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tWe are investigating a simulated 
ognitive robot that,when it sees an obje
t per
eptually indistinguishablefrom one it has seen before, will use reasoning to de
ideif they are two di�erent obje
ts or the same obje
t per-
eived twi
e. We are 
urrently 
ondu
ting experimentswith human subje
ts to determine what strategies theyuse to perform this task and how well they perform it.Identifying Per
eptuallyIndistinguishable Obje
tsWe are investigating how an arti�
ial agent 
an, byreasoning, identify per
eptually indistinguishable ob-je
ts. Two obje
ts are per
eptually indistinguishableto an agent if the agent 
annot �nd any di�eren
e intheir appearan
e by using its sensors. Thus one agentmay �nd two obje
ts per
eptually indistinguishable butanother may �nd the same two obje
ts per
eptually dis-tinguishable.By identifying per
eptually indistinguishable obje
tswe mean the following: when an agent �nds an ob-je
t that is per
eptually indistinguishable from one ithas en
ountered before, the agent identi�es the obje
tif it su

essfully de
ides if the obje
t is the same oneit en
ountered previously, or if it is a new obje
t. Ifthe obje
t has been en
ountered before, and the agenthas en
ountered more than one su
h obje
t before, theagent should also know whi
h one it is 
urrently en-
ountering.People (human agents) often en
ounter obje
ts thatare per
eptually indistinguishable from obje
ts thatthey have seen before. Sometimes this obje
t is, in fa
t,the obje
t they have seen before and sometimes it is anew obje
t. To identify these obje
ts we need to useba
kground knowledge and 
ontextual 
ues. Humansregularly a

omplish this task in everyday situations.If a person has a 
opy of the latest Harry Potter bookin their book
ase and, upon visiting a friend, they seethe latest Harry Potter book in the friend's book
ase,the person intuitively knows that there are two books.The person might ex
laim �I have the same book atCopyright 

 2002, Ameri
an Asso
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ial In-telligen
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home.� If you have a pruned tree in your yard, and seeone that is per
eptually indistinguishable to you as youdrive to work, you will intuitively know that this is adi�erent tree.However, people also make mistakes in identifyingsu
h obje
ts. Many people have have pi
ked up some-one else's book and walked away thinking it was theirown 
opy of the book. People have also been surprisedto �nd themselves talking to the identi
al twin of thethe person that they thought they were talking to.We hypothesize that several properties of an obje
twill be useful in identifying it. Some 
ues will verylikely lessen the importan
e of other 
ues when the two
on�i
t.We think the obje
t's lo
ation is very important. Anobje
t in pla
e X that appears to be just like the obje
tthat was previously in pla
e X is likely to be the sameobje
t.The mobility of an obje
t is also likely to be impor-tant. Some obje
ts are essentially immobile, like trees,some 
an be moved, like books, and some move on theirown, like people. We hypothesize that the less mobilethe obje
t is, the more lo
ation 
an be used as a reliable
ue to identify an obje
t.We hypothesize that some kind of temporal knowl-edge is useful for reasoning about the identity of per-
eptually indistinguishable obje
ts. An obje
t that anagent is 
ontinuously per
eiving will logi
ally always bethe same obje
t(Pollo
k, 1974). Generally the longerit has been sin
e an agent last per
eived an obje
t, theless 
ertain the agent 
an be about the identity of a per-
eptually indistinguishable obje
t that the agent lateren
ounters. If an agent sees an obje
t destroyed, it 
anassume that an obje
t en
ountered later is not the sameone, even if it is per
eptually indistinguishable from the�rst obje
t.It seems important to know how 
ommon obje
ts ofa parti
ular type are. People are usually unique, soit is not unreasonable to assume that a person whois per
eptually indistinguishable from one seen before,is the same person. Identi
al twins are of 
ourse theex
eption to this general rule and 
an lead people tofail to su

essfully identify them. Stamps, in 
ontrastto people, are very 
ommon. If one takes a stamp out



