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ABSTRACT 

Cyber Security can benefit greatly from the association and combination of data and 

information from multiple sources. A data repository of system vulnerabilities, a network 

scanning tool, and the advice of a systems analyst trained in cyber security can all aid in 

identifying and preventing intruders. Previous attempts at information fusion in cyber 

security have largely concerned themselves with the "tangible" information sources, but 

this ignores an important resource in solving problems in this particular domain --- the 

cyber security expert's reasoning process. The National Center for Information Fusion 

(NCMIF) has begun implementing a solution that partially automates the cyber security 

expert in the intrusion detection process through a combination of information fusion 

techniques and symbolic reasoning, using the SNePS knowledge representation, 

reasoning, and acting system. 

Our methodology approaches cyber security problems by fusing information from 

external information repositories into a SNePS-based agent‟s knowledge base. We have 

identified five information sources that are useful: the background knowledge of a cyber 

security subject matter expert (SME);  Nessus security scan reports; the Common 

Vulnerabilities and Exposures (CVE) database; and INFERD template graphs.  The 

SNePS system makes use of higher-order logic to represent information about the 

external world. Facts are represented as proposition-valued terms, and the SME‟s 

reasoning procedures are represented as logical rules. 

We have also developed a Graphical User Interface to SNePS that facilitates the 

development and maintenance of the knowledge base. Dissemination of knowledge bases 

will be accomplished via files using OWL and the RDF markup language. 

Approved for public release; distribution 
is unlimited 
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1.0 Introduction 

The National Center for Multi-source Information Fusion (NCMIF) [1] has endeavored 

to combine the techniques of information fusion and knowledge representation and 

reasoning to provide a solution to problems in the cyber security domain. We present 

here a subtask in this goal. This task is responsible for providing a cyber security 

knowledge base that can test INFERD [7] template graphs in order to gain a better 

understanding of a hacker attack. For our purposes we have selected the SNePS 

Knowledge Representation and Reasoning System [6] to accomplish this task, which can 

be further subdivided as follows: 

 Represent the selected information in SNePS. 

 Use the SNePS reasoning engine to aid information fusion and cyber security. 

 Provide a method of interfacing with the SNePS system. 

 Improve the system, as needed, to accomplish the previous. 

Fusing the information sources into a common, logical representation language allows 

our reasoning engine to treat disparate sources as if they were one, and reason about the 

contents of these sources. In addition, we have developed two methods of interfacing 

with the system, a Java-to-SNePS API and a SNePS GUI. The former allows for Java 

programs to assert information in the SNePS system and construct logic-based queries to 

the system. The SNePS GUI provides users various alternative methods of inserting 

information into SNePS using visualized SNePS networks and hierarchies. This paper 

discusses the information sources we are using, the representation of those sources, and 

the developed and forthcoming interface features. 

2.0 Symbolic Reasoning in SNePS and Information Fusion 

Representing information in symbolic logic not only allows for the contents of these 

information sources to be fused into a common representation language, but also allows 

various reasoning tasks to be performed on the logical representation. Logical rules can 

be applied to deduce new information from existing information. For example, given 

rules about the structure of a class membership hierarchy, a traditional logic-based 

system can determine class membership. SNePS is one such system, but also provides a 

number of other useful representational and functional facilities that can aid information 

fusion and reasoning in the cyber domain. These include the capabilities to: 

 represent and distinguish co-referential terms; 

 represent meta-knowledge; 

 detect contradictions. 

The SNePS system was designed to handle co-referential terms in a way that provides 

each term its own unique intentional denotation, but allows for these terms to co-refer 

using equivalence relationships. Such a representation technique can provide a sense for 

an entity that is unique to each information source. SNePS can also represent knowledge 

about knowledge. Such a feature is capable of representing what SNePS knows about the 

knowledge contents of the external information sources. 

Apart from representational features, one functional feature of the SNePS system is its 
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capability for belief revision. The system can automatically detect contradictory 

information and present it to the user of the system. After the user selects the information 

to reject, an automatic repair propagation procedure is invoked. Such a feature is desired 

in information fusion as different external sources may contain contradictory 

information. 

