWMax, bBarVWMaxl} *)

normVW = DiagonalMatrix[{1.03759, 0.844756, 0.618546}]

(* derive WWAW fns from unnormalized VW fundamentals and from rgb *)
LmsVWToWWAW := LmsVWToWWAWOrig . normVW

WWAWToLmsVW := Inverse[LmsVWToWWAW]

RgbCRTTOWWAW :

LmsVWToWWAW . XyzToLmsVW . RgbCRTToXyz

WWAWToRgbCRT :

Inverse[RgbCRTToWWAW]

XyzToWWAW := {grOWWAW, byOWWAW, wbOWWAW} (LmsVWToWWAW . XyzToLmsVW)

WWAWToXyz := Inverse[XyzToWWAW]
{grOWWAW, byOWWAW, whOWWAW}

{grOWWAW, byOWWAW, whbOWWAW}
OppNormVectorFromTxr [XyzToWWAW] {grOWWAW, byOWWAW, wbOWWAW}

{1,1,13

(* NON-LINEAR TRANSFORMS *)

(* EAI: HSI space used in color vision work. Note this is not a linear
transform! Note also the singularities in this fn at low intensities.
Modified the transform for for i below .03, otherwise get strange
results with black, e.g. At low intensities, H and S are meaningless,
almost random, using the unmodified transform. Assume r,g,b, in [0,1].
This version is better for black, but still unreliable at low
intensities, e.g. for brown. *)

RgbToHsi[{r_,g_,b_}] := Module[ {h, s, i, rn, gn, bn}, (
i = (r+g+b)/3;
If[i<.02, {0,0,i}, (
{rn,gn,bn} = {r,g,b}/1i;
s =1 - Min[{rn,gn,bn}];
x = ArcCos[(2 rn-gn-bn) /
(Sqrt[6] Sqrtl(rn-1/3)"2 + (gn-1/3)"2 + (bn-1/3)"21)1;
h = If[bn<=gn, x, 2 Pi-x];
{h,s,i}
)]
)]

(* EAI: L*u*v* perceptually uniform color space, superseding the earliest
uniform space UVW. Quantities denoted by postfix I in the definition
of L*u*vx refer to the incident illumination color (!). Note this is not
a linear transform of XYZ space. Note the singularities for low
intensity here too. This incorporates the modification for low values of
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y/yI as described in W&S p. 165. This is CieLUV 1976. Note these
function actually use the order U, v, 1 to be compatible with H81 etc,
which have brightness as the third dimension (vertical). *)

XyzToUvl [{{x_,y_,z_}, {xI_,yI_,zI_}}] :=
Modulel[ {1s, us, vs, u, v, ul, vI, d, dI}, (
d=x+ 15y + 3 z;
dI = xI + 15 yI + 3 zI;
w = If[d>0, 4 x / d, 01;
ul = If[dI>0, 4 xI / dI, 01;
v = If[d>0, 9y / d, 01;

vI = If[dI>0, 9 yI / dI, 0];
1s = If[(y/yI)>0.008856, 116 (y/yI)~(1/3) - 16, 903.3 (y/yI)]1;
us = 13 1s (u-ul);

vs = 13 1s (v-vI);
{us,vs,1ls?}

)]

(* color difference in CieLUV 1976 is just Euclidean distance *)

diffUvl[{ui_,v1_,11_3}, {u2_,v2_,12_}] :=
Sqrt[(ui-u2)~2 + (vi-v2)"2 + (11-12)"2]

(* Derive perceived lightness, chroma, and hue from uvl coordinates. Chroma
is similar to saturation, except the latter (as defined in W&S) does not
change with changing lightness and constant chromaticity, but the former
does. *)

UvlToHcl[{u_,v_,1_3}] := If[u==0 && v==0, {0,0,13},
{ArcTan[u,v], Sqrt[u~2 + v~2], 1}] (* chroma *)

UvlToHsl[{u_,v_,1_3}] := If[u==0 && v==0, {0,0,13},
If[1==0, {0,0,1}, {ArcTan[u,v], Sqrt[u~2 + v°2] / 1, 1}]] (* sat *)

(* Cie 1976 L*a*b* space and color-difference formula, from W&S p. 166.
Note again the order a, b, L of the components. *)