of a drawer, puts the stamp on a letter, and mails theletter, the next day when one takes a stamp out of thedrawer, it intuitively seems to be a di�erent stamp.Cognitive robots must have a way of asso
iating, or
onne
ting, the robot's 
on
epts with obje
ts in theworld. Symbol an
horing is the pro
ess of 
reating andmaintaining in time these 
onne
tions between men-tal symbols and real world obje
ts(Corades
hi and Saf-�otti, 2001). Corades
hi and Sa�oti also note that, ina 
ognitive robot, the 
onne
tion �must be dynami
,sin
e the same symbol must be 
onne
ted to new per-
epts when the same obje
t is re-a
quired.�(Corades
hiand Sa�otti, 2001)For a 
ognitive robot, identifying per
eptually indis-tinguishable obje
ts is a spe
ial 
ase of the general prob-lem of symbol an
horing. When an agent en
ounterstwo per
eptually indistinguishable obje
ts, the sameper
eptual �sense data� must be 
onne
ted to di�erentsymbols. For instan
e, two 
opies of the latest HarryPotter book will provide a robot identi
al sense data,but they are di�erent obje
ts, so the robot needs di�er-ent mental symbols for them. This is the 
omplementof the problem of an agent's re
eiving di�erent sensedata from the same obje
t. When an agent looks at theright side of a Pepsi vending ma
hine and sees only theright side and front of the ma
hine, the agent will getdi�erent sense data than if the agent is looking from theleft side of the ma
hine and sees the left side and frontof the ma
hine. In this paper we are only 
on
ernedwith the problem of identifying an obje
t that has thesame sense data as a previously en
ountered obje
t.Sin
e people often identify per
eptually indistin-guishable obje
ts so e�ortlessly, we would like to giveour robot the same strategies that people use. Wewant to know what 
ues humans use when they tryto identify per
eptually indistinguishable obje
ts. Weare 
urrently 
ondu
ting a series of experiments withhuman subje
ts to learn how people identify per
ep-tually indistinguishable obje
ts. We will use the sub-je
ts' a
tions, and their self-reported reasons for thosea
tions, to identify what ba
kground knowledge peopleuse to identify per
eptually indistinguishable obje
ts.We want to know what strategies they use in di�erentsituations. We are also interested to see whi
h strate-gies are more likely to fail. We 
an then give our robotthose strategies that seemed to be most su

essful.Our Simulated Cognitive RobotWe are developing a simulated 
ognitive robot namedCassie, to whom we will give the ability to identifyper
eptually indistinguishable obje
ts. Cassie 
urrentlyuses vision to per
eive obje
ts in the world. She will useba
kground knowledge and reasoning to identify obje
tsthat she �nds per
eptually indistinguishable. The goalis to give Cassie su�
ient ba
kground knowledge andidenti�
ation strategies to do as well at this task as aperson 
an.Cassie is the generi
 name given to 
ognitive agentsthat are based on the GLAIR roboti
 ar
hite
ture