 

3.0 Representing the Information sources 

We have identified five information sources that will aid in reaching our goals:  the 

background knowledge of a cyber security subject matter expert (SME); Nessus security 

scan reports; Common Vulnerabilities and Exposures (CVE) database; SNORT Sensor 

rules; INFERD template graphs.  A description of these and how they are represented 

follows: 

3.1 SME Background knowledge 

Of the five information sources the SME's background knowledge is the most difficult to 

elicit. In order to accomplish this we're taking our task one step at a time, analyzing the 

questions we want answered at the current step, and then asking the SME how they'd go 

about it. Through this process we have identified a number of external information tools 

to aid us, as well as constructed reasoning axioms that can answer the current questions 

under consideration.  Presently, the process under consideration is determining if an 

INFERD attack track for a particular host is a false positive, or true-positive. We have 

determined with the help of the SME this can be done by examining the vulnerabilities of 

the system using the Nessus security scanning tool (Section 2.2) and comparing their 

CVE identifiers (Section 2.3) against the Signature identifiers (SID) provided in the 

attack track.  In order to do this two translations are accomplished; one from SID to BID 

(Bugtraq ID), and one from BID to CVE identifier. This extra complexity step was 

chosen as the CVE repository has more entries with BIDs, than SIDs.  

Simply put, if the CVE identifier provided by Nessus for a particular host does not match 

the SID identifier provided by INFERD for that host, the track can be regarded as a false-

positive, otherwise it's a true-positive or that a vulnerability exists on the system but was 

not found by Nessus (a possibility we‟re discounting provisionally). This procedure was 

chosen since it is possible for INFERD to generate attack tracks for vulnerabilities the 

host in question doesn‟t possess, and as such, they should be rejected.  The 

representation of this reasoning process uses proposition-valued terms with the following 

semantics: 

 PropertyValue(x,y,z) - Entity x has a property y with value z 

 CVE_BID_Equiv(c,b) - CVE identifier c refers to the same vulnerability that BID 

b refers to. 

 SID_BID_Equiv(s,b) - SID s refers to the same vulnerability that BID b refers to. 

 TruePositive(x,c,s) - Entity x has a true-positive when it is known to have a 

vulnerability referred to by a CVE identifier c and SID s.  
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This reasoning rule is expressed in  SNePSLOG
1
 as: 

 

all(cid,bid,sid)(SID_BID_Equiv(sid,bid)   

    => (CVE_BID_Equiv(cid,bid)  

        => all(x)({PropertyValue(x,CVE,cid), PropertyValue(x, BID, bid),  

                         PropertyValue(x, SID, sid)}  

&=>    TruePositive(x,cid,sid)))). 

 

all(x,cid)(PropertyValue(x,CVE,cid)  

   => all(bid)(CVE_BID_Equiv(cid,bid)  => PropertyValue(x,BID,bid))). 

 

The above rules represent the following propositions: If a particular host x is known to 

have a particular SID sid , BID bid, and CVE identifier cid; and that sid, bid, and  cid 

refer to the same vulnerability, then INFERD generated an attack track that is a true-

positive. It is assumed by the INFERD interface to SNePS that after providing 

information about a particular attack track that if the system doesn‟t reason to a true-

positive that the track is a false-positive. 

Apart from the above reasoning rules, some general rules are provided to the system for 

the task at hand as well as in anticipation for future reasoning tasks. Among these are 

general “part of” and “class membership” rules.  The two “part of” rules are as follows: 

 

1) all(x,y,z)({PartOf(x,y),PartOf(y,z)} &=> {PartOf(x,z)}). 

2) all(p,v,x,y)({SubsumedProperty(p), PropertyValue(x,p,v), PartOf(x,y)}  

        &=>    {PropertyValue(y,p,v)}). 

          

The first rule provides the system with the capability to reason that the “part of” 

(expressed as PartOf in our logic) relationship is transitive. For example, if host h1 is 

part of network n1, and port p1 is part of h1, it can be concluded p1 is part of the 

network n1. The second rule is specifically tailored for properties the system believes are 

subsumed by parent parts (expressed as SumbsumedProperty). This rule was selected as 

Nessus reports only that ports have a specific vulnerability on them, but our desired goal 

is to know if certain hosts have vulnerability. By asserting that CVE, BID, and SID 

vulnerability identifiers are a subsumed property the system can know which hosts have 

a vulnerability, if it knows one of its ports has that same vulnerability. 