XyzToAbl [{{x_,y_,z_}, {xI_,yI_,zI_}}] :=
Module[ {1s,as,bs}, (
1s = If[(y/yI)>0.008856, 116 (y/yI)~(1/3) - 16, 903.3 (y/yI)1;
as = 500 (If[(x/xI)>0.008856, (x/xI)~(1/3), 7.787 (x/xI) + 16/116] -
I£[(y/y1)>0.008856, (y/yI)~(1/3), 7.787 (y/yI) + 16/116]1);
bs = 200 (If[(y/yI)>0.008856, (y/yI)~(1/3), 7.787 (y/yI) + 16/116] -
I1£[(z/21)>0.008856, (z/zI)~(1/3), 7.787 (z/zI) + 16/1161);
{as,bs,ls}
)]

(* color difference in CieLAB 1976 is just Euclidean distance *)

diffAbl[{ai_,b1_,11 3}, {a2_,b2_,12_}] :=
Sqrt[(ai1-a2)"2 + (b1-b2)"2 + (11-12)"2]
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(* Derive perceived lightness, chroma, and hue from Abl coordinates. *)

AblToHcl[{a_,b_,1_}] := If[a==0 && b==0, {0,0,1},
{ArcTan[a,b], Sqrtl[a~2 + b~2], 1}] (* chrom *)

(* same but with saturation in stead of chroma -- not in W&S? analogous to
Uvl to Hcl, Hsl transforms above. *)

AblToHs1[{a_,b_,1_}] := If[a==0 && b==0, {0,0,1},
If[1==0, {0,0,1}, {ArcTan[a,b], Sqrt[a~2 + b"2] / 1, 1}]] (* sat *)

(* SVF uniform color space, from Valberg et al 1986, app. A *)

(* helper funcions *)
vi[Y_] := If[Y<=0.0043, 0,
((100 Y - 0.43)70.51)/((100 Y - 0.43)70.51 + 31.75)]

k[VY_] := 0.140 + 0.175 VY

v2[Y_] := Module[ {VY},
VY = 40 vi[Y];
1£[Y<=0.001 k[VY], O,
(((100 Y / k[vY]) - 0.1)"0.886) /
(((100 Y / k[VY]) - 0.1)°0.86 + 103.2) 1]

XyzToSVF[{{X_,Y_,Z_}, {XWhite_,YWhite_,ZWhite_}}] :=
Module[ {S1,52,53,VY,p1,p2,F1,F2},

(* center relative cone absorptions of color sample to the white
stimulus (or the light source), aka von Kries transformation. Trafo
A1 given in Valberg et al 86 p. 1732, differs by scaling factors
only from XyzToLmsE. Since the sample values are scaled w.r.t. the
white values, this doesn’t matter. *)

{s1,52,83} = (XyzTolmsE . {X,Y,Z}) / (XyzTolLmsE . {XWhite,YWhite,ZWhitel});

(* lighness magnitude VY *)

VY = 40 vi[Y];

(* first opponent stage coordinates pl, p2 *)

pl = vi[s1] - vi[Y];

p2 = If[S3<=Y, vi[Y] - v1[s3], v2[Y] - v2[s31];

(* second opponent stage coordinates F1 and F2 *)

Fi1 = 700 p1 - 54 p2;

F2 = 96.5 p2;
{F1,F2,VY}
]

(* rgb to hls triplets, from Hill 90. In this hls space, all pure colors
(red, green, blue, yellow, cyan, magenta) lie on the 0.5 lightness
plane and are all equally saturated (1.0), with black and white at the
bottom and top of the double cone. This is not very realistic in
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psychophysical terms. For greys, h=0 although strictly speaking it is
undefined. Otherwise, h is given in radians, with 0 = red.

Foley & Van Dam 1982(84) have essentially the same routine, except they
differ on the sign of one of the terms! (see code). *)

Rgb2Hls[{r_,g_,b_}] := Module[ {mx, mn, rc, gc, bc, h, 1, s}, (

(* convert {r,g,b}, each in [0,1], to {h,1,s}, in {[0,2Pi], [0,1], [0,1]1} *)

mx = Max[r,g,b]l;

mn = Min[r,g,b]l;

1= (mx +mn) / 2.0; (* lightness *)

(* compute saturation *)

If[mx == mn, s = h = 0, ( (* grey *)
(* chromatic color *)
If[1<=0.5, s = (mx-mn) / (mx+mn), s = (mx-mn) / (2-mx-mn)J];
(* Hill has (2-mx+mn) for the last term, which is wrong as evidenced by

computing some transforms to HLS and back to RGB. *)
rc = (mx-r) / (mx-mn); (* hue *)
gc = (mx-g) / (mx-mn);
bc (mx-b) / (mx-mn);
h