(Henry Hexmoor, 1993; Hexmoor and Shapiro, 1997).The simulated robot dis
ussed in this paper is thenewest version of Cassie. For a des
ription of previoushardware and software versions of Cassie see (Shapiro,1998).GLAIR (Grounded Layered Ar
hite
ture with Inte-grated Reasoning) is a three layered robot ar
hite
turefor 
ognitive robots and intelligent autonomous agents.GLAIR allows the repla
ement of the lower layers whilekeeping the upper layer 
onstant. This allows Cassie's�mind� to be moved to another �body�.The KL (Knowledge Level) is the top level of theGLAIR ar
hite
ture. The KL provides the �
ons
iousreasoning� for the system. This high level reason-ing is implemented using the SNePS(Shapiro and Ra-paport, 1992; Shapiro and the SNePS Implementa-tion Group, 1999) knowledge representation and rea-soning system. Atomi
 Symbols in the KL are termsof the SNePS logi
(Shapiro, 2000). Symbol stru
turesare fun
tional terms in the same logi
(Shapiro, 2000;Shapiro, 1993). All terms denote mental entities ratherthan obje
ts in the world.The PML (Per
eptuo-Motor Level) is the middlelayer of the ar
hite
ture. At this layer, routine behav-iors, in
luding the primitive a
ts of the KL, are repre-sented and 
arried out. To 
ontinue our anthropomor-phi
 analogy, the PML is where un
ons
ious skills andbehaviors reside.The SAL (Sensory A
tuator Level) is the lowest levelin the GLAIR ar
hite
ture. The a
tual sensors ande�e
tors of Cassie's roboti
 body reside at this level.The SAL is the level of the very primitive a
tions that
ontrol the sensors and e�e
tors.The GLAIR ar
hite
ture an
hors Cassie's intensionalKL terms to obje
ts in the world(Shapiro and Ismail,2001). GLAIR is a solution to the problem of sym-bol an
horing des
ribed by Corades
hi and Sa�otti.Cassie's KL 
on
epts of real world entities are alignedwith high level pro
essed sensory data from the PML.The PML in turn is responsible for produ
ing pro
essedsense data from the low level raw sensory per
eptionsof the SAL.Crystal Spa
eCrystal Spa
e is the environment that our version ofCassie exists in. Crystal Spa
e is an open sour
e 3Dgraphi
s and gaming engine(Jorrit Tyberghein, 2002).The Crystal Spa
e graphi
s engine provides a visual in-terfa
e similar to that of id Software's Doom and QuakeGames (id Software, ). Crystal Spa
e is designed as amodular set of tools for 
reating graphi
al appli
ations.It is written in C++ and runs on a wide variety of plat-forms.The Crystal Spa
e proje
t 
onsists of several inde-pendent modules so users only need to use the fea-tures they want. The graphi
s engine itself providesrendering of an arbitrary three dimensional virtual en-vironment with moving 3D sprites. The Crystal Spa
eengine is 
apable of rendering a s
ene from both the
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Figure 1: Ar
hite
ture of the Crystal Spa
e version ofCassie�rst and third person perspe
tive. Other Crystal Spa
emodules provide believable physi
s and 
ollision dete
-tion. We are using these modules to build a three di-mensional virtual world that our simulated robot willintera
t with.Cassie in a Crystal Spa
e EnvironmentWe are developing this version of Cassie using theCrystal Spa
e tools. The intera
tion between Cassieand the Crystal Spa
e environment is en
apsulated infour modules as shown in �gure 1. The modules 
om-muni
ate through standard so
ket 
onne
tions. Ea
h
onne
tion represents a spe
i�
 fun
tional 
onne
tionbetween the two modules.The �rst module implements the KL and some partsof the PML. This module is implemented entirely inCommon Lisp. SNePS runs in this module, along withthe ATN(Shapiro, 1989) that Cassie uses to understanda fragment of English.The se
ond module implements the remaining partsof the PML and the SAL. It is written in C++ usingthe Crystal Spa
e tools. This module regulates the 
on-ne
tions between all of the modules.The third module provides the natural language in-terfa
e to Cassie. Currently this is typed natural lan-guage intera
tion. Later we intend to use spoken inter-a
tions using spee
h to text te
hnology.The forth module, the mundus, implements the worlditself and Cassie's intera
tion with the world. Themundus uses the Crystal Spa
e graphi
s engine to ren-der what Cassie sees. The simulation renders a �rst per-son perspe
tive of the world be
ause it renders exa
tlywhat Cassie sees at any given time. Figure 2 shows anexample rendering of one su
h s
ene. The mundus alsore
eives the a
tions of Cassie's e�e
tors and pro
essesthem.There are four one way 
onne
tions between theKL/PML module and the SAL/PML module. The �rsttwo 
onne
tions represent the two KL sensory modali-ties that our robot has, vision and hearing (for natural