 

 

The class membership rules are as follows:  

                                                      

1
 SNePSLOG is a logical language resembling higher-order logic that can be used as an interface 

to SNePS 
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1) all(x,y,z)({Isa(x,y),Ako(y,z)} &=> {Isa(x,z)}). 

2) all(x,y,z)({Ako(x,y),Ako(y,z)} &=> {Ako(x,z)}). 

 

Though the above rules aren‟t used by the current task, they are helpful in establishing a 

hierarchy of class member information, and will aid in future reasoning goals. The first 

rule asserts that if some entity is a member of some class (represented by the Isa 

predicate), and that class is a subclass, or a kind of, another class (represented by the Ako 

predicate), then that entity is a member of the superclass as well. The second rule 

provides a the transitivity rule to the Ako relationship. 

 

3.2 Nessus 

Nessus [4] is a system security tool that analyzes a specified set of hosts on a network for 

security vulnerabilities. Reports on these vulnerabilities are generated as an XML file, 

which details ports on the scanned hosts and CVE identifiers for vulnerabilities detected 

on those ports. Additional information can include the operating systems running on the 

hosts, network trace routes, host aliases, and severity of the vulnerability. An example of 

the Nessus output is presented in Fig. 1.  

 

Figure 1: Sample Nessus output from our test network. 

 

After generating a report we utilize a PERL program to parse the needed information 

from the file and represent it in the SNePSLOG syntax. These become facts in our 

knowledge base. The following proposition-valued terms are required to represent the 

<host hostname="192.168.1.10"> 

   [...] 

   <port portname="netbios-ns (137/tcp)"> 

      <alert> 

         <hostname>192.168.1.10</hostname> 

         <portname>netbios-ns (137/tcp)</portname> 

         <id>10150</id> 

         <level>NOTE</level> 

         <desc> 

            [...] 

            CVE : CVE-2000-1194 

         </desc> 

      </alert> 

   </port> 

</host> 
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Nessus report: 

 PropertyValue(x,y,z) - Entity x has a property y with value z 

 Isa(x,y) - Entity x is a member of the category of  y 

 PartOf(x,y) - Object x is a part of object y 

 About(x,y) - x contains information about y 

 

As are the following terms: 

 Network - the category of networks 

 Host - the category of hosts. 

 Alert - the category of alerts. 

 Active_Port - the category of active ports. 

 CVE-xxxx-xxxx - a specific CVE identifier where each x can be a distinct digit. 

 x.x.x.x - a specific IP address where each x can be a number between 0 and 255. 

 low - the low  severity level, or what Nessus denotes with “NOTE” 

 tcp - the tcp/ip protocol 

 Plugin_Id - an identifier that uniquely identifies the structure of the information 

contained in an alert 

 Severity – property that represents the severity level of an attack  

 IP_Address - the IP address property 

 Number - the port number property 

 Protocol - the protocol property 

 

The PERL script traverses the file looking for specific tags, and contents to generate 

SNePSLOG expressions. As it encounters tags we have determined to refer to certain 

entities (e.g. host, port, and alert) the PERL program creates a unique identifier for the 

entity. This identifier is merely the first letter of the entity in question followed by a 

number (e.g `p12' would refer to the twelfth port encountered. An example of the 

SNePSLOG expressions resulting from a parse of the Nessus data in Fig. 1 is pictured in 

Fig. 2. Note that Nessus doesn't explicitly have tags referencing the network, but the 

hosts in a Nessus file are a part of a network, so an identifier needs to be provided in 

order to form propositions about the scanned network. This identifier is `n1'. 
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Figure 2: Sample SNePSLOG output from the Nessus parser 

 

 

 

3.3 CVE Repository 

CVE [2] is a database of common system vulnerabilities. It is available as an XML 

download, and is required for our purposes because it not only documents vulnerabilities 

across multiple operating systems, but also serves as a cross-reference for vulnerability 

referents. For example, the INFERD tracks use SIDs, which are translated to BIDs 

(Section 2.4), when identifying particular vulnerabilities, while Nessus uses CVE 

identifiers. Using this capability to cross reference CVE identifiers with BIDs,  an 

INFERD track is determined to be a  false-positive if the track‟s SID references a 

vulnerability whose CVE identifier doesn‟t  reference that same vulnerability. This is a 

result of INFERD generating an attack track for a vulnerability the host doesn‟t possess, 

and thus, the track can be discarded. 