If[r==mx, h = bec-gc,
If[g==mx, = 2+rc-bc,
If[b==mx, h = 4+gc-rcll];
h = 60 h;
If[h<0, h = h+360]
)1;
{h (Pi/180), 1, s}
)]

(* this is from Foley & vDam 82, p 619 *)

Hls2Rgb[{h_,1_,s_}] := Module[ {value, hil, r, g, b, m1, m2}, (
(* convert {h,1,s} in {[0,2Pi], [0,1], [0,1]1} to {r,g,b}, each in [0,1] *)
value[ni_,n2_,hue_] := Module[ {huell}, (
If[hue>360, huel=hue-360, If[hue<0, huel=hue+360, huel=huell;
Which[
hue1<60, n1+(n2-n1) huel/60,
hue1<180, n2,
hue1<240, ni1+(n2-n1) (240-huel)/60,
True, nil)]l;
hi = h (180/Pi); (* convert to degrees *)
If[1<=0.5, m2=1(1+s), m2=1+s-1 s];
mi=2 1-m2;
If[s==0, {r,g,b} = {1,1,1},
{r,g,b} = {value[mil,m2,h1+120], value[mi,m2,h1], value[mi,m2,h1-120]1}];
{r,g,b}
)]

(* HSV hexcone after Smith 78, from F&vD 82, 613ff. As in HLS above,
saturation is relative to gamut represented by model, not to Cie chart,
i.e. not the same as purity. HSV = Hue, Saturation, Value (lightness,
after Munsell value I suppose). For the following conversion functions,
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{r,g,b} are in [0,1], {h, s, v} in {[0, 2Pi], [0,1], [0,1]}. For
undefined values of h, 0 is returned. *)

Rgb2Hsv[{r_,g_,b_}] := Module[ {mx, mn, rc, gc, bc, h, s, v}, (
(* convert {r,g,b}, each in [0,1], to {h,s,v}, in {[0,2Pi], [0,1], [0,1]1} *)
mx = Max[r,g,b]l;

mn = Min[r,g,b]l;
v = mx; (* value *)
If[mx '= 0, s = (mx-mn) / mx, s = 0]; (* saturation *)

If[s==0, h = 0, ( (* grey *)
(* chromatic color *)
rc = (mx-r) / (mx-mn); (* distance from red *)
gc = (mx-g) / (mx-mn);
be (mx-b) / (mx-mn);
If[r==mx, h = bc-gc, (* between Y, Magenta *)
If[g==mx, h = 2+rc-bc, (* between Cyan, Y *)
If[b==mx, h = 4+gc-rc]]l]; (* between Magenta, Cyan *)
h = 60 h; (* convert to degrees *)
If[h<0, h = h+360] (* make nonnegative *)
)1;
{h (Pi/180), s, v} (* convert to radians *)
)]

Hsv2Rgb[{h_,s_,v_}] := Module[ {r, g, b, hi1, i, £, p, q, t}, (
(* convert {h,s,v}, in {[0,2Pi], [0,1], [0,1]1} to {r,g,b}, each in [0,1] *)
hi = h (180/Pi); (* convert to degrees *)
If[s==0, {r,g,b} = {v,v,v}, (
If[h1==360, h1=0]; (* must use local variable for h *)
hl = h1/60; (* convert to [0,6] *)

i = Floor[hi]; (* integer part of h *)
f = hi-i; (* fractional part of h *)
p=v (1-8);
qg=v (1-(s 1£));
t = v (1-(s (1-1)));
Switchl[i,
0, {r,g,b} = {v,t,p},
1, {r,g,b} = {q,v,p},
2, {r,g,b} = {p,v,t7},
3, {r,g,v} = {p,q,v},
4, {r,g,b} = {t,p,v},
5, {r,g,v} = {v,p,q}] )1;
{r,g,b}
)]
End[] (* private *)

EndPackagel[] (* package *)

230



These are CIE chromaticity-related equations and functions.

(* Cie chromaticity functions and related stuff *)
BeginPackage["chromaticity ‘", {"common‘'", "CIE‘", "mygraphics‘"}]

(* The symbols appearing below, before the start of the private part, will
be exported from the package defined above. The usage information will
be displayed by the help command. *)

SetDefaultCieFns::usage = "SetDefaultCieFns[CieFnsList] sets the default
CIE basis functions (x, y, z) to the list CieFnsList."