Figure 2: Cassie's view of the world showing two per-
eptually indistinguishable robots, one of whom she isfollowing. A �le 
abinet stands against the wall, and a
omputer room is visible through the door.language input). The other two represent the two a
t-ing modalities that our robot is 
apable of, spee
h andphysi
al a
tions in the world. There is a single 
onne
-tion between the SAL and the natural language inputand output module whi
h handles all natural languageintera
tion. There is also a single 
onne
tion betweenthe SAL module and the Mundus module. This twoway 
onne
tion provides vision information to the SALmodule for pro
essing and 
ommuni
ates Cassie's lowlevel a
tions to the mundus.Our 
urrent working version of Cassie will respondto simple dire
tional 
ommands to move around in theworld. By the time of the workshop, we expe
t to havea version 
apable of more advan
ed 
ommands.Cassie has three sensory modalities at the SAL/PMLlevel whi
h we shall refer to as vision, hearing and bumpdete
tion. Bump dete
tion is only used in the servi
eof movement, to provide feedba
k about 
ollisions; nobump information is passed up to the KL level. Thehearing modality is entirely devoted to natural languageintera
tion. Cassie uses vision to per
eive obje
ts in theworld.We are not 
on
erned, in this paper, with the pro-
essing of sensor data into sense data so we will notdis
uss vision in the SAL level. We will 
on
entrate onvisual per
eption at the PML level.We represent visual information at the PML level as atwo dimensional feature ve
tor. The dimensions of thefeature ve
tor are shape and material. Some of the pos-sible values for shape are generi
, su
h as �box shaped�,and some are more spe
i�
. Any obje
t with a �at hori-zontal surfa
e supported by four verti
al pillars has theshape value �table shaped�, for example. Materials arethe visual appearan
e of an obje
t's texture. Materials
an also be generi
 or spe
i�
. The material �wooden�is a generi
 material, while �Harry Potter front 
over�



Figure 3: Floor plan of the four room worldsis a spe
i�
 material. Obje
ts 
an have only a singleshape, but may have more than one material.Cassie �nds an obje
t to be per
eptually indistin-guishable from an obje
t she has seen before if theobje
ts have the same shape, and share all the samevalues for their materials. If she sees an obje
t witha shape value of �table shaped� and a single mate-rial value of �wooden� then she 
an identify this as awooden table. If she sees an obje
t with a shape value of�box shaped� and material values of �Harry Potter front
over�, �Harry Potter book spine� and �book pages� ly-ing on the table shaped obje
t, she 
an identify the ob-je
t as a Harry Potter book. If Cassie goes into anotherroom and sees an obje
t with shape value �box shaped�and the three material values �Harry Potter front 
over�,�Harry Potter book spine� and �book pages�, the newobje
t will be per
eptually indistinguishable from the�rst. Cassie will have to rely on her reasoning to de
ideif it is the same obje
t, or new one.The simulated worldsThe simulated worlds we are using in the CrystalSpa
e environment are based on two �oor plans. Bothworlds are 
losed suites of rooms in a building. The�oor plan of the �rst world is a simple square, sub-divided into four equal sized, inter
onne
ted squarerooms. Figure 3 shows this �oor plan. The other worldis a model of part of an a
ademi
 building, with 8 rooms
onne
ted by three 
orridors. Figure 4 shows this larger�oor plan. The s
reenshot shown in �gure 2 shows partof this se
ond suite of rooms. Using these two �oorplans, we 
reate di�erent test worlds by using di�er-ent materials for the walls, �oors, and 
eilings of the
Figure 4: Floor plan of the large worlds



Obje
t QuantityTable 13Chair 25Monitor 10Keyboard 10Computer 10FileCabinet 1PepsiMa
hine 1Stove 1WhiteBoard 1BulletinBoard 2Poster 2Robot 5-6Ma
hine 1Book 1Car 1Person 0-5Bottle 1Glass 2Table 1: List of obje
ts and how many of ea
h there arein the larger simulated world.rooms, and by pla
ing di�erent obje
ts in the of roomsof the world. Some worlds built using the smaller �oorplan have 
hairs, tables, glasses and bottles while oth-ers have only tables and robots. The worlds we've builtusing the �oor plan of the larger suite 
ontain all of theobje
ts listed in table 1. All of the worlds built usingthe larger suite's �oor plan in
lude a 
omputer room,a lab, two 
lass rooms, a lounge and a parking garage.These rooms are �lled with appropriate obje
ts.Experiments with Human Subje
tsWe have designed a set of experiments to eli
it thestrategies people use to identify per
eptually indistin-guishable obje
ts. These experiments are also designedto gauge how well people 
an identify per
eptually in-distinguishable obje
ts; we will 
ompare Cassie's per-forman
e with human performan
e. Human perfor-man
e is a measurable ben
hmark of what is reasonableto expe
t of Cassie.We des
ribe the experiments, along with some pre-liminary results, below. We will able to present more
omplete preliminary results of these experiments at theworkshop.Materials and ApparatusFor the experiments with human subje
ts, we are us-ing the same environment that we are using for our
urrent version of Cassie. The program that the sub-je
ts use is fun
tionally the same as the �mundus� mod-ule from �gure 1. Using this program subje
ts intera
twith the exa
t same virtual worlds that Cassie will in-tera
t with. Subje
ts use their eyes to see the same �rstperson view of the world that Cassie sees through theso
ket 
onne
tion. Subje
ts use keyboard navigation to