This cross-referencing task is performed by the SNePS attached procedures facility. The 

size of the CVE repository prevents us from loading in all its information into a SNePS 

knowledge base without hindering the reasoning processes. Additionally, constantly 

consulting the web-site or XML file for entries would be computationally expensive. 

Thus, we use a PERL script to create a Lisp hash-table indexed on CVE identifiers, with 

values of BIDs and the ability of the attached procedures facility to integrate Lisp 

structures with the symbolic reasoning of SNePS.  

Below is a sample of a few entries in the CVE database after being translated into Lisp 

hash-table code, which  adds entries for every CVE-BID pair contained in the repository: 

Isa(n1, Network). 

... 

PartOf(h2, n1). 

Isa(h2, Host). 

PropertyValue(h2, IP_Address, 192.168.1.10). 

... 

Isa(p45, Active_Port). 

PropertyValue(p45, Number, 137). 

PropertyValue(p45, Protocol, tcp). 

About(a96, p45). 

Isa(a96, Alert). 

PropertyValue(a96, Plugin_Id, 10150). 

PropertyValue(a96, Severity, low). 

... 

PropertyValue(a96, CVE, CVE-2000-1194). 
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 (setf (gethash 'CVE-1999-0002 *cve-table*) '(121 )) 

(setf (gethash 'CVE-1999-0003 *cve-table*) '(122 ))  

… 

(setf (gethash 'CVE-1999-0842 *cve-table*) '(827 )) 

(setf (gethash 'CVE-1999-0844 *cve-table*) '(823 820)) 

… 

(setf (gethash 'CVE-2000-1194 *cve-table*) '(1227 )) 

 

These entries are connected to SNePS through the proposition-valued term 

CVE_BID_Equiv(cve,bid), which is ultimately attached to the Lisp function specified in 

Fig. 3. For our purposes, we mostly rely on this function to determine if a CVE identifier 

refers to the same vulnerability as a given BID. Thus, CVE_BID_Equiv(CVE-1999-0844, 

820) would return as known to the knowledge base, while CVE_BID_Equiv(CVE-1999-

0002, 1811) would be unknown. This process allows our logical formalism to connect its 

symbolic representation with efficient Lisp functions in a similar manner to Prolog‟s 

arithmetic facilities. After the Lisp function terminates, the information is cached in the 

SNePS knowledge-base. 

 

 

Figure 3: Attached function definition for cve-bid-equiv 

3.3 SNORT Sensor Rules 

 

SNORT Sensor rules [5] are used in a similar manner to the CVE repository. They are 

(define-attachedfunction cve-bid-equiv ((cve) (bid)) 

``If given two symbols, returns ``true'' if an entry exists in the hash-table 
with a key of cve, and the list of corresponding bids contains bid. If given a 
symbol for cve and variable for bid this will bind to the variable all the bids 
corresponding to the cve” 

  (cond  

   ((and (symbolp cve) (integerp bid)) 

    (if (member bid (gethash (intern cve :snepslog) *cve-table*)) 

        `((snip:pos nil)) 

      `((snip:neg nil)))) 

   ((and (symbolp cve) (sneps:isvar.n bid)) 

    (if (first (gethash (intern cve :snepslog) *cve-table*)) 

        (loop for elm in (gethash (intern cve :snepslog) *cve-table*)) 

            collect (cons 'snip:pos  `(((,bid . ,elm))))) 

      nil)) 

  (t nil))) 
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structured text files that contain information that defines (possibly) malicious network 

packets or sequences of network packets. Without these rules, the Snort sensor would 

produce no alerts.  When the rule is triggered by sensed network activity, the signature and 

unique SID associated with the rule is generated as information within the alert. We utilize 

these rules to establish a correlation between SIDs and BIDs, and ultimately SIDs and CVEs 

through the use of the CVE Repository (Section 2.3).  Like the CVE parsing described 

previously, these files are parsed and used to create a Lisp hash-table keyed on SIDs with 

lists of corresponding BIDs as the value. An example of the results are as follows 

 

 (setf (gethash 494 *sid-bid-table*) '(1806 )) 

(setf (gethash 497 *sid-bid-table*) '(1806 )) 

… 

(setf (gethash 1888 *sid-bugtraq-table*) '(5427 )) 

(setf (gethash 1734 *sid-bugtraq-table*) '(10078 1227 1504 1690 4638 7307 8376 )) 

 

These entries are connected to SNePS through the proposition-valued term 

SID_BID_Equiv(cve,bid), which shares a similar implementation to the attached-

procedure CVE_BID_Equiv, but on the *sid-bid-table*.  