ChromDiagram: :usage = '"Parametric plot of the CIE chromaticity diagram"

ChromDiagramColor: :usage =
"Color parametric plot of the CIE chromaticity diagram"

PlotChromList::usage = "PlotChromList[{{x,y}, ...}] plots the CIE
chromaticity diagram and points with chromaticities {x,y}."

PlotChromListColor: :usage = "PlotChromList [{{x,y}, ...}] plots the CIE
chromaticity diagram and points with chromaticities {x,y}, in color."

TxrFromChrom: :usage =
"TxrFromChrom[{{Rx, Ry}, {Gx, Gy}, {Bx, By}}, {Wx,Wy}] computes an
XYZ to RGB transform from RGB chromaticity coordinates {{Rx, Ry}, ...},
equalized on the white point given by chromaticity coordinates {Wx, Wy}.
The result is normalized for max[rgbl=1."

ChromFromTxr: :usage =
"ChromFromTxr[txr] returns chromaticity coordinates {x,y} of primaries,
given a linear transform txr from Cie XYZ color matching functions to the
color matching functions of those primaries.'

ChromFromSPD: :usage =

"ChromFromSPD[{f1, £f2, ...}] returns chromaticity coordinates {x, y} of
SPD’s f1, £2, ... (functions of wavelength)."
LBlue::usage = "Typical wavelength resulting in perception of blue."
LGreen::usage = "Typical wavelength resulting in perception of green."
LYellow: :usage = "Typical wavelength resulting in perception of yellow."
LRed::usage = "Typical wavelength resulting in perception of red."

PlotTxr: :usage =
"PlotTxr[matrix, label:\"\", style:rgbColors, CieFns:Cie31List] plots
the primaries defined by matrix, a linear transform from XYZ (with basis
functions CieFns) to the primaries, and labels the plot with label. Uses
style to plot the individual functions.'

PlotTxrP: :usage =
"PlotTxrP[matrix, label:\"\", style:rgbColors, CieFns:Cie31List]
plots the primaries defined by matrix, a linear transform from XYZ (with
basis functions CieFns) to the primaries, and labels the plot with label.
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Plots only the positive lobes of the primaries (useful for RGB primaries
only). Uses style to plot the individual functiomns."

PlotTxrPM: :usage =
"PlotTxrPM[matrix, label:\"\", style:rgbColors, CieFns:Cie31List]
plots the primaries defined by matrix, a linear transform from XYZ (with
basis functions CieFns) to the primaries, and labels the plot with label.
Plots only the major positive lobes of the primaries (useful for RGB
primaries only). Uses style to plot the individual functioms."

NIntTxr::usage =
"NIntTxr[matrix] computes the integrals over the visible wavelength range
of the RGB primaries defined by matrix, a linear transform from XYZ
coordinates."

NIntTxrP::usage =
"NIntTxr[matrix] computes the integrals over the visible wavelength range
of the RGB primaries defined by matrix, a linear transform from XYZ
coordinates. Uses only the positive lobes of the primaries."

NIntTxrPM: :usage =
"NIntTxr[matrix] computes the integrals over the visible wavelength range
of the RGB primaries defined by matrix, a linear transform from XYZ
coordinates. Uses only the major positive lobes of the primaries.'

Txr2ChromGamut: :usage =
”Txr2ChromGamut[txr,range,points,label] plots the gamut of the
primaries defined by txr (a linear transform from XYZ to the primaries)
in a square region of the chromaticity diagram with sides (0,range), with
a vertical and horizontal resolution of points. The plot is labeled with
label. Actually displayed colors are approximations for CRTs. Good values
for range and points are 0.85 and 64."

GamutNTSC: :usage = "NTSC gamut as computed by function Txr2ChromGamut"
GamutCRT: :usage = "CRT gamut as computed by function Txr2ChromGamut"
GamutLMS::usage = "LMS gamut as computed by function Txr2ChromGamut"

Tor2Gamut: :usage =
"Tor2Gamut [tor, brightness, hrange, vrange, points, label] computes the
gamut of the opponent primaries defined by tor (a linear transform from
opponent functions to rgb) at the specified brightness level. The plot is
displayed in 3D, with x and y (opponent) coordinates going from -hrange
to hrange and z (brightness) coordinates going from O to vrange. The
x and y resolution is given by points, and the plot is labeled label.
Varying the brightness level while keeping vrange constant can be used to
generate successive equal brightness planes through the color space for
animation. The acually displayed colors are approximations for typical
CRTs."