move themselves around the world where Cassie sendsa
tion requests through the so
ket 
onne
tion. Subje
tshave the same movement limitations that Cassie has.Design and Pro
edureThe experiments are proto
ol analysis(Newell and Si-mon, 1972; Eri
sson and Simon, 1984) experiments. Inthe proto
ol analysis style, subje
ts are asked to ex-plain their thought pro
esses as they parti
ipate in theexperiment. In our experiments, subje
ts are asked toverbally des
ribe their a
tions and explain why theyare performing those a
tions as they parti
ipate in theexperiment. Subje
ts speak into a headphone-mountedmi
rophone whi
h re
ords their verbal reports on 
as-sette tapes. The subje
ts are a mix of paid and un-paid adult volunteers with varying experien
e playing3D games. The subje
ts' su

ess or failure in the taskis also re
orded. For some tasks, the time subje
ts takeis re
orded.Subje
ts are not aware of the layout of the suite ofrooms when they begin a task. Ea
h subje
t works ontwo tasks, one with the �oor plan from Figure 3 andone with the �oor plan from Figure 4.We are 
urrently using the following tasks:1. Counting stationary obje
ts: The subje
t must 
ountthe number of glasses in the suite of four rooms. Theglasses are all per
eptually indistinguishable. Thereare two variations of this experiment. In variationone, the four rooms look di�erent. In the se
ondvariation, two of the rooms are per
eptually identi-
al, and the other two rooms are also per
eptuallyidenti
al. The subje
ts are timed and end the ex-periment when they believe they know the 
orre
tnumber of glasses.2. Counting mobile obje
ts: The subje
t must 
ount thenumber of robots in the same small suite of rooms asthe �rst variation of task one. The robots move ran-domly and 
an 
hange rooms. The robots move ata 
onstant rate of approximately half the maximumpossible speed of the subje
t. There are two varia-tions to this experiment. In the �rst variation, allrobots are per
eptually indistinguishable. In the se
-ond variation, there are two groups of robots; mem-bers of the same group are per
eptually indistinguish-able from one another. The subje
ts are timed andend the experiment when they believe they know the
orre
t number of robots.3. Following a robot: The subje
t is to follow a robottour guide through the larger suite of rooms. Thereare several distra
tor robots wandering in the suite.The distra
tors are per
eptually indistinguishablefrom the robot that the subje
t is following. Theexperimenter ends the experiment when either thesubje
t has followed the robot through its 
ompetepath, or the subje
t starts following one of the dis-tra
tor robots. Figure 2 shows a s
reenshot of thistask; in the s
reenshot, a distra
tor robot has wan-dered near the robot tour guide.



4. Following a person: The subje
t is to follow a per-son who is the tour guide through the larger suiteof rooms. There are several distra
tor people in thesuite. The distra
tors are per
eptually distinguish-able from the person the subje
t is following. Theexperimenter ends the experiment when, either thesubje
t has followed the person through his 
ompetepath, or the subje
t starts following one of the dis-tra
tor people. Sin
e people usually have a uniqueappearan
e, we hypothesize that our subje
ts will be-have di�erently than in the �Following a robot� taskdes
ribed above.Preliminary resultsIn this se
tion we will des
ribe some preliminary re-sults from our human subje
ts experiments. Sixteensubje
ts have parti
ipated in the experiment so far.Obviously with so few subje
ts we 
annot yet dovery mu
h quantitative analysis. However, there aretwo trends emerging that have been surprising. Wepredi
ted that 
ounting glasses would take less timethan 
ounting robots, sin
e 
ounting unmoving glassesseemed like a task that people do more easily than
ounting moving robots. We've had six subje
ts in thetwo variations of the glass 
ounting experiment so farand ten subje
ts in the two variations of robot 
ount-ing experiment. The glass 
ounters take on average aminute more than the robot 
ounters. The robot 
oun-ters take an average of two minutes and 56 se
onds to�nish the task, the glass 
ounters take an average ofthree minutes 52 se
onds.We expe
ted the robot 
ounting task to be the mostdi�
ult for subje
ts. The subje
ts have to (at least ten-tatively) identify all of the per
eptually indistinguish-able robots in order to a