 

3.4 INFERD Attack Tracks 

 

Figure 3 - INFERD Holistic Architecture 

INFERD (Information Fusion Engine for Real-time Decision Making) is a perceptual 

stream-based fusion system whose genesis has been in the application area of cyber 

security.  Figure 3 depicts the high level INFERD architecture.  The fusion algorithms 

represented by the Attack Track Generator and Other SA Processes boxes in Figure 1 

have been designed to be application independent.  This allows the application of 

INFERD to heterogeneous problem environments through the development of new a 

priori models denoted as Guidance Templates. 

The concept of operations (CONOPS) of INFERD within cyber security is to fuse 
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runtime alert information from various cyber sensors such as Snort and Dragon into 

tracks of attack activity.  The attack track generation process instantiated to the cyber 

security problem through a cyber security Guidance Template produces attack tracks 

representing aggregated sequences of individual cyber attacks into INFERD‟s best 

estimate of a single multistage attack from a single attacker or attacking party. 

This process has been designed to minimize and allow for incomplete or incorrect a 

priori information.  This design detail has been found to be very important when 

considering the real world characteristics of cyber attacks.  These attacks and the hacker 

attack methods are highly evolving and the problem of explicitly encoding an exhaustive 

set of multistage attack methods is not a tractable problem. 

To maintain real-time alert processing performance in the very high frequency virtual 

environment of cyber security, tradeoffs had to be made.  One such tradeoff was the 

decision to not model complex network topology information within INFERD.  This 

information is required to evaluate false positives received from sensors, but complicates 

the problem with evolving network configurations and complex relationship analysis 

between attack signature and network configuration information. 

The advantage of the SNePS / INFERD interface is that only the highest possible threat 

tracks can be evaluated via SNePS to be true positives which provide the complex 

reasoning processes performed within SNePS with the high speed aggregation 

capabilities performed within INFERD.  Utilizing the Java-SNePS-API (Section 4.1) the 

SNePS system is queried with high threat INFERD attack track information to determine 

if the track or which components of the track are a false or true positive in terms of 

attack success. 

 An example fragment of an attack track is shown below: 

 

 <?xml version="1.0" encoding="UTF-8"?> 

<Alert xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"     

xsi:noNamespaceSchemaLocation="AlertSchema.xsd"> 

… 

<TargetIP>192.168.1.10</TargetIP> 

… 

<Sid>1734</Sid> 

</Alert> 

 

From this we extract the SID and Host, and assert the following information into the 

knowledge base: PropertyValue(h,SID,1734), where h is a host that matches the 

TargetIP tag value [e.g. h would be bound to „h2‟,  since the system knows Isa(h2, Host) 

and PropertyValue(h2,IP_Address,192.168.1.10)].  If no such host is known to SNePS, 

then the Nessus scan didn‟t include or found no vulnerabilities for h. With the above 

information in SNePS the system can be queried using TruePositive(h,cve,sid). Given the 

above track, the system would be queried using TruePositive(h2,CVE-2000-1194,1734) 

and return that it is the case that this track is a true-positive and is in need of further 

testing. 
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4 System Interfaces 

4.1 Java-SNePS API 

To facilitate a method of interacting with SNePS from INFERD a Java-SNePS API was 

developed. This interface is split into two processes, the SNePS process and the Java 

Virtual Machine (JVM), with a communication layer provided by Allegro Common 

Lisp‟s jLinker [3].  The Java-SNePS API provides access to the knowledge base through 

a set of tell-ask functions. These are defined as follows: 

 public static void tell (String s) –  Supplies string s to the SNePSLOG 

interpreter.  