Tor2Gamutl: :usage = "Like Tor2Gamut, but with RGB intensities normalized

for max(r,g,b)=1. This looses all intensity information, but can be used
to judge hues better than with Tor2Gamut."
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AnimH81CRT: :usage = "Animated plot of constant brightness planes through
the Hurvich 81 color opponent space, transformed to CRT RGB coordinates.'

AnimH81Lms: :usage = "Animated plot of constant brightness planes through
the Hurvich 81 color opponent space, transformed to LMS coordinates.'

AnimWWAWCRT: :usage = "Animated plot of constant brightness planes through
the Werner&Wooten AW color opponent space, transformed to CRT RGB
coordinates."

Begin[" ‘Private‘"]

(* The symbols appearing below are private to this package, and will not be
exported. *)

(* default basis set to use for CIE XYZ space *)
XyzList := Cie31List
SetDefaultCieFns[CieFns_:Cie31List] := XyzList = CieFns
(* chromaticity coordinates of monochromatic light *)

z[1_] := XyzList[[3]1[1] /

(XyzList[[111[1] + XyzList[[2]11[1] + XyzList[[311[1])
y[1_.] := XyzList[[2]1[1] /

(XyzList[[111[1] + XyzList[[2]1[1] + XyzList[[311[1])
x[1_] := XyzList[[111[1] /

(XyzList[[111[1] + XyzList[[2]11[1] + XyzList[[311[1])

chrom[1_] := {x[1], y[11}
chrom3[1_] := {x[11, y[11, 1 - x[1] - y[11}

cPoint[{x_, y_}] := Graphics[Circle[{x,y}, 0.008]]
cPointL[1_] := cPoint[chrom[1]]

ChromDiagram := Show[ParametricPlot[{x[1], y[11}, {1,380,750}, Frame->True,
AspectRatio->Automatic, GridLines->Automatic, DisplayFunction->Identity],
Graphics[{Line[{{x[380]1, y[3801}, {x[750]1, y[7501}}1},
DisplayFunction->Identityl]

PlotChromList[list_] := Show[ChromDiagram, Map[cPoint, list],
DisplayFunction->$DisplayFunction]

(* generic rgb or xyz functions based on transforms *)

X[1_] := XyzList[[1]1[1]
Y[1_] := XyzList[[2]1[1]
Z[1_] := XyzList[[3]1]1[1]
R[1_] := txr[[1]1] . {XyzList[[111[1], XyzList[[2]11[1], XyzList[[311[11}
G[1_1 := txr[[2]] . {XyzList[[1]11[1], XyzList[[2]1[1], XyzList[[31]1[11}
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B[1_]1 := txr[[3]] . {XyzList[[111[1], XyzList[[211[1], XyzList[[3]1][11%}

(* positive lobes only *)

RP[1_] := If[R[11<0, 0, R[1]]
GP[1_1 := 1flG[11<0, 0, G[1]1]
BP[1_] := If[B[11<0, 0, B[1]]

RPM[1_] := If[1<525, 0, RP[1]] (* major positive lobe only *)

(* inverses of xyz to rgb *)

XI[1_] := trx[[11]1 . {R[1], G[1], B[1]}
YI[1_] := trx[[2]1]1 . {R[1], G[1], B[1]}
zIf1_] := trx[[3]1] . {R[1], G[11, B[11}
plotRGB := Plot[{R[1]1, G[1], B[11}, {1,380,7603}]
plotX¥Z := Plot[{X[1]1, v[1], z[11}, {1,380,7603}]

plotXYZI := Plot[{XI[1], YI[1], zI[11}, {1,380,760}]
(* integrals of fundamentals *)

intXYZ := {NIntegrate[X[1], {1,380,760}], NIntegrate[Y[1], {1,380,760}],
NIntegrate[Z[1], {1,380,760}]1}

intXYZI := {NIntegrate[XI[1], {1,380,760}], NIntegrate[YI[1], {1,380,760}],
NIntegrate[ZI[1], {1,380,760}]1}

intRGB := {NIntegrate[R[1], {1,380,760}], NIntegrate[G[1], {1,380,760}],
NIntegrate[B[1], {1,380,760}]1}

intRGBP := {NIntegrate[RP[1], {1,380,760}], NIntegrate[GP[1], {1,380,760}],
NIntegrate[BP[1], {1,380,760}]1}

intRGBPM := {NIntegrate[RPM[1], {1,380,760}], NIntegrate[GP[1], {1,380,7603}],
NIntegrate[BP[1], {1,380,760}]1}

(* compute integrals of primaries specified as an XYZ->RGB transform *)