urately 
ount them. How-ever, so far the robot following task has been the mostdi�
ult. Of the 13 subje
ts tested, only 54% havesu

essfully followed the robot to the end of its entirepath. In 
ontrast, �ve of the seven (71%) subje
ts inthe robot 
ounting task have su

essfully 
ounted all ofthe robots.We use the proto
ol data 
olle
ted from these exper-iments to get insight into what strategies people useto identify per
eptually indistinguishable obje
ts. Thesubje
ts have already used most of the strategies thatwe hypothesized were useful.Sin
e subje
ts do not know the layout of the suite ofrooms, they begin the task by familiarizing themselveswith it. In all of the 
ounting tasks, the tasks for whi
hthe subje
ts de�ned the end time of the experiment,subje
ts entered ea
h room at least twi
e.Subje
ts often used the lo
ation of an obje
t to helpthem identify the obje
t. Subje
ts used the lo
ation ofthe glasses almost ex
lusively when 
ounting glasses.When 
ounting moving robots, subje
ts reported us-ing (and appeared from their a
tions to use) the lo-
ation of the robots, the robots' observed speed, andthe time sin
e the subje
t last saw a per
eptually indis-tinguishable robot. Subje
ts report noti
ing that they


an move more qui
kly than the robots. Subje
ts tryto move fast enough to make a 
omplete �nal 
ir
uit ofthe rooms before the robots in the room they start fromhave the 
han
e to move to another room. This almost
ertainly a

ounts for the robot 
ounting tasks takingless time than than the glass 
ounting tasks, where thesubje
ts feel no su
h pressure to move qui
kly.Subje
ts in the robot following task use all of thestrategies that the subje
ts in the 
ounting tasks did.They also use two that we did not predi
t. When theyloose tra
k of the robot that they are supposed to befollowing (the �fo
us robot�), some subje
ts resort toa random guess. Subje
ts who used this �strategy� a
-
ount for most of the those who fail to su

essfully 
om-plete this task.Most of the subje
ts who su

eeded in the robot fol-lowing task used some sort of plan re
ognition whilefollowing the fo
us robot. Most of the subje
ts startedtrying to predi
t where the robot would go next so thatthey would be ready for the its next 
ourse 
hange andnot lose it. At least one subje
t used the fa
t that thefo
us robot moved �with a purpose� while distra
torsmoved randomly, to identify the fo
us robot after los-ing sight of it. Other subje
ts reported using the fo
usrobot's speed and traje
tory to identify it after losingsight of it when following the fo
us robot into a roomwith several distra
tor robots.SummaryWe have des
ribed the problem of identifying per-
eptually indistinguishable obje
ts. Per
eptually indis-tinguishable obje
ts must be identi�ed using reason-ing and knowledge sin
e sensory information 
annothelp. People 
an sometimes identify per
eptually in-distinguishable obje
ts e�ortlessly. We are 
urrentlyrunning experiments with human subje
ts to �nd outwhat strategies people use to identify per
eptually in-distinguishable obje
ts and how well they 
an do thistask. We have dis
ussed some preliminary results fromour experiments. People use lo
ation, time, obje
t mo-bility, plan re
ognition, and even random guessing toidentify per
eptually indistinguishable obje
ts. We aredesigning a simulated robot with the ability to iden-tify per
eptually indistinguishable obje
ts. The robotwill use the strategies that our experiments show thatpeople use to identify per
eptually indistinguishable ob-je
ts. Referen
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