o Ex. tell(“PropertyValue(h2, IP_Address, 192.168.1.200).”) will assert 

into the knowledge base the proposition 

PropertyValue(h2,IPAddress,192.168.1.200) 

 

 public static String[] ask (String s) – Supplies string s, which must be a 

SNePSLOG or open  proposition, to the SNePSLOG interpreter, and deduces all 

known instances of the supplied proposition. Results are returned as a list of 

strings representing the known propositions. A similar function, askwh(s) is also 

specified. It returns only the resulting variable bindings (if any variables are 

supplied) as a list of Lisp strings. 

o Ex. askwh(“PropertyValue(h2, IP_Address, ?x)?”) will return the IP 

address of h2 as an array of  one element: [“192.168.1.2”]. 
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Figure 4 – SNePS GUI: (A) Loaded file, (B) SNePS Interaction pane, (C) Network View 

4.2 SNePS GUI 

Currently the SNePS GUI is capable of loading SNePSUL and SNePSLOG files, which 

are two different syntaxes for inputting data into SNePS. After loading a file the user can 

interact with the contents of the knowledge base through various views.  Fig. 4 shows the 

GUI after loading our knowledge base, and displaying only the propositions shown in 

Fig. 2. The user can adjust the node positions, acquire information about them by 

hovering the cursor over the nodes, zoom in and out on the network, and save an image 

of the network to disk. Fig 4C demonstrates these capabilities. In the figure the user can 

enter the propositions they want displayed in the text box; or none at all, which will 

result in the entire network being displayed. Also depicted is the mouse highlighting a 

node, which causes the GUI to display information pertaining to the highlighted node.  

Fig. 5 shows a node image file saved from the GUI by using the “Save Image” button in 

Fig. 4C. In addition to the network view a user can also access information from the 

knowledge base using the standard SNePSLOG interactions through the input box in the 

lower left corner of the GUI (Fig. 4B). Finally, the user can view the binary proposition-

valued terms in the GUI as a tree-hierarchy (Fig. 6). This hierarchy shows the PartOf  

relation (selected from the drop down menu), which shows the ports (expressed as the 

character p followed by a digit) that are part of a particular host (expressed as the 
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character h followed by a digit).  

 

Figure 5 – Saved SNePS Network Image 
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Figure 6 – SnePS GUI – Tree View 

5 Future Work and Conclusions 

This paper demonstrates our initial results from merging symbolic reasoning with cyber 

security. We have shown: 

 A representation of system information in SNePS from a variety of disparate 

sources. 

 A example of SNePS‟ reasoning system that reasoned about the represented 

information in order to determine false-positives in INFERD 

 Methods of interfacing with SNePS, through both the Java-SNePS API and 

SNePS GUI 

 New system features developed for the project, such as the SNePS Prolog-esque 

attached procedures facility.  

 

Though initial results, the above allows us to build upon a working model for future 

goals. A variety of background knowledge still needs to be explored, in particular, a 
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typology of network devices that the Nessus scanning tool doesn't provide. More 

complex reasoning rules that capture the thought processes of the SME are also 

needed, in particular, we intend to explore the classification of hacker behavior and 

reasoning about firewall and intrusion detection system (IDS) settings in order to 

further classify INFERD attack tracks as false-positives.  This latter process has been 

specified in design, but not implemented. It amounts to taking into account the 

network‟s topology and alerts generated by the IDS for a host potentially under 

attack. If the attack track generated by INFERD should not be rejected as a false-

positive, all the IDS on route to the host in question, should generate an alert, if 

configured similarly. If they do not we reject the track as a false-positive. This type 

of scenario is depicted in Fig. 7. In this we would suspect an attack from the external 

hacker targeted for the host with IP 192.168.20.100 to generate alerts from the 

similarly configured IDS 192.168.2.1, 192.168.5.1, and 192.168.20.1. 

 

Figure 7 – Example Network Topology with multiple IDS on route to various hosts. 

Figure courtesy of Dr. Jay Yang 

Apart from symbolic reasoning, the GUI still requires better methods for 

manipulating the data, independent of the SNePS Interaction window. Though we 

have explored the OWL and RDF formats, a method of representing SNePS data in 

these formats would allow us to further our goals of having a flexible interface.  
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