NIntTxr[m_, CieFns_:XyzList] := (
txr = m; XyzList = CieFns;
intRGB )

NIntTxrP[m_, CieFns_:XyzList] := (
txr = m; XyzList = CieFns;
intRGBP )

NIntTxrPM[m_, CieFns_:XyzList] := (
txr = m; XyzList = CieFns;
intRGBPM )

(* The following function computes a transformation from Cie XYZ color
matching functions to RGB color matching functions, given a set
of primaries specified by chromaticity coordinates only, and the
chromaticities of the alignment white. This function has been verified
against the results given in Rogers 85; the only difference is the
normalization factor. This method seems a lot easier than Rogers’. *)
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TxrFromChrom[{{Rx_, Ry_}, {Gx_, Gy_}, {Bx_, By_}}, {wx_,Wy_},
CieFns_:XyzList] :=
(* Compute an XYZ to RGB transform from RGB chromaticity coordinates,
equalized on the white point given by chromaticity coordinates. The
result is also normalized for max[rgbl=1. *)
Module[{Rz, Gz, Bz, Wz, m, sf}, (
Rz = 1 - Rx - Ry;
Gz =1 - Gx - Gy;
Bz = 1 - Bx - By;
Wz =1 - Wx - Wy;
m := Inverse[{{Rx, Gx, Bx}, {Ry, Gy, By}, {Rz, Gz, Bz}}];
(* equalize on white *)
m=(1/ (m. {Wx,Wy,Wz})) m;
(* scale for max[rgbl=1 *)
m = RgbNormFactorFromTxr[m, CieFns] m;
m

)]

(* This function computes chromaticity coordinates of primaries, given a
transform from Cie XYZ color matching functions to the color matching
functions of those primaries. Note color matching functions are NOT the
same as SPD’s, hence you cannot use the technique of function
ChromFromSPD here. In fact the computation is a lot simpler. Use this
function as the inverse of function TxrFromChrom. This function has been
verified against the results given in Rogers85, p. 395 ff. *)

ChromFromTxr[txr_] := Modulel[ {trx = Inverseltxrll}, (
Map[{#[[111 / (#[[11] + #[[2]1] + #[[31]1),
#0211 / (#[[11]1 + #[[21]1 + #[[3]1]1)}&,
{trx . {1,0,0}, trx . {0,1,0}, trx . {0,0,1}}]
)]

(* Compute chromaticity coordinates from SPD’s as fn of wavelength. This
function has been verified on Cie sources A, B, C, D65, and E. The
results are virtually the same as the chromaticities found in the
literature. *)

ChromFromSPD[plist_, CieFns_:XyzList] := Module[{F, result, sum}, (
XyzList = CieFns;
Map[ Function[ el, (
result = Map[ Function[x, NIntegrate[x, {1,380,760}]1],
{F[1] XyzList[[111[1], F[1] Xy=zList[[2]]1[1],
F[1] XyzList[[3]1[11} /. F->el 1;
sum = Plus Q@@ result;
Take[result / sum, 2] ) ], plist ]
) ]

(* some typical wavelengths for spectral colors *)

{LBlue, LGreen, LYellow, LRed} = {475, 500, 580, 700}
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(* for displaying fundamentals *)

PlotTxr[m_,label_:"",style_:rgbColors,CieFns_:XyzList] := (
txr = m; XyzList = CieFns;
Plot[{R[1], G[1], B[11}, {1,380,760}, PlotRange->All, PlotLabel->label,
PlotStyle->style]
)

PlotTxrP[m_,label_:"",style_:rgbColors,CieFns_:XyzList] := (
txr = m; XyzList = CieFns;
Plot [{RP[1], GP[1], BP[1]1}, {1,380,760}, PlotRange->All,
PlotLabel->label, PlotStyle->stylel
)

PlotTxrPM[m_,label_:"",style_:rgbColors,CieFns_:XyzList] := (
txr = m; XyzList = CieFns;
Plot [{RPM[1], GP[1], BP[1]}, {1,380,760}, PlotRange->All,
PlotLabel->label, PlotStyle->stylel
)

PlotTxo[m_,label_:"",style_:rgbColors,CieFns_:XyzList] := (
txr = m; XyzList = CieFns;
Plot[{R[1], G[1], B[11}, {1,380,760}, PlotRange->All, PlotLabel->label,
PlotStyle->style]
)

(* displaying Cie diagram with colored outline *)

(* this function assigns RGB colors to wavelengths, scaling them up to
maximum intensity while preserving rgb hue *)

lcolor[1_] := Modulel {r,g,b}, (

{r,g,b} = {RPM[1], GP[1], BP[1]l};
{r,g,b} = (1 / Max[r,g,bl) {r,g,b};
RGBColor[r,g,b]

)]

(* only ParametricPlot3D seems to take a color argument *)
(* the purple line does not show for some reason *)
(* delayed evaluation because XyzToRgbCRT has to be defined first *)

ChromDiagramColor := (
txr = transforms ‘XyzToRgbCRT; XyzList = Cie31List;
Show[ParametricPlot3D[{x[1], y[1], 0, lcolor[1]},
{1,380,750%},
PlotRange->{{0,.80}, {0,.85}, {-.001,.001}},
ViewPoint->{0,0,25}, Axes->{True,True,False},
DisplayFunction->Identity],
Graphics3D[{RGBColor[1,0,1],
Line[{{x[380], y[380],0}, {x[750], y[7501,0}}1}1,
Background->RGBColor[.5, .5, .5],
DisplayFunction->Identity]
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cPointColor[{x_, y_}] :=
Graphics3D[{GrayLevel[0], PointSize[0.02], Point[{x,y,0}]13}]
cPointLColor[1_] := cPointColor[chrom[1]]

PlotChromListColor[list_] := Show[ChromDiagramColor, Map[cPointColor, list],
DisplayFunction->$DisplayFunction]

(* Plot RGB gamuts, given a transformation from XYZ coordinates to RGB
coordinates. Note that when displaying gamuts for transforms other than
XyzToRgbCRT, the acutally displayed colors are not correct since they
are limited to what the monitor can display (of which CRT is an
approximation). The extent of the gamut is ok, however.

The gamuts are displayed in the Cie chromaticity space (xy coordinates),

so colors are normalized for maximum intensity.

To plot CRT and LMS gamuts respectively, use these expressions:

Show [Txr2ChromGamut [transforms ‘XyzToRgbCRT, 0.85, 64, "CRT"],
DisplayFunction->$DisplayFunction]

Show [Txr2ChromGamut [transforms ‘XyzToLmsVW, 0.85, 64, "LMS"],
DisplayFunction->$DisplayFunction]

*)

(* The function below uses Plot3D only because that allows colors of
plotted points to be specified, and Plot doesn’t. It plots a plane at z
coordinate 0, and x,y determined by chromaticity coordinates. The range
for the regular Cie chromaticity diagram is 0.85 *)

Txr2ChromGamut [txr_,range_,points_,label_,bg_:{.5,.5,.5},CieFns_:XyzList] :=

(XyzList = CieFns;

Plot3D[{0, Chrom2RGBColorClip[{x,y}, txr, bg, CieFnsl},
{x,0,range}, {y,0,range}, ViewPoint->{0,0,25},
Background->ReplacePart[bg, RGBColor, 0],
PlotPoints—->{points,points}, Lighting->False, Mesh->False,
PlotLabel->label,
Axes->{True,True,Falsel},
DisplayFunction->Identity]

(* The following functions compute RGB values from chromaticity coordinates
and an XYZ->RGB transform (txr). The idea is that since chrom coords are
related to XYZ coordinates by a constant 1/(X+Y+Z), we can use the chrom
coords in stead of XYZ coords as input to the transform, and then scale
the result so that the maximum component is 1. Since chrom coords carry
no luminance info anyway, that is fine. The result should be gamma
corrected for display of course, but Mathematica takes care of that. *)

Chrom2RGBColor [{x_,y_}, txr_, bg_:{.5,.5,.5}, CieFns_:XyzList] := (
XyzList = CieFns;
RGBColor [#[[1]1]1,#[[21],#[[3]111& [
(1/Max [#]1)#&[
Map[If[#<0,0,#]&, txr . {x, y, 1-x-y}11]
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(* Same, but turns any point with a negative coordinate into bg gray.
Displaying points computed in this way on the same gray bg makes only
the valid points stand out on a gray bg. *)

Chrom2RGBColorClip[{x_,y_}, txr_, bg_:{.5,.5,.5}, CieFns_:XyzList] := (
XyzList = CieFns;
RGBColor [#[[1]1]1,#[[21],#[[3]111& [
If[Min[#]1<0, bg, #1& [
(1/Max [#]1)#&[
txr . {x, y, 1-x-y}]11]

(* These are some examples of gamuts in chromaticity coordinates *)

GamutNTSC := Txr2ChromGamut[transforms‘XszoRngTSC, 64, "NTSC"]
GamutCRT = TXIZChromGamut[transforms‘XszoRgbCRT, 64, "CRT"]
GamutLMS := Txr2ChromGamut[transforms‘XyzToLmsVW, 64, "LMS"]

(* Plot Opponent gamuts, given a transformation from opponent coordinates
to RGB coordinates. The same restriction to displayed colors applies as
above. Opponent gamuts are displayed at constant brightness planes
through the opponent color space, with or without intensity
normalization. *)

(* normalized *)

Tor2GamutN[tor_, brightness_, hrange_, vrange_, points_, label_] :=
Plot3D[{brightness, Tor2RGBColorClipN[{gr, by, brightness}, torl},
{gr, -hrange, hrange}, {by, -hrange, hrange},
PlotPoints -> {points, points},
PlotRange -> {{-hrange, hrange}, {-hrange, hrange}, {0, vrangel}},
Background -> GrayLevel[0.5], Lighting -> False, Mesh -> False,
PlotLabel -> label, BoxRatios -> {1, 1, 2}, SphericalRegion -> True,
DisplayFunction -> Identityl]

(* The function for converting to rgb values has to limit display to
possible points only; since the rgb transforms are scaled for a maximum
value of one, any point which has an RGB component that is negative or
exceeds 1 is not possible. Whatever transform is used, e.g. H81TolLms (human
cone sensitivities), results are displayed on a monitor using its own
gamut of course. Using Lms, good ranges are [0,1.8] for brightness and
[-3.5,3.5] for gr/by. *)

Tor2RGBColorClipN[{gr_,by_,wb_}, tor_] :=
RGBColor [#[[1]1]1,#[[21],#[[3]111& [
Which[
Min[#]<0, {.5,.5,.5%},
Max[#1>1, {.5,.5,.5%},
True, (1/Max[#]1)# 1& [
tor . {gr,by,wb} 1]
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(* unnormalized *)

Tor2Gamut [tor_, brightness_, hrange_, vrange_, points_, label_] :=
Plot3D[{brightness, Tor2RGBColorClip[{gr, by, brightness}, torl},
{gr, -hrange, hrange}, {by, -hrange, hrange},
PlotPoints -> {points, points},
PlotRange -> {{-hrange, hrange}, {-hrange, hrange}, {0, vrangel}},
Background -> GrayLevel[0.5], Lighting -> False, Mesh -> False,
PlotLabel -> label, BoxRatios -> {1, 1, 2}, SphericalRegion -> True,
DisplayFunction -> Identityl]

Tor2RGBColorClip[{gr_,by_,wb_}, tor_] :=
RGBColor[#[[111,#[[2]1],#[[3]]1]& [
Which[
Min[#]<0, {.5,.5,.5},
Max[#1>1, {.5,.5,.5%},
True, # ]& [
tor . {gr,by,wb} 1]

(* use these expressions to generate an animated plot of constant-brightness
planes through H81 and WWAW opponent space, mapped into RgbCRT space.
Note that using Lms results in different shapes. *)

AnimH81CRT :=
ShowAnimation[ Table[ Tor2Gamut[H81ToRgbCRT, b, 1, 2.5, 16, ""],
{b,0,2.3,.13}1]

AnimH81Lms :=
ShowAnimation[ Table[ Tor2Gamut[H81ToLmsVW, b, 3, 2, 16, ""],
{v,0,1.84,.08}]1]

AnimWWAWCRT :=
ShowAnimation[ Table[ Tor2Gamut [WWAWToRgbCRT, b, 1, 1.5, 16, ""],
{vr,0,1.38,.06}1]

End[] (* private *)
EndPackagel[] (* package *)
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Appendix C

Getting the software

The software for the application described in Chapter 8, both the select/display X Windows

client and the Mathematica code, is available by anonymous ftp from
ftp.cs.buffalo.edu (128.205.38.1), directory /ftp/pub/colornaming

There is a README file in the directory with further instructions. For WWW! clients
(NCSA’s Mosaic, or your favorite client) the URL is

http://www.cs.buffalo.edu/pub/colornaming

All softwareis provided as is, without any expressed or implied warranty. It is guaranteed
not to be useful for any commercial application, in its current form. If you have problems

with it, feel free to contact me:

lammens@cs.buffalo.edu (until 5/94)

lammens@arts.sssup.it (from 6/94)

Enjoy!

! Really the greatest thing since sliced bread!